
MODEL CHECKING IN PATTERN BASED CONTROL
SYSTEMS DESIGN.

Jüri Vain and Juhan Ernits

Department of Control Systems, Institute of Cybernetics at
Tallinn Technical University, Tallinn

Abstract: The idea of architectural and behavioural patterns originating from OO design
community is applied to control systems design modeling and verification. A template
for specifying modeling patterns is defined and, as an example, the Control Component
Pattern (CCP) is proposed. The benefits from parameterization and abstraction encoded
into the pattern are shown, allowing to increase the size of models and verification tasks
that still remain efficiently decidable by model checking. The interchange between CCP
and a certain subset of Simulink models allows to apply model checking in parallel
to quantitative simulation techniques. A sketch of the application of CCP for a simple
temperature control system design modeling and verification is presented. Copyright
c©2002 IFAC

Keywords: modeling, pattern, components, verification, timed automata

1. INTRODUCTION

Design of modern control systems sets high require-
ments to system performance, safety, fault-tolerance
and reliability. The major challenge in system de-
velopment process is ensuring the correctness of the
design at the earliest stage possible. Such effort is
increasingly becoming more significant in the devel-
opment cycle and, more generally, in the budget. Often
the most resource-consuming part is not the search
for correctness proof by some verification tool but the
definition of the system design model and requirement
specifications to be satisfied by the model. Proving
or refuting satisfaction relation between the model
M and requirements specification R is called model
checking (MC) (formally stated as M |= R? prob-
lem). Regardless of remarkable progress in MC tech-
niques, e.g., systems with more than 10120 states have
been reported verified in semiconductor and processor
industy (Clarke et al., 1999), several case studies (see
(Hune et al., 2000)) have shown that complexity issues
are still major obstacles in using MC for industrial
size systems. Efforts to be spent on MC are very
much dependent on particular application, specifica-

tion style, methodological framework of design and
people’s skills .

An approach, proposed in this paper for handling
industrial size MC problems, is constructing design
models and correctness formulas using domain spe-
cific modeling patterns and specification schemes.

General purpose program design patterns are well-
known in OO design community already since mid
1990s (Gamma et al., 1995)). In the design of control
systems some extra aspects must be represented in
modeling patterns and in requirement specifications:
for verification of behavioral properties the hybrid dy-
namics has to be presented explicitly, and if safety crit-
ical applications are considered, fault tolerance prop-
erties have to be related to the functional specification.
The Control Component Pattern introduced in this pa-
per for modeling and verification of control system
designs is an abstraction of typical control system
components such as sensors, controllers, actuators and
their compositions.

Another problem related to efficiency of MC is
parametrization of patterns allowing application de-

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain

pendent model tuning and selection of appropriate
level of model granularity. Having a priori complexity
estimates for a given pattern one can find a proper
trade-off between modeling details and decidability
of MC problems without wasting time on too abstract
models or hopelessly complex tasks.

The paper consists of following parts. In section 2,
a general template for specifying modeling patterns
is presented and the CCP is defined. In subsections
2.2 and 2.5, properties that can be explicitly modelled
and verified by CCP are discussed. Section 4 explains
implementation of CCP using XML technology that
provides an easy way for model interchange between
model checking and simulation tools. An example of
application of CCP for temperature control system de-
sign is presented in 5. The benefits of and open ques-
tions about the proposed approach are summarized in
the conclusion.

2. CONTROL COMPONENT PATTERN

2.1 Pattern template

Design pattern is a fundamental concept in OO design
for almost ten years. Patterns name, abstract, and
identify the key aspects of common design structures
that make them useful for creating a resusable design
(Gamma et al., 1995).

Our goal is to adapt the idea of patterns for model
construction and for model checking (MC) purposes
to handle systematically the complexity of industrial
size designs. Normally patterns are results of long
evolution and accumulate the best practice in domain.
Benefits expected from patterns in MC are following:

• Patterns provide abstract and structured descrip-
tion of modeling and related to that MC prob-
lems.

• They define cost, space and time trade-offs of
applying alternative solutions

• A pattern can be attributed with characteristic
MC tasks and their complexity estimates

• The model and MC strategies can be optimized
with regard to standard MC tasks of given pat-
tern.

