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Abstract: A scheme for temperature control of a greenhouse is presented. The present work
proposes an approach based on a combination of two different control schemes: Feedback
Linearization (FL) and standard linear Model Predictive Control (MPC), using their advantages.
The treated greenhouse is considered a nonlinear Single-Input Single-Output process and subject
to strong external disturbances. Since the methodology used for solving the MPC+FL approaches
generally leads to an optimization problem subject to state-dependent nonlinear constraints, an
alternative for its implementation is discussed. Two control techniques are compared, namely
MPC+FL and Nonlinear Model Predictive Control (NLMPC).
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1. INTRODUCTION

In industrial applications a great number of practical
control schemes have to deal with boundaries. These
boundaries arise both from input physical
constraints, such as actuator saturation, and from
output constraints due to specific conditions of the
process. Furthermore, if the plant to be controlled is
nonlinear the problem becomes more complex and a
nonlinear program must be solved. In general, this
leads to a non-convex optimization problem and to
an increase in computational demands.

As the system models in engineering are frequently
nonlinear, several approaches have been developed
to solve the constrained control problem by
approximating the nonlinear model to a linear one.
Since most practical control schemes have to deal
with physical constraints, a controller that can
handle these constraints is necessary, thus
maintaining the linearity of the system to be
controlled. One of the reasons for choosing Model
Predictive Control (MPC) is its capabilit y to handle
the constraints explicitly.

 In recent years, several approaches have been
proposed to deal with the climate control problem in

greenhouses (Boaventura et al. 1997; Wang and Wu,
1999), however most techniques provide only
indirect constraint compensation.

This work deals with the problem of following a
desired trajectory for the optimum temperature
behavior inside  a greenhouse, which has been
modeled as a time-invariant nonlinear system,
linearized by the Feedback Linearization (FL)
approach.  Model Predictive Control using Feedback
Linearization problem (MPC+FL) can be explicitly
solved only for some cases and the main diff iculty of
this configuration is that the MPC design must be
made subject generally to nonlinear constraints.
Here, the FL wil l be presented as the Input Output
Linearization (IOL) of a greenhouse temperature
control subject to constraints inherent to the
actuator, as well as to inside temperature constraints.

The paper is organized as follows. Section 2
discusses some aspects of modeling greenhouse
dynamics, taking into account the disturbances from
climatic conditions to which the greenhouse is
subjected. Section 3 gives a brief revision of system
linearization and stabilit y analysis of zero dynamics
and a desired trajectory follow-up is discussed, in
controlled variable. Section 4 deals with the
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MPpresence of constraints at both the control and w

MPC+FL structure. Section 5 shows several
simulations and results obtained to evaluate the
performance of the predictive control technique with
a FL internal loop. This technique will be compared
with the Nonlinear Model Predictive Control
(NLMPC) and Section 6 presents the conclusions
and possible future works.

2 NONLINEAR MODEL FOR GREENHOUSES

In the paper, a greenhouse model will be used with a
single layer cover. Takakura (1993) previously
discussed the selected greenhouse nonlinear model.
The model takes into account absorbed solar
radiation, radiation exchange between the sky and
the cover and between the cover and the interior
space of the greenhouse. Heat exchanges due to
convection are also considered: between the inside
air and the cover, between the cover and the outside
air, and finally, the latent heat liberated by the
condensed water vapor. The energy balance of the
inside air includes the convective exchange with the
cover, with the seedlings and with the floor, as well
as the heat exchange with the outside air. For
simplicity, the air mass inside the greenhouse is
considered to have a homogenous temperature
distribution.

The system has been establi shed as a SISO system
discretized by the Euler method each one being 3
min long (∆T= 0.01 hours) and several real
disturbances are considered. The state vector x(k)=[tc
ti tf tp] is formed of: greenhouse cover temperature tc,
temperature of the inside air ti, floor tf and plant
temperature tp. The complete dynamics of the
temperature inside the greenhouse take into account
some perturbations such as: direct solar radiation rad,
diffuse solar radiation rads, external temperature to
and the temperature under a 10 cm-deep soil l ayer
tbl. These five variables make up the perturbation
vector d(x) of (1). Temperatures tc, ti, tf  are
measured variables. The seedling temperature is not
directly measured, it is estimated by an Extended
Kalman Filter. The details of its implementation are
shown in a previous work (Piñón et al. 1998b).
Tables 1 and 2 show the parameters and symbols
used.

