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Abstract: A scheme for temperature control of a greenhouse is presented. The present work
proposes an approach based on a combination of two different control schemes: Feedback
Lineaization (FL) and standard linear Model Predictive Control (MPC), using their advantages.
The treaed greenhouse is considered a nonlinear Single-Input Single-Output process and subjed
to strong external disturbances. Since the methodology used for solving the MPC+FL approaches
generally leads to an optimization problem subject to state-dependent nonlinea constraints, an
aternative for its implementation is discussed. Two control techniques are wmpared, namely
MPC+FL and Nonlinea Model Predictive Control (NLMPC).
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1. INTRODUCTION

In industrial applications a great number of practicd
control schemes have to deal with boundaries. These
boundaries arise bah from inpu physica
constraints, such as actuator saturation, and from
output constraints due to spedfic conditions of the
process Furthermore, if the plant to be controlled is
nonlinear the problem becomes more amplex and a
nonlinear program must be solved. In general, this
leads to a non-convex optimization problem and to
an increase in computational demands.

As the system models in engineeging are frequently
nonlinear, several approaches have been devel oped
to solve the constrained control probdem by
approximating the nonlinea mode to a linea one.
Since most practical control schemes have to ded
with physical constraints, a @ntroller that can
handle these wndgraints is necessary, thus
maintaining the lineaity of the system to be
controlled. One of the reasons for choosing Model
Predictive Control (MPC) isits capability to handle
the constraints explicitly.

In receit years, several approaches have been
proposed to deal with the dimate cntrol probem in

greenhouses (Boaventura et al. 1997; Wang and Wu,
1999, however most techniques provide only
indired constraint compensation.

This work deals with the problem of following a
desired trajedory for the optimum temperature
behavior indde a greenhouse, which has been
modeled as a time-invariant nonlinea system,
lineaized by the Feealback Lineaization (FL)
approach. Modd Predictive Control using Feadback
Lineaization problem (MPC+FL) can be eplicitly
solved only for some @ses and the main difficulty of
this configuration is that the MPC design mugt be
made subjed generally to nonlinea constraints.
Here, the FL will be presented as the Input Output
Lineaization (IOL) of a greenhouse temperature
control subject to constraints inherent to the
actuator, as well asto insde temperature constraints.

The paper is organized as follows. Sedion 2
discuses some aspeds of modding geenhouse
dynamics, taking into account the disturbances from
climatic oonditions to which the greenhouse is
subjeded. Sedion 3 gives a brief revision of system
lineaization and stability anaysis of zero dynamics
and a desired trgjedory follow-up is discussd, in
controlled variable. Sedion 4 deds with the



Table 1: List of symbols for model

Symbol Definition

Ay Absorbtivity of the covering material [ND]

a, Averageheight of agreenhouse [m]

& Arearatio o total plant leaf areato floor area
Aro1=1-ay0 [ND]

Ca  Volumetric heat capacity of air [KIm?®/°C]

C. Heat capacity of cover [KIm*C]

C, Heat capacity of asingle plant [KIYm*C]

C, Heat capacity of floor [KIYm®C]

dex Thicknessof covers[m]

y  Water vapor resistance [/m]

0s Drynessfactor of the surface[ND]

h  Convedive heat transfer in the inne cover
[KJ/n?heC]

h, Convedive heat transfer in the outer cover
[KJ/n?heC]

hg Latent hea for evaporation [KJ/K(]

ks Soil thermal conductivity [KJ/hmPC]

ls Leaf areaindex [ND]

g, Air flow rate dueto ventilation [m*n?h]

raa Dired solar radiation [Wn?]

rags Diffused solar radiation [Wn#]

p Density of air [kg/m’]

rme Reflectivity of the outer cover for long wave
radiation [ND]

Sg Stefan-Boltzman constant [ND]

ty  Transmisivity of cover for long wave radiation

ty  Lower boundary of soil temperature. [°C]

a. Absorptivity of the inner cover for solar

radiation [ND]

a; Absorptivity of the floor for solar radiation
[ND]

ap, Absorptivity of the plant for solar radiation
[ND]

t, Outside ar temperature [°C]

W, Humidity ratio in the greenhouse [kg/kg Dray
Air]

tan  Transmissgvity of the covering material [ND]

Z- z7 Depth of soil layer [m]

Table 2: Parameters used in the model

¢, =-h-h, Co = -(Epst1)

