
FRAMEWORK FOR DEVELOPING REAL-TIME MOBILE ROBOTIC APPLICATIONS
BASED ON BEHAVIOURAL MODELS1

Houcine Hassan, Rafael Martínez, José Simó, Alfons Crespo

Dept. of Computer Engineering (DISCA), Universidad Politécnica de Valencia.
Camino de Vera s/n. 46071 Valencia. SPAIN.

e-mail:{husein ,rmartin, jsimo, acrespo}@disca.upv.es

Abstract: In complex real-time control systems such as autonomous mobile robotic systems, the
use of development tools for the design, analysis and validation of robotic applications is highly
desirable, specially to improve the robot performances and to avoid early software and hardware
design faults. This paper presents a framework for developing real-time mobile robotic
applications. The main feature of the environment is that it permits the integrated analysis and
validation of the functional behaviour of the robot (i.e. robot carrying out its plans) and the
guarantee of the temporal constraints of the system processes (i.e. reactive and deliberative
process execution). The verification of the correctness of the functional requirements is supported
by means of a robot simulation tool that reflects the progress of the system at the application
level. Likewise, a temporal analysis tool, based on scheduling analytical techniques, guarantees
the schedulability of the system load at the execution level. The usefulness of the development
tool is shown through design examples applied to mobile robotic applications. Copyright © 2002
IFAC

Keywords: Autonomous mobile robots, real-time systems, behavioural models, formal
specification, simulation tools.

1
This work has been partially funded by the Spanish

Government grant CICYT TAP99-1226-C02

1 INTRODUCTION

In complex real-time control systems such as
autonomous mobile robotic systems, the use of
development tools for the design, analysis and
validation of robotic applications is highly desirable,
specially to improve the robot performances and to
avoid early software and hardware design faults
(Capucho, 2001; Storch 1997). Graphical tools
should present the progress and the state of the
system at different levels (i.e. planning, execution).
These tools will greatly increase the reliability and
safety of deployed autonomous systems and hence
the efficiency of autonomous system designers
(Kortenkamp, 2000).
Generally, in most of the traditional robot control
architectures, real-time constraints have been
enforced by well engineered implementations largely
based on resource underutilisation and a limited set
of guaranteed computation, often a single real-time
loop (Beccari, 1999). However, the correctness of
real-time mobile robotic systems not only depends on
its correct functional behaviour, but also depends on
its correct temporal behaviour. That is, the system
should meet besides its functional specification, the

timing requirements of its processes, even in the
worst case (Shuhua, 2000; Nilsson, 1998).
In this paper, an integrated environment for
specifying, validating and developing real-time
mobile robotic application taking in consideration the
above-commented requirements is proposed. The
environment is composed of different analysis tools
for validating the functional behaviour of the robot
(i.e. robot carrying out its plans) and for assuring the
guarantee of the temporal constraints of the system
processes (i.e. reactive and deliberative process
execution). The verification of the correctness of the
functional requirements is supported by means of a
robot simulation tool that reflects the progress of the
system at the application level. Likewise, a temporal
analysis tool, based on scheduling analytical
techniques, guarantees the schedulability of the
system load at the execution level.

At the application level, the functional requirements
of the robotic application are specified by means of
behavioural-based models (Gat, 1998). Behavioural
models have been widely used to represent advanced
robotic systems operating in uncertain dynamic
environments, combining information from several

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain

sensory sources and with different vehicle dynamics.
Prior knowledge of the domain may be incomplete,
and in a dynamic environment, reasoning must be
deliberative and fast enough to respond to
unexpected events. Consequently, the planning
systems must be reactive and take into account
information about the current state at regular time
intervals. Therefore, mobile robots must combine
deliberative goal-oriented planning with reactive
sensor-driven operations.
The proposed framework includes a specification
language that allows the functional description of the
behaviours of the application by means of a graphical
tool. A simulator of robotic applications permits the
verification of the correctness of their functional
requirements. The robot quality of service (QoS) can
also be analysed in terms of promptness (increasing
the speed will increase the promptness) in reaching
the objectives and in terms of the ability of the
system in selecting the more appropriate activity to
be executed (depending on the available time).