The discrete greenhouse model can be expressed as
in the following mathematical equations:
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Table 1: List of symbols for model

Symbol Definition
abso Absorbtivity of the covering material [ND]
ah Average height of a greenhouse [m]
arto  Area ratio of total plant leaf area to floor area.

arto1=1-arto [ND]
ca Volumetric heat capacity of air [KJ/m3/ºC]
cc Heat capacity of cover [KJ/m3ºC]
cp Heat capacity of a single plant [KJ/m3ºC]
cs, Heat capacity of floor [KJ/m3ºC]
dex Thickness of covers [m]
γ Water vapor resistance [h/m]
gsi Dryness factor of the surface [ND]
hi Convective heat transfer in the inner cover

[KJ/m2hºC]
ho Convective heat transfer in the outer cover

[KJ/m2hºC]
hlg Latent heat for evaporation [KJ/Kg]
ks Soil thermal conductivity [KJ/hmºC]
lai Leaf area index [ND]
qh Air flow rate due to ventilation [m3/m2h]
rad Direct solar radiation [W/m2]
rads Diffused solar radiation [W/m2]
ρ Density of air [kg/m3]
rmc Reflectivity of the outer cover for long wave

radiation [ND]
sig Stefan-Boltzman constant [ND]
tlv Transmisivity of cover for long wave radiation
tbl Lower boundary of soil temperature. [ºC]
alc Absorptivity of the inner cover for solar

radiation [ND]
alf Absorptivity of the floor for solar radiation

[ND]
alp Absorptivity of the plant for solar radiation

[ND]
to Outside air temperature [ºC]
wo Humidity ratio in the greenhouse [kg/kg Dray

Air]
tran Transmissivity of the covering material [ND]
z0- z1 Depth of soil l ayer [m]

Table 2: Parameters used in the model

c1 = -hi-ho c2 = -(epsf+1)
c3 = sig.epsc.epsf c4 = ho

c5 = sig.epsc.epsa c6=abso+(1-alf)tran.alc

c7 = alc+alc(1-alf)tds c8 = hi

c9 = -2hi-ca.qh-2.hi.arto.lai c10 = 2hi.arto.lai

c11 = ca.qh c12 = sig.epsf.epsc

c13 = -2ks/(z0+z1)-hi c14 = -sig.epsf(1-rmc)
c15 = dlexcc c16 = sig.epsf.epsa.tlv
c17 = alf.tran.arto1 c18 = alf.tds.arto1

c19 = -hlg.km.gsi c20 = 2ks/(z0+z1)
c21 = sig.epsp.epsc c22 = 2lai.hi

c23 = -2lai.hi c24 = -sig.epsp(1-rmc)
c25 = caah c26 = sig.epsp.epsa.tlv
c27 = alp.tran c28 = alp.tds

c29 = -2ρ/γ.hlg.lai c30 = csz0

c31=-arto/vpcp
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and the terms for latent heat from solid surfaces are,
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β  is a empirical factor which depends on the
nonlinear shape of the temperature profile. The
system can be formulated by
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where x∈ℜ4 is the state vector, ℜ∈u  is the input,
d∈ℜ4 is the disturbance vector and ℜ∈y  is the

output. f:ℜ4→ℜ4x1, g:ℜ4→ℜ4×1, p: ℜ4→ℜ4×4 are
smooth vector fields, and hc: ℜ4→ℜ is a smooth
function

[ ]Tpfic ktktktktkx )1()1()1()1()1( ++++=+

and

[ ]Tkxfkxfkxfkxfxf ))(())(())(())(()( 4321=

The column vector g(x(k)) can be formulated as

[ ]TcTkxg 000/0))(( 25∆= (2)

and the control variable is the heat flow given off by
the heater/cooler

)()( kQku cal= (3)

For the present case, the inside temperature has been
chosen as the controllable variable of the system

)())(( ktkxh ic = and the heat flow Qcal as the control
variable and the matrix pd(x) is given by
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The perturbations vector is formulated as

[ ]Tblos tktkradkradkd )()()()( =

This work use measurements collected by the
commercial Davis Weather Station ( David
Instruments Corporation) over 21 consecutive days
in July-August. This station is situated in San Juan,
Argentina (31º32 lat., 68º31 long.) Fig. 1 shows the
external climate recorder. Temperature [ºC], outside
humidity ratio [kg/kg Dry Air] and wind speed
[Km/h] are some of the collected data that have been
introduced in to the system at each control time. It
should be noted that in this zone the climate is very
unstable.
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Fig. 1: Climate of the INAUT weather station

 FEEDBACK LINEARIZATION OF A
GREENHOUSE

The Input Output Linearization (IOL) is summarized
in (Henson 1997). The linearization of the
greenhouse system adopted here may be referred to
for detail s in Piñón et al. (1998a). In said work, a
relative degree of the greenhouse system r=1 was
obtained, disturbances were decoupled and a

diffeomorphism )]([])(,)([ kxkk TTT Φ=ηξ  where

)()(1 ktk i=ξ , ])()()([)( ktktktk pfc=η  was also

defined. Therefore, the transformed system can be
expressed in a normal form as

)()()1(1 kvBkAk dd +=+ ξξ (4a)