The patterns have to be specified by uniform templates
to simplify their reuse. We propose a template having
the following structure:

• informal description (pragmatics)
(1) name and classification (prerequisites for

creating a pattern system or catalog)
(2) intent: What particular problem does it ad-

dress?
(3) motivation: How does the pattern solve the

problem?
(4) applicability: What are the situations in

which the pattern can be applied?

(5) consequences: What are the trade-offs of us-
ing the pattern (what quantities are parame-
terized?)

• formal description
(1) structural definition (UML class diagrams)
(2) behavioural definition (timed automata/Petri

Nets)
(3) MC query templates (e.g., temporal logic

TLTL formulae) and appropriate search strate-
gies.

2.2 Conceptual definition and pragmatics of CCP

The CCP represents an external view on the control
system components and can be considered as one
possible (discrete time) approximation of the hybrid
dynamical systems model proposed in (Koutsoukos et
al., 2000).

Generally, a component of CCP is defined as a triple

< I,O, R(I,O) >

where I,O are respectively observable inputs and
outputs (e.g., in practice, signals, disturbances, etc).
R(I,O) is the set of (static and dynamic) input-output
relations. An important simplifying assumption for
modeling here is the independence of component’s
inputs. To achieve better modularity of the model,
the input-output relation R(I,O) is split into a set
of simpler relations Rj each corresponding exactly to
one output Oj :

R(I,O) ≡

m
⋃

j=1

Rj(I, Oj)

where I = (I1, ..., In) and m = |O|. Defining
Rj(I,O) for whole input domain is often very difficult
if possible at all. Therefore, we introduce the notion of
mode denoting partitions on the input domain. Now,
each k-th part of given partition (if properly selected)
constitutes the domain for some local approximation
Rjk of Rj such that Rjk is a total (for k-th part) and
possibly linearizable function. Assuming that in each
mode a different input-output relation holds and hav-
ing p modes for an output Oj (input regions defining
modes must not be convex), the behaviour of Oj is
defined by an invariant

p
∧

l=1

(gj
l ⇒ Rjl(I, Oj)).

where gj
l denotes a l-th mode invariant for the output

Oj and Rjl is the l-th transfer function of the compo-
nent.

Regardless of its conceptual simplicity, CCP makes
it possible to model a rather broad class of control
system components including controller software and
sensors with degrading effects (see for details (Vain
and Kääramees, 2000)).

...

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Component

Input

Output

TransferFn Partition

is defined in

1

1..n

1..n

PartSubFunction

1 1..n covers

contains
1

1..n

Association

OutputInput

1..n

1..n

1..n

1

1

Figure 1. UML representation of the structure of the
component.

To model real-time behaviour, the I/O relations and
mode invariants are defined generally as timed ex-
pressions. Continuous components without switching
have only one mode and a single transfer function
for each output. Discrete components have a set of
modes each with a constant transfer function. Sym-
bolic input values, defined by mode invariants, consti-
tute the input alphabet of the given component. Hybrid
dynamics (in case of discrete time, continuous state)
with switching (i.e., without jumps) expects that the
transfer function has a member representing delay,
i.e., the function value at some previous time instant.
It can be easily implemented by means of feedback
connection between the output and an auxiliary input,
which keeps that output value until the next output
value is provided. Hybrid dynamics means generally
discontinuities in state trajectories. This kind of be-
haviour is approximated by the modes, some of which
have constant and some of which have discrete time
continuous state transfer functions.

The nonstationary behaviour can be easily modelled
by defining transfer function parameters (e.g., coeffi-
cients or partition bounds) being auxiliary inputs. It
means that they can be connected to outputs of some
other component which models the dynamics of those
parameters. On the other hand, it is obvious that re-
defining parameters as variables immediately brings in
nonlinearity of I/O dependencies and as a consquence
leads to undecidability of most of analysis problems.

2.3 Structural definition

The general structure of the pattern is depicted in the
UML class diagram of Figure 1. Here pattern con-
stituents and their relation types (association, aggrega-
tion, dependency) are shown. In fact, this diagram can
be extended with refinement and aggregation relations
between components when multilayered design struc-
tures are of modeling concern. Still, for defining oper-
ational semantics of CCP the flat structure suffices.