At the execution level, the real-time model,
according to the hardness of the timing constraints of
the behavioural components, will be composed of
critical and optional tasks. The requirements of the
critical tasks are related to low-level reactions (e.g.
detecting and avoiding an obstacle) and must be
strictly guaranteed. The critical level can also handle
behavioural-based processes operating at variable
frequencies (Stankovic, 1999; Caccamo, 2000).
Consequently, fixed periodic tasks (Audsley, 1995)
are used to represent reactive processes that don’t
depend on the application parameters, as data
acquisition processes or controllers. However, for
dealing with reactive processes depending on
application parameters, as local map process or
obstacle avoidance behaviour, variable periodic tasks
have been incorporated to the task model (Hassan,
2001). The high-level deliberative processes of the
behavioural model do not require strict guarantees
(e.g. Global map building) and can be modelled by
optional tasks (Audsley, 1991; Liu, 1991).
An automatic temporal translator integrated in the
development tool generates, from the robotic
application description, the temporal characteristics
of the real-time task set. The environment embodies
also an analysis tool for the verification of the
fulfilment of the task temporal requirements. The
analysis proofs are supported by pre-emptive fixed
priority-based techniques (Audsley 1995) and permit
to establish whether the system is schedulable or not,
even when the system is in a transient state
(Caccamo, 2000; Hassan, 2001). The graphical
interfaces facilitate the analysis by allowing the
visualisation of the task set execution, the system
speed, the utilisation and the workload during the
execution of the simulation.

Following the introduction, the paper presents the
behavioural model for the description of mobile
robotic systems in the section 2. In section 3, the
real-time execution model for guaranteeing the
schedulability of the system is detailed. The
integrated development framework is exposed in
section 4. Section 5 discusses the design phases taken
in the development of mobile robotic applications. In

section 6, conclusions and future work are
summarised.

2 BEHAVIOURAL MODEL

Mobile robotic applications will be specified by
means of a behavioural-based hybrid model (Hassan,
2001), which is composed of a set of distributed
behaviour entities communicating through a
blackboard memory. The behaviour entities define
the task-specific knowledge for a very narrow portion
of a vehicle control. The behaviours run
asynchronously, using specific sensor data and
control algorithms, and providing contributions to the
arbiters. A control action and a motivation parameter
compose a contribution. The motivation parameter
reflects the behaviour’s importance in the current
mission. Based on the motivation values, the arbiters
apply a co-operative protocol for composing
contributions. The emergent control action is sent to
the corresponding robot actuator. The components of
a robotic application can pertain to one of the
following subsystems of the behavioural-based
architecture:
- Blackboard memory: represents the relevant
information needed by the robot to accomplish its
objectives (i.e. vehicle internal state, environment
representation, robot goals, contributions, etc.). This
memory is the communication interface between the
different processes of the architecture.
- Sensory system: contains sensor processes
representing real-time tasks that manage the
hardware sensory subsystems. These processes deal
with raw data like ultrasonic echoes, infrared
intensity, and battery charge.
- Reactive system: includes reactive behaviours and
fusion processes. This system is necessary so that the
vehicle can navigate safely and can take actions in
real-time. The reactive behaviours process the
information coming from the sensors in order to
apply primitive reactions (i.e. obstacle avoidance
behaviour). The reactive fusion processes generate
elaborated perceptual information by fusing basic
information obtained by different sensory processes.
- Deliberative system: contains deliberative
behaviours and fusion processes. This system is
responsible of high level planning. While the
deliberative behaviours support the long-term
planning of robot objectives (i.e. trajectory planning
behaviour), the deliberative fusion processes generate
global maps of the environment.
- Arbitration system: solve conflicts among
behaviours that try to access simultaneously the same
actuator. Arbiters receive behaviour contributions,
and, based on a composition protocol fuse them and
issued emergent control action to the corresponding
controller.

2.1 Specification of behavioural entities

The description of the components of the applications
is performed by using a specific-purpose language
developed with the flex and bison tools (Donnelly
1995). A graphical interface integrated in the
framework facilitates the definition of the processes

composing the applications. Sensory processes and
reactive fusion algorithms are described by the
attributes shown in the Figure 1.

Sensor

Identifier
Rate limits
Input_ref
Algorithm
Output_ref

],[maxmin ff

Fig. 1. Sensor attributes.

The components of a sensor process are the sensor
identifier, its minimum and maximum execution
frequency, a reference to an object in the blackboard
memory for gathering the device register data (i.e.
encoder tics), the algorithm code implemented by the
sensor and a blackboard output reference for storing
the sensory information results (i.e. location). It can
be pointed out that the execution time of some sensor
processes can be variable because it can depend on
the robot environment (i.e. the computational cost of
building maps will depend on the number of objects
detected). The reactive behaviours use the same
attributes but additionally, they will require a
motivation parameter.