)())(),(())(),(()1( kdkkkkkqk ηξηξη +=+ (4b)

)()( 1 kky ξ= (4c)

where Ad=1, Bd=∆T. We have introduced here the
smooth functions q  and k . The details of how
these functions depend on f, g, p and h can be seen
in Henson (1997). To make the system of eq. (4a) be
linear, the feedback should be shaped as
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Thus, the control law exactly linearizes the map
between the transformed input v and the output y.
Consequently, a linear controller can be designed to
satisfy control objectives such as setpoint tracking. It
is important to note that the η dynamics remain
nonlinear.

In this work the analysis is particularized to the
tomato crop. Due to biological conditions the
seedling temperature may not be above 37ºC on
below 10ºC with 3 leaves and 0.21g/m2 of dry
weight. The optimal reference and the inside
temperature bounds for obtaining seedlings are
recommended in a previous work (Sander et al. 1993
and Fullana et al. 1999). Such trajectory and bounds
were found using experimental results from the
National Institute for Agricultural and Livestock
Technology and Research (INTA), San Juan,
Argentina. Therefore, the output variable ti(k) is
constrained so as not to surpass a 3ºC band around
the optimal reference of day time temperature and in
order to save energy during the night the inside
temperature may reach 10ºC under this optimal
reference of temperature.

4 THE MPC + FL APPROACH

The reason for introducing this combination
approach is to increase computing eff iciency by
linearizing the plant and by reformulating the MPC
problem on the new linearized coordinates. This is
not easy to do solve, unless the nonlinear constraints
and the objective function are convex. Thus, the
originally nonlinear model used for the MPC
prediction becomes linear, which leads to an easier
implementation of the MPC algorithm and a
significant reduction of the computations involved in
the nonlinear optimization problem.

4.1 Statement of the problem

The MPC algorithm is formulated so as to solve (on-
line and at every instant) an optimal control problem
with finite horizon. The objective function (5) used
here is given in terms of the new control variable v.
In contrary to the NLMPC design, the criterion is in
terms of the original inputs u, instead of the FL
control variables. Details of the NLMPC have been
deliberately excluded from this paper because of
space limitations. Then, the objective function is,
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subjected to the linear system (4a) and the nonlinear
constraints (7) and (8), where

y(k+i |k): Output predictive vector at k.
yr (k+i |k): Reference trajectory.
v(k): Sequence of control computed at k;

v(k+i |k)=0 for i>NC. v(k|k) is the control
move at k.

Q, R: Positi ve definite matrices representing
weights on the states and new control
variables.

NP, NC: Prediction and control horizon
(NC≤NP.)
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Fig. 2. MPC+ FL structure used

A main feature of MPC is that process constraints
can be directly incorporated into the online
optimization performed at each time step. The big
advantage of MPC compared to the other control
techniques is its multi variable constraint handling
capabil ity and it is therefore very successful in
industrial applications.

Fig. 2 shows the proposed hybrid MPC+FL structure
for controlling nonlinear systems with hard
constraints at the input. An inner FL loop is
embedded in an external predictive control loop,
linearizing the greenhouse nonlinear plant and
tracking its own reference input v, considering the
constraints in the manipulated variable
(heater/cooler) and in the controlled variable (inside
temperature). The linear properties of the FL loop
are preserved, i.e. the eq. (4a) holds, only if the
original constraints on u are satisfied. This implies
that MPC design in the external loop must be made
subject to implicit constraints on the new input v.
Hence, the real input is bounded

2/3000 mWu heat≤≤  to the heater. Then, the new

input v of the linearized plant, after the mapping, is,
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one can derive the following expressions for a
constraint set vΩ ,
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It is clear that, due to the FL, original hard
constraints (umin,umax) are mapped into the MPC
constraints on v. In this case the new constraint
represents the inside temperature rate.

5. SIMULATIONS RESULTS

Various simulation tests were applied to gain some
insight on the performance property and eff iciency
of the MPC+FL approach as compared to the
NLMPC. Both NLMPC and MPC+FL were
implemented using Matlab 5.3 software. The model
used for the prediction in NLMPC was defined by
the original nonlinear greenhouse system (see eq. 1),
whereas the constraints are hard for both the
heat/cool flow and the output variable.

In our application, the error and the control are
weighed in a different usy during the day and the
night to get a great saving in energy. Qd and Qn are
defined factors that weigh the error during the day
and the night respectively. Whereas Rd and Rn

denote the control weight for the day and the night.