2.4 Behavioural definition

Integrated usage of simulation and model checking
tools in control systems design presumes quite of-
ten transforming continuous models into their discrete
counterparts. The reason for switching over to dis-
crete approximations is efficiency and decidability of
broader class of MC tasks compared to that of pure
hybrid models. In the following we show key steps
of defining CCP as a network of timed automata and
discuss some of its properties.

Model structure. Each CCP component is realised by
two automata templates represented in Figure 2 The
first template "InputsOf" models the latency of inputs.
Template "ModeBy" represents the mode selection by
mode invariant conditions, and computing the value
of the transfer function in selected mode. Thus, each
CCP component is modeled by p + 1 structurally
uniform timed automata, where p is the number of
input partitions and equals to the number of ModeBy
automata.

a)

S0S1

S01S00

OOO==0,
p0==0,
Kg==K0,
H01[0]!=W[I0[1]]

OOO:=5,
i:=I0[0]

i==0

p0:=1,
f:=0

i==1

j:=(f==1?H01max:0)

j==0
i:=i-1,
H01[0]:=W[I0[1]]

j>0

H01[j]:=H01[j-1],
j:=j-1

OOO==0,
p0==0,
Kg>K0

OOO:=5,
K0:=Kg,
i:=I0[0],
f:=1

I0[0]:=1,
H01max:=2,
I0[1]:=4,
W[I0[1]]:=0

c0?

b)

S0 S1

S2
S3

S4S5

S00
OOO==5,
p0==1 i:=I0[0],

M:=0

i!=0
j:=1

i==0

State:=W[O0[p0]]

j>=P[0],
W[I0[i]]>P[j]

j:=j+1
j<P[0],
W[I0[i]]>P[j]

j:=j+1

j<=P[0],
W[I0[i]]<=P[j] M:=(D[j]>M?D[j]:M),

i:=i-1

M==1

W[O0[p0]]:=A1[0]+A1[1]*H01[d1[1]]/100

OOO:=(p0==p0max?1:OOO),
p0:=p0+1

A1[0]:=15,A1[1]:=75,
d1[1]:=0,
P[0]:=1,
P[1]:=999,
D[1]:=1,
D[2]:=2,
O0[1]:=1

Figure 2. InputsOf (a) and ModeBy (b) automata of a
component.

Statespace and intercomponent links. The statespace
of a CCP component consists only of its input and
output variables. In TA representation, the state of the
component is modeled by the global vector W, where
values of state variables are stored. The InputsOf
type automaton has local variables, referring to the
actual input values and ModeBy type automata have
variables referring to output values in the vector W.

Transfer function. The transfer function corresponding
to the current mode of the component is selected
and calculated by ModeBy automata. Selection of the
state of the component is modeled by the fragment
consisting of automata states S1, S2, and S3 (Figure

2b) and the transitions connecting them. The index
of the seleced mode is stored in variable M and
appropriate to that index transition S4 −→ S5 is taken,
which computes the corresponding transfer function.

Latency in transfer functions. The component’s trans-
fer function may depend on earlier input values, i.e.,
some of its delay parameter may be nonzero. That
means that in TA representation the values of input
Ii have to be stored in the buffer Hi with length of
maximal delay. Having discrete time representation
we index time instants by nonnegative integers and in-
put values in Hi are indexed incrementally beginning
from current time instant and increasing to the past,
e.g., the latest value is stored in Hi(0), previous in
Hi(1), etc.

Sceduling in CCP compositions. For proving design
correctness it is common to use assume-guarantee
type proofs.