The deliberative fusion processes and behaviours are
specified based on different function values that
relates the number of objects on the environment and
the computational requirements of these algorithms.
Fusion deliberative processes such as global map act
as any-time algorithms the quality of the answer
obtained (Maps), depends on the processing time
dedicated to their execution. If the environment is
overloaded and the time available for executing the
Global_map process is insufficient, the quality of the
map generated will be low and vice-versa. The
components required for describing deliberative
fusion processes are an identifier, an input
blackboard object reference to read data, the
algorithm that processes the information, the time
provided for the execution of the process and a
blackboard output reference to write the process
results. Deliberative behaviours (i.e. short-term
planning) can generate trajectories of varying
qualities (i.e. smoothness, minimum path) depending
on the algorithm executed. These behaviours will
require, besides the previous components, a set of
algorithms and a motivation parameter.

3 REAL-TIME EXECUTION MODEL

The temporal requirements of the robotic application
processes are extracted from the behavioural model
specification and are analysed in order to decide
whether the application timing requirements are
guaranteed or not. To allow the representation of the
behaviour’s temporal requirements, a real-time task
model has been defined.

3.1 Task model

Reactive behaviours are mapped to either fixed or
variable periodic tasks. The fixed periodic task set,

fT , represents the periodic processes of the

behavioural model that don’t depend on any
application parameter. For example, closed-loop
control processes, such as the servomotor process.
The temporal parameters of a fixed periodic task

f
iT are shown in equation 1.

{ }iiiiii
f

i PDTCT φ,Im,,,,= (1)

Where, Ci is the worst case execution time, Ti is the
period, Di is the deadline, Pi is the priority, Imi is the

importance and φi is the offset of the i task.

The variable periodic task set, vT , supports the

execution of behavioural processes that are
dependent on the environment and/or on the vehicle
speed. For example, the obstacle avoidance
behaviour has to, proportionally adapt its execution
frequency to the actual vehicle speed. Hence, this
process is modelled as a variable periodic task with
variable temporal requirements (period and deadline).

A variable periodic task, v
iT , is characterised by the

temporal parameters of the equation 2.

{ }iiiiii
v

i PkDkTkCT φ,Im,),(),(,)(221= (2)

In this case, Ci parameter is variable and depends on

the parameter 1k that can be the number of objects

in the environment. Ti and Di attributes are also

variables and depend on the parameter 2k that can be

the robot speed. These variable temporal parameters
should accomplish the conditions of the equation 3.

max
1

min)(iii CkCC ≤≤
max

2
min)(iii TkTT ≤≤

max
2

min)(iii DkDD ≤≤

(3)

min
iC is the minimum computational time

corresponding to an under-loaded environment. max
iC

is the maximum computational time corresponding to

an overloaded environment. min
iT and min

iD are the

minimum task periods and deadlines, and are applied
for the maximum vehicle speed. When the speed is

minimum, max
iT and max

iD are applied. The

relationship between speed and periods is stated in
equation 4.

c
ii v

T
1⋅= α (4)

Where iT is the i task period, iα is a distance

constant and cv is the current robot speed. The

vehicle speed range is [80 mm/s, 2 m/s].

The deliberative processes are generally
characterised by computational times higher than
those associated with reactive processes. The
response of the former improves the results of the
latter. For example, the deliberative local_map

process improves the quality of the map obtained by
the reactive local_min_map process. Depending on
the environment load, it is dedicated a corresponding
computational time to the local_map process. The
higher the computational time dedicated to a
local_map process is, the better are the maps it
generates. Deliberative processes are modelled with

optional soft aperiodic tasks. Each optional task, o
iT ,

is composed of different deepening levels (Liu, 1991;
Audsley, 1991). The first level generates a minimum
quality response of the task. By increasing the level,
the quality of the task result is improved. The

characterisation of an optional task, o
iT , is given in

the equation 5.

)Im,(i, ji
o

i LT = (5)

Where Li,j is the estimated computational time of the
jth level of the ith task. Imi is the importance of the
optional task.