Several experiments were simulated having
NC=NP=4. In every case the control objective was
achieved. The desired trajectory was correctly
tracked and the imposed constraints were fulfill ed.
The difference between the MPC+FL
implementation for different weights is shown in
Fig. 4. The output temperature of the greenhouse
during a two day experiment is shown by fine line.
In this case, the following can be observed:

• In Experiment. 1: The dot dot-dashed line
response was obtained with Rd=10, Qd=1,
Rn=Qn=0. Here, the error between the desired
reference trajectory and the output is noticed
during the night, but it does not pose any hazards
to the crop’s growth as it is still within the
allowed temperature range. During the day, the
error is small and the energetic consumption is
low.

• In Experiment 2: With Rd=0.001, Qd=100;
Rn=Qn=0, the dot-dashed line response was
obtained. Better performance is achieved due to a
minimum-error follow-up, though the energy
demands are greater than with the previous
experiment (20 W/m2 Vs. 17 W/m2 in the
previous experiment). The mean square errors
obtained for these experiments were 0.5ºC and
0.2º C, respectively.

• In Experiment 3: (Represented in bold-line) With
Rd=0, Qd=10; Rn=Qn=0, in this case the energy

demand is less than in the other cases and the
temperature error is within the permitted values.
This last  experiment was made only in order to
later be compared with the non-linear controller
response.
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Fig. 3. MPC+FL, Experiment 1 (dot-dot-dashed
line). Experiment 2 (dot-dashed-line).
Experiment 3 (dashed line). Output temperature
(fine line). Constraints and setpoint (dashed line)

Other simulations using the NLMPC method were
performed. In all cases the objectives under
restrictions were also reached.
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Fig. 4. Comparison of MPC+FL (bold line) Vs.
NLMPC (dotted line). Constraints and setpoint
(dashed line). Output temperature (fine line)

If NLMPC is compared to MPC+FL (see Fig. 4);
with NC = NP = 2 and Qd=10, Qn=0, Rd=Rn=0, it can
be stated that:

• Both the output (inside air temperature) and
control variables (heat flow) obtained by the
NLMPC and MPC+FL techniques show a similar
behavior. Notice that for NLMPC design the
criterion is described in terms of the original inputs
u, instead of the FL control variables v.

• The control action to achieve such a follow-up
is also very similar. This follow-up is kept within



the maximum and minimum bounds permitted by
the heater capacity.

• For both techniques, a mean square error around
1:5 ºC is obtained to MPC+FL and 1:8 ºC to
NLMPC. The mean values of the control signals
were 16 W/m2 and 13 W/m2, respectively.

• It is noticeable that during the night both the
MPC+FL and the NLMPC have obtained a
temperature value smaller than the output
temperature. This phenomenum is called thermal
inversion and takes place in unheated greenhouses
in clear sky zones. This has been amply studied in
the literature and for more details refer to a
(Takakura, 1993)

In all cases the sampling time was 3 min. Notice that
MPC+FL and NLMPC methods can be compared
only if there is no weight on the control variable,
i.e., R=0. As has been mentioned above this accurs
because NLMPC uses the original cost whereas the
MPC+FL is based on the new cost given in terms of
the new coordinates and the new control variable.

Although the performance for MPC+FL and
NLMPC is very similar, the associated
computational effort to optimization is very different
(0.006 sec. Vs 13 sec respectively in a Pentium II I
550 MHz, 128 Mbytes RAM). This arises from
MPC+FL using linear models which avoid the
computationally demanding prediction integrations,
resulting in a significant decrease of computational
load. It should be noticed that the NLMPC method
allows direct weighting of the energy consumption
whereas the MPC+FL method uses indirect
weighting through a complex nonlinear function.
Therefore, the second method is more suitable for
any direct control implementation intended for
incrementing the greenhouse profit due to its easy
energetic consumption interpretation.

6. CONCLUSIONS

A nonlinear model of a greenhouse subject to
constraints and real disturbances was analyzed.
Using an observer, the complete state vector was
obtained to carry out the I/O Linearization. By
decreasing the computation burden and making the
performance analysis easier, the discussed hybrid
control structure, MPC+FL, enabling to offer a
general approach to the solution of nonlinear control
problems.

This approach produces nonlinear state dependent
constraints. It means that an optimization problem
for a nonlinear greenhouse system subject to hard
constraints in the input has been transformed to a
new optimization problem for a linear greenhouse
system subject to nonlinear constraints in the new
input.

Due to its relative computational efficiency, the
MPC+FL strategy seems to be attractive for a class

of feedback linearizable systems. This study is
intended to be continued in a future practical
implementation, where the physical limitations of
the heater/cooler wil l be considered as well as the
necessary restrictions for an optimal performance.
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