When designing the control system we first make
assumptions about the behaviour of the plant to be
controlled and the environment surrounding it. After
that we design the control system, and then attempt to
verify that the design satisfies the requirements under
the given assumptions. Similarily, each subsystem of
the control system can be designed separately and
verified with some assumptions of its local environ-
ment. It always leads to the separation of two parties
- the system components and the environment compo-
nents, where their interactions define the observable
behaviour to be verified. The interaction pattern of
the given parties is the following. Within each time
instant (global discrete time is assumed) the Environ-
ment changes its state generating a stimulus to the
System. System reacts to the stimulus computing its
own state change. Employing "slow enough system"-
assumption we assume that time progresses only when
both parties have reached their fixpoints. Unfortu-
nately, this assumption may easily lead to violation
of non-Zenoness of computations if those fixpoints
are missing. Generally, computations satisfying such
modeling assumptions are described by the regular ex-
pression (Environment; System; Clock)∗. Having
even a simple parallel composition of CCP automata
this behaviour cannot be guaranteed. We have to in-
troduce a scheduling policy which provides right suc-
cession of events. The automata template Scheduler
implements this scheduling policy giving the execu-
tion right alternatively to System components and En-
vironment components (see Figure 3). The execution
right is passed to the next party only after the former
has reached its fixpoint. Time is enabled to progress
only after System components have terminated. In
this solution components within system components
and environment components do not have priorities,
which means that the component to be executed next
is selected nondeterministically from those, the input
values of which have been changed but their outputs
have not been computed yet. Internally within a com-

ponent the execution order of transitions is completely
deterministic, thus rendering to achieve partial order
reduction like effect by simple modeling constraints.

S1

S00

S01

S02

S03

S2

S3

S0

inc<=1

OOO==1,
p*FIXP==0

pp:=(p!=0?0:1),
p1:=p1*pp,
p2:=p2*pp,
p3:=p3*pp,
p0:=1,
OOO:=0

c0!

c1!

c2!

c3!

OOO==1

FIXP:=1,
FIXP:=(W[1]!=H11[0]?0:FIXP),
FIXP:=(W[2]!=H21[0]?0:FIXP),
FIXP:=(W[3]!=H31[0]?0:FIXP),
p:=(p==0?p1*p2*p3:1)

OOO==1

p:=0,
p0:=1,p1:=0,
p2:=0,p3:=0,
OOO:=0,
inc:=0

inc==1
Kg:=Kg+1,
p0:=0,p1:=1,
p2:=1,p3:=1,
OOO:=0

OOO==1,
p*FIXP!=0

Figure 3. The automaton for sceduling.

2.5 MC query templates

Correctness requirements to be model checked are
generally combinations of safety and liveness proper-
ties. Safety properties say that some state property P
is never violated by any reachable trajectory. In con-
trol applications for different reasons we often have
to take into account some transfer phenomena, e.g.,
oscillations, start up, etc. in case of which the safety
properties are temporarily allowed to be violated. So
we propose conditional safety property saying "safety
property P is never violated provided condition C
holds". Using timed temporal logic TLTL conditional
safety properties can be specified by formula tem-
plates A2(C ⇒ P), where A and 2 denote resp.
modalities "always" and "globally". For instance, to
specify that after some transfer time τ the model
parameter x always remains within interval [l; u] we
have

A�(T ime ≥ τ ⇒ l ≤ x ∧ x ≤ u),

where T ime is a variable modeling discrete time.

Liveness properties express eventualities. Typical ques-
tion to be asked in RT system design is an upper
bound estimate of reaction time. This is an example
of bounded liveness property, that can be paraphrased
"given a stimulus s at time instant ts the reaction has
to be always not later than at ts + d". To state it
formally we need a location variable l1 and a clock
"Clock" that are reset to s and 0 respectively, when
the stimulus transition with destination state s is taken
in the model. We also need another location variable l
evaluated by the current state and a dedicated state r
modeling the completion of the reaction event. Then
the query template is following:

A3(l1 = s ∧ Clock ≤ d ∧ (l = r)),

where 3 denotes the modality "eventually".

3. USING PATTERNS IN MC

Although there are powerful model checking tech-
niques, e.g., symbolic representation, partial order re-
duction etc. that allow to increase substantially the size
of the systems that can be verified, many industrial ap-
plications are too large to be handled. The techniques
that can be used together with the symbolic methods
are compositional reasoning, symmetry, external con-
straints etc (Clarke et al., 1999). In this section we dis-
cuss how these techniques are supported by modeling
patterns approach.