3.2 Schedulability analysis

To guarantee the execution of the different real-time
tasks, two schedulers have been designed. A critical
level scheduler guarantees the execution of the fixed
and the variable periodic tasks while an optional
server guarantees the execution of the optional tasks
without jeopardising the execution of the former
load. Before run-time, fixed priorities are assigned to
the critical level tasks. The priorities of the
mandatory and the action parts of periodic tasks must
be the same and are kept fixed during the system
execution. To guarantee the execution of the critical
tasks, a fixed priority-based pre-emptive scheduler is
used and schedulability analysis for such systems is
applied (Audsley, 1995). Although variable periodic
tasks introduce changes in the run-time workload,
this should not exceed the maximum system
utilisation that is guaranteed before run-time, and
consequently, the variable run-time workload is
always guaranteed (Hassan, 2001).
At the optional level, the optional server, by means of
the dynamic approximate slack stealing algorithm
(Davis, 1993; Hassan, 2001), obtains the available
slack time that is invested in the execution of
optional tasks. These tasks are executed at the
priority of the optional server, which is in turn
executed at the priority of the periodic task that
previously invoked it. The optional tasks don’t
interfere in the system schedulability guarantee
because they are scheduled in the slack time provided
by the optional server.

4 INTEGRATED DEVELOPMENT FRAMEWORK

The implementation of the integrated environment
presented in this paper follows the general design
references for developing real-time systems
established in (Gutierrez 2000, Crespo 1990). These
systems cope with the specification, schedulability
analysis and automatic Ada 95 code generation of
distributed and centralised real-time systems

respectively. The framework proposed here focuses
in the design of real-time mobile robotic applications
where specific features related to robotic systems
have to be considered (i.e. behavioural based
modelling, world modelling, timing requirements
guarantee, application and execution level
interrelation, robot QoS). This framework permits the
analysis and validation of both the functional
behaviour and the temporal requirements of the
system, by the incorporation of simulation tools at
both the application and the execution level. Once
validated the application design, its corresponding
executable code can be generated for the real-time
kernel of linux operating system, rt-linux.

4.1 General overview of the integrated toolset

The general structure of the framework is shown in
the Figure 2. The graphical tools have been
developed with Qt multi-platform C++ GUI toolkit
available for Windows, Linux, Solaris, HP, etc.
(Ward, 2001). The modules composing the proposed
framework are described below:
- Mobile robotic model: serves for the specification
of the robotic application based on the behavioural
model described in section 2. The flex and bison tools
are used to create a special-purpose language that
supports the specification of robotic applications.
Alternatively, a graphical interface, to define the
process characteristics is provided. An example
showing how is performed the specification of an
application can be seen in the Figure 4. The
description of the world model (i.e. targets, obstacles,
robot recharge base) is performed with the graphical
tool of the Figure 3.

Mobile Robotic Model

Translator
Application
Executable

Code

World Model

Temporal Analysis Tool

Behavioural
Model

Temporal Model

Application timing
requirements

WCET Estimation

Task Simulator

Parameter
Monitoring

- Response Time
- System Utilisation

Behavioural Analysis Tool

Robot Simulator

QoS Analysis

Objective and QoS
Fulfillment

RT-Linux Code Generation
Tool

Prorotype code

Application code

Executable
Prototype

Fig. 2. Framework for developing mobile robotic
applications.

- Temporal model: the timing characteristics of the
application are obtained from the mobile robotic
application definition by means of a temporal
translator. The temporal requirements of the
processes of the application are those supported by
the system model stated in section 3.1. A rt-linux
specific monitor permits the estimation of the process
computational times.
- Behavioural analysis tool: includes a robot
simulator that permits the validation of the functional
robot behaviour. The simulator takes robot state
information (i.e. robot speed, trajectory) from the
blackboard that is updated by the real-time tasks
during the execution of the system and simulates the
behaviour of the robot. The QoS analyser monitors

the robot performances (i.e. trajectory smoothness)
and can know whether the performance requirements
are fulfilled or not.
- Temporal analysis tool: permits the analysis of the
temporal requirements of the tasks, based on the
analytical techniques presented in section 3.2.
Different scheduling algorithms and optional task
control strategies can be applied during the
evaluation. A task simulator tool allows the
visualisation of the execution of the task sets and the
analysis of statistic indexes of the system execution.
Critical and optional load, system speed, variable
utilisation and workload can be monitored in real-
time.
- The rt-linux code generation tool is in phase of
construction and it will permit the creation of the
actual executable code of the application, according
to the application specification and to the temporal
requirements of its processes.

5 APPLICATION DESIGN STUDY

In order to show the design phases taken for
developing mobile robotic applications, a simulation
case study based on the Yair robot (Benet 1998) is
analysed. The specification of applications is
performed with the tool shown in the Figure 3.

Robot

Obstacles

Target

Objective

Fig. 3. Robotic simulation tool.

This tool allows the definition of the obstacles of the
environment, the initial robot location, the different
targets of the robot and the battery recharge points. In
the application example, the robot starts from its
initial position and has to reach the objectives, Xi.
Along the path, the environment becomes
progressively overloaded. To adequately recognise
the world and take correctly its decisions, the robot
regulates its speed (i.e. if the number of objects
increases, the robot speed is reduced). By reducing
the robot speed, the system utilisation will decrease
and the spare CPU capacity enabled can be used for
long-term planning and map fusion processing. This
simulation tool permits to assess whether the robot
fulfils its functional requirements or not.

Five reactive processes (Odometry, Local_min_map,
Go_objective, Obstacle_avoidance, Trajectory
arbiter) and two deliberative processes (Local_map
and Global_map) compose the application. All of
them are defined with the specification tool of the
Figure 4. As an example, the attributes of the reactive
obstacle_avoidance behaviour can be appreciated.

Fig. 4. Processes specification tool.

The temporal characteristics of these processes are
translated to the real-time task model in order to
proceed to the analysis of the temporal requirements
of the application processes. The generated task sets
are executed based on the scheduling algorithms
selected using the tool shown in the Figure 5. The
Rate Monotonic or Deadline Monotonic algorithm
(Audsley, 1995) can schedule critical tasks while
different heuristic strategies (boss strategy, balance
strategy, etc.) schedule optional tasks (Hassan, 2001).

Fig. 5. Scheduler selection interface.

The task temporal requirements are analysed with the
set of tools of the Figure 6.

A
A

B

R
ea

ct
iv

e
ta

sk
s

D
el

ib
er

at
iv

e
ta

sk
s

Odometry

Local_min_map

Go_objective

Obst_avoidance

Trajectory_arbiter

Local_map

Global_map

B
100% 2m/s

0

100%

0%
Time Time Time

C1 C2 C3

Fig. 6. Temporal analysis tools.

The Figure 6 (A) shows that the application task set
is schedulable. It presents also, the computational
time used by the reactive, deliberative and the idle
task. The Figure 6 (B) represents a time chronogram
of the different tasks cooperating to satisfy the robot
objectives. This tool permits a detailed analysis of the
task behaviour along the time, such as, computational
time variations and temporal requirement changes.

The interfaces that allow the real-time monitoring of
the workload, the system speed and the utilisation
during the application execution can be appreciated
in the Figure 6 (C). During the execution of the
application example, the robot sonar detects an
increase of the number of obstacles in two zones.
Approaching X1, it detects few obstacles and near
X2, it recognises a big number of obstacles. Thanks
to the model of system proposed, the exact
percentage of computational time consumed by the
tasks can be monitored in real-time. This information
is plotted in the Figure 6 (C1). It can be seen that the
first increase of the workload correspond to the X1
environment. There, the robot reacts by reducing its
speed that will cause a reduction of the system speed
(2m/s to 1m/s) as can be seen in the Figure 6 (C2).
This situation will produce a reduction of the
utilisation as is monitored by the Figure 6 (C3). In
the vicinity of the X2 point, the same effect is
reproduced. The robot reduces its speed (1m/s to
0.6m/s), the system speed decreases and the
utilisation is reduced. The information of these
system state variables permits to take actions in order
to improve the robot QoS. For example, when the
system is underloaded (low utilisation), such as in X2
zone, more computational time can be dedicated for
processing long-term planning and map building
tasks to improve the maps and trajectory qualities.
Finally, after checking the accomplishment of the
functional behaviour of the application with the
robotic simulation tool and assuring the guarantee of
the temporal characteristics of the processes with the
temporal analysis tools, the generation of the rt-linux
application code can be launched.

6 CONCLUSIONS AND FUTURE WORK

An integrated framework for the specification,
analysis and validation of real-time mobile robotic
applications is presented. The main features of the
environment is that it allows the integrated analysis
and validation of both the functional and the temporal
behaviour of the system. The specification of robotic
applications has been performed based on
behavioural models and the validation of the robotic
functional behaviour has been achieved based on
simulation tools.
The real-time system for modelling the timing
requirements of the robotic application processes and
the schedulability analysis techniques applied have
been detailed. At this level, different graphical tools
have been implemented for monitoring and analysing
the execution of the system load.
A case study showing the phases taken in the design
of Yair robotic applications has been described.
Future work will focus on the completion of the
framework by implementing the real-time linux code
generation tool. The analysis of the robot QoS (i.e.
trajectory quality) is intended. The embedding of the
generated code in the Yair robot platform and the
applications evaluation are also planned.