Compositionality. Many systems are composed of
multiple entities running in parallel. The specifica-
tion of such systems can often be decomposed into
properties that describe the behaviour of each compo-
nent separately. The pattern approach rests on the idea
of modularity and allows to provide the alphabet of
subcomponents to decompose a complex system in a
systematic way. Having the candidate components the
strategy is to check each of the local properties, using
only the component defined by selected pattern. If the
conjunction of the local properties implies the overall
specification, then the complete system satisfies this
specification as well.

Symmetry. Systems often contain replicated compo-
nents. For example, in CCP, automata being instances
of InputsOf and ModeBy templates, replicate in each
component. This fact is to obtain reduced models for
the system. The groups of such replicas can be used to
define an equivalence relation on the state space of the
system and to reduce the search space.

Extra constraints. Similarly to the partial order reduc-
tion the sets of observationally equivalent behaviours
can be reduced and uninteresting cases can be elim-
inated by posing extra constraints to the model. In
terms of modeling patterns it means, e.g., restricting
the set of pattern behaviours with certain schedul-
ing discipline. Choosing among disciplines such as
maximal parallelism, bounded fairness, fixed priori-
ties etc. allows to decrease the number of interleaved
state sequences that must be explored in model check-
ing. An implementation of the scheduler imposing
bounded fairness discipline is presented in (Vain and
Kyttner, 2001). In the current approach we have com-
bined two strategies - fixed priority scheduling on
component automata level and fair scheduling on sys-
tem level where CCP components are competing for
the execution right.

4. IMPLEMENTATION

The current implementation of CCP is based on XSLT
tranformation. The component model is defined in
XML using a DTD (lightweight grammar) based on
the component described in Figure 1. The component
model is then transformed into the automata network
of the Uppaal tool (Larsen and Petterson, 1997) using

...
....
...
....
...
.....
....
...
....
...

...
....
...
....
...
.....
....
...
....
...

....................................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

SENSOR

VALVE
R(t)

ω(t)

Tc(t) Th(t)

ACTUATOR
y(t)

PLC

T(t)

Figure 4. Temperature control system.

an XSLT stylesheet and custom extensions written in
Java.

The transformation creates the following items:

(1) Static global variables;
(2) Global variables and channels (used by automata

corresponding to each component);
(3) The InputsOf and ModeBy automata (see section

2.4 for definition) for each component together
with local variables needed by those;

(4) The Scheduler automaton;
(5) The system definition.

The InputsOf and ModeBy automata corresponding to
each component are defined using the transformation
in favour of Uppaal templates because their structure
is parametrized depending on the number of outputs
and mode definitions in the component model.

5. CASE STUDY: WATER TEMPERATURE
CONTROL SYSTEM

A water temperature control system inspired by
(Davidson, 1990) is considered in the case study. Plant
to be controlled is a water supply system for a drum
boiler where the goal of the control is to keep the
temperature of water flowing into the boiler within the
range of 70 ± 4 C◦. The regulator has two incoming
water pipes - one for hot water and the other for
cold water. The control system (Figure 4) consists of
a temperature sensor measuring the temperature of
the water running into the boiler; programmable logic
controller (PLC) and an actuator which is a motor
driven hot and cold water mixing valve. It is assumed
that the standard analysis for control design is done
and transfer functions of components are identified.

Requirements and assumptions. User requirements
say that the control system must keep the temperature
of the water running into the boiler always within the
range 66 - 74 C◦. To have a feasible design also some
engineering constraints must be met. For instance, due
to limited number of allowed switching cycles of the
valve motor it is important to avoid over-regulation
and to minimize the motor use. A design constraint
to controller is introduced saying "if Tcold and Thot

have been stable within their Reliable regions at least

tstable = 2 sec then control activities must be com-
pleted and the motor switched off". Characteristics of
the plant are the temperatures of incoming hot water
and cold water (Th and Tc, respectively) and the tem-
perature T of mixed water flowing into the boiler. It
is assumed that Th = 90C◦ and Tc = 20C◦. The
pressure in both inflow pipes is constant and balanced.

Components. Temperature sensor transforms the mea-
sured temperature T to frequency ω.