REFERENCES

Audsley, N.C., Burns, A., Richardson M.F. and Wellings,
A.J. (1991). Incorporating Unbounded Algorithms into
Predictable Real-Time Systems. Report Nº
RTRG/91/102. Real-Time Systems Group. Department
of Computer Science. University of York, UK.

Audsley, N.C., Burns, A., Davis, R., Tindell, K. and
Wellings J. (1995). Fixed Priority Pre-emptive
Scheduling: An Historical Perspective. The Journal of
Real-Time Systems, Vol. 8. pp. 173-198.

Beccari, G., Caselli, S., Reggiani, M. and Zanicheli, F.
(1999). Rate Modulation of Soft Real-time Tasks in
Autonomous Robot Control Systems. 11th Euromicro
Conference on Real-Time Systems, York. UK.

Benet, G. Blanes, F. Martínez, M. And Simó, J. (1998). A
Multisensor Robot Distributed Architecture. 9th IFAC
Symposium on Information Control in Manufacturing.
Metz-Nancy.France.

Caccamo, M., Buttazzo, G. and Sha L. (2000). Elastic
Feedback Control. 12th Euromicro Conference on
Real-Time Systems. Stockholm, Sweden.

Capucho, J., Almeida, L. and Buttazzo G. (2001). Using a
Real-Time Kernel to Simulate the Micro-Rato
Robotics Contest. Proceedings of ROBOTICA 2001.
Guimarães, Portugal.

Crespo, A., De la Puente, J.A., Espinosa A. and Garcia A.
(1990). Quisap: Environment for Rapid Prototyping of
Real-Time Systems. IEEE Conference on Software
Engineering. Tel-Aviv. Pp. 502-508.

Davis, R.I., Tindell, K.W. and Burns A. (1993). Scheduling
Slack Time in Fixed Priority Preemptive Systems.
IEEE Real-Time System Symposium. Dec 1993. pp
160-172.

Donnelly, C. and Stallman, R. (1995) Bison: The Yacc-
Compatible Parser Generator. Free Software
Foundation, Cambridge, Massachusetts.

Gat, E. (1998). Three Layer Architectures. Artificial
Intelligence and Mobile Robots. The MIT Press. 292
Main Street, Cambridge, MA.

Gutierrez, JJ. and Gonzalez, M. (2000). A Framework for
Developing Distributed Hard Real-Time Applications.
25th IFAC Workshop on Real-Time Programming.
Palma de Mallorca. Spain.

Hassan, H. (2001) Improving the Flexibility and the QoS of
Real-time Control Systems. Ph. D. Thesis. Dept. of
Computer Engineering. Polytechnical University of
Valencia. Spain.

Kortenkamp, D. (2000) Designing visualization tools for a
Distributed Control Architecture. Intelligent
Autonomous Systems Conference. Venice, Italy.

Liu, J.W.S., Lin, K.J.L., Shih, W.K., Yu, A.C., Chung,
J.Y., and Zhao, W. (1991) Algorithms for Scheduling
Imprecise Computations. IEEE Computer, Vol. 24,
No. 5, pp. 58-68.

Nilsson, U., Streiffert S. and Törne A. (1998) Detailed
Design of Avionics Control Software. IEEE Real-Time
System Symposium. Madrid. Spain.

Shuhua W. (2000). Verification of both functional and
timing requirements of real-time systems. 25th IFAC
Workshop on Real-time Programming. Palma de
Mallorca. Spain.

Stankovic, J. A., Lu, C., Son, S. H. and Tao G. (1999). The
Case for Feedback Control Real-Time Scheduling. 11th

EuroMicro Conference on Real-Time Systems. York.
U.K.

Storch, M.F. (1997). A Framework for the Simulation of
Complex Real-Time Systems. PhD Thesis. Dept.
Computer Science, Univ. of Illinois.

Ward, P. (2001). Qt Programming for Linux & Windows
2000. Prentice Hall PTR. Upper Saddle River, New
Jersey.