ω(t) = 25 · T (t − τs) + 2830,

where τs = 0.5sec. Frequency 4630 Hz corresponds
to 72 C◦ and 4530 Hz to 68 C◦. Based on sensor
output readings the PLC computes in each 0.1 sec
a new control signal and switches "ON" one of two
output relays providing corresponding PLC output
values 1 or -1. Values -1 and 1 denote current with
different polarity driving the valve motor in opposite
directions. Value 0 denotes the situation where both
output relays are "OFF" and the motor stops. The
transfer function of the PLC is

y(t) =

1 4630 < ω(t − τc)
0 4530 < ω(t − τc) < 4630
−1 ω(t − τc) < 4530

with τc = 0.1 sec. Maximum time of turning the
valve’s position by motor between two extreme po-
sitions is 14 sec. The first derivative of valve’s relative
position R ∈ [0,1] is R(t) = k · y(t), where k =
1/14sec−1. For simplicity it is assumed that mixing
cold and hot water in the valve is instantaneous and
temperatures are related as in the following equation:

T (t) = R(t) · Th(t) + (1 − R(t)) · Tc(t).

Given specification is formalised using above de-
scribed transformation steps and resultant system con-
sists of the set of automata expressed by the following
regular expression:

System =

Scheduler, T imestop, (InputsOf, (ModeBy)pc)n,

where T imestop is an automaton containing a single
location and a single clock that restricts the amount of
time the system is allowed to run, n is the number of
components, and pc is the number of modes relevant
to a particular component c.

Verification. For verification of design correctness it
suffices to check the safety formula A�(time >
transfer_time ⇒ L_bound < temp ∧ temp <
U_bound), saying that after transfer period the water
temperature is always within the range
[L_bound; U_bound].

6. CONCLUSION

According to the authors’ knowledge this is one of the
first attempts to combine two powerful techniques -

model checking and pattern based design to address
the complexity of industrial size design problems. Our
work is based on the belief that modeling patterns
support scaling up MC tasks otherwise unsolvable on
unstructured models. We proposed a Control Com-
ponent (proto-)Pattern, which regardless of its math-
ematical simplicity allows to model rather broad class
of control system components and their compositions
preserving efficient decidability of MC tasks. We have
defined the translation of this pattern into a network
of timed automata, which opens the way for easier
construction of structurally uniform models and for
automated checking of these models. This is work
in progress and some complexity problems related to
reaching fixpoints in feedback model architectures are
yet unsolved. Another effort planned as continuation
of this work is enabling interchange between CCP and
a certain subset of Simulink models. The first step
towards simplifying this kind of interchange has been
made by applying XML technology in the implemen-
tation.

REFERENCES

Clarke, Edmund M., Jr., Orna Grumberg and Lu-
cent Technologies (1999). Model Checking. MIT
Press. Cambridge, Massachusetts.

Davidson, E. (1990). Benchmark problems for control
system design. Report of IFAC Theory Commit-
tee. 4-5.

Gamma, Erich, Richard Helm, Ralph Johnson and
John Vlissides (1995). Design Patterns: Elements
of Reusable Object-Oriented Software. Addison
Wesley professional computing. Addison Wesley
Publishing Company. Reading, Massachusetts.

Hune, Thomas S., Kim G. Larsen and Paul Petters-
son (2000). Guided synthesis of control programs
for a batch plant using UPPAAL. Research Series
RS-00-37. BRICS. Department of Computer Sci-
ence, University of Aarhus.

Koutsoukos, Xenofon D., Panos J. Ansaklis, James A.
Stiver and Michael D. Lemmon (2000). Supervi-
sory control of hybrid systems. Proc. of the IEEE
88(7), 1026–1049.

Larsen, Kim G. and Paul Petterson (1997). Uppaal
in a nutshell. Springer International Journal of
Software Tools for Technology Transfer.

Vain, Jüri and Marko Kääramees (2000). Towards uni-
fied compositional design of control systems. 6th
IFAC Workshop on Algorithms and Architectures
for Real-Time Control pp. 41–46.

Vain, Jüri and Rein Kyttner (2001). Model checking -
a new challenge for design of complex computer-
controlled systems. Proc. of 5th International
Conference on Engineering Design and Automa-
tion ’Design and Manufacturing Automation for
the 21th Century’.