C3 = Sg-€psc-Epst Cs=hy

C5 = Sg-Gsc-Epsa C6=pso(1-ayf)tran-ac
C7 = actac(l-ants Cg=h;

Co = -2Ni-Ca.Oh-2.N.80.la  Cro= 2hiarola

C11 = Ca.Oh C12 = Sg-€pst-Gpsc

Ci3 = -2KJ (2ot 22)-hy Ca = ~Sig-Epsi(1-Imc)
C15 = OiexCc C16 = Sg-Epst-Epsa-liv
C17 = atran-8rtor Cig = a.lys-Qrto1

Ci9 = -hig.Km.Qs Co0 = 2K (2ot 21)
C21 = Sg-Cpsp-Epsc Copo = 2Iaj.hi

Co3 = -24.h Co4 = ~Sig-Epsp(1-Tmo)
Co5 = Cadn C26 = Sig-Epsp-Epsa-tiv
Co7 = Qp.lran Cog = Qp.tas

Cp9 = '2p/y.h|g.|aj C30 = Cs4p
Ca1=-3o/ViCp

MPpresence of constraints at bath the wntrol and w

MPC+FL sructure. Sedion 5 shows svera
simulations and results obtained to evaluate the
performance of the predictive cntrol technique with
a FL interna logp. This technique will be compared
with the Nonliner Model Predictive Control
(NLMPC) and Sedion 6 presents the mnclusions
and possble future works.

2 NONLINEAR MODEL FOR GREENHOUSES

In the paper, a greenhouse model will be used with a
single layer cover. Takakura (1993 previoudy
discussed the seleded greenhouse nonlinea model.
The mode takes into acoount absorbed solar
radiation, radiation exchange between the sky and
the cover and between the cover and the interior
space of the greenhouse. Heat exchanges due to
convection are also considered: between the insde
air and the @ver, between the cver and the outside
air, and finaly, the latent heat liberated by the
condensed water vapor. The energy balance of the
inside air includes the mnvedive exchange with the
cover, with the seallings and with the floor, as well
as the heat exchange with the outside air. For
smplicity, the air mass inside the greenhouse is
considered to have a homogenous temperature
distribution.

The system has been established as a SISO system
discretized by the Euler method each one being 3
min long (AT= 0.01 hours) and several red
disturbances are nsidered. The state vedor x(K)=[t.
t; t; t,] isformed d: greenhouse wver temperature t,
temperature of the inside air t;, floor t; and plant
temperature t,. The complete dynamics of the
temperature inside the greenhouse take into acoount
some perturbations such as. dired solar radiation r,
diffuse solar radiation r.y, external temperature t,
and the temperature under a 10 cm-dee soil ayer
ty. These five variables make up the perturbation
vector d(x) of (1). Temperatures t, t, t are
measured variables. The sealling temperature is not
diredly measured, it is estimated by an Extended
Kalman Filter. The details of its implementation are
shown in a previous work (Pifion et al. 1998h).
Tables 1 and 2 show the parameters and symbols
used.

The discrete greenhouse model can be expressed as
in the foll owing mathematical equations:

to(k +1) = (cyto (K) + ot (K) + cat * (K)
+ Csti (k) + C6 rad + C7 rads + C4to
+ Ctg )AT /¢5 +to (K)

ti (k +1) = (cgtc (k) + cot; (K) + Cgt ¢ (K) + €yt (K)
+Cypty + Qea) AT / Cy5 + 1 (K)

ty (k+1) = (Cpate” () +Cat; (K) +Cyaty (K) +Caat ()
+CgWs, (ts (K))+Crolag *Crglads
+Cygta +Coot JAT / Gy +1 ¢ (K)



tp(k+1) = (Cote* (K) + Coat; (K) + Cgt (K)
4
+ Caaty (K) + CogWgy (tp(K)) + Co7rag
+ Coglags + Capty JAT / Cap +1,(K)

and the terms for latent hed from solid surfaces are,

0,62671 ()
W, (k) = 110 - P 0D
Bt (K)
0.62e
Wt (K) = ——Frmar
P 1105_eﬁ( p(K))

B is a empirical factor which depends on the

nonlinear shape of the temperature profile. The
system can be formulated by

x(k+1) = f(x(k)) + g(x(k)u+ pg (x(k))d (k)
y =he(x(k))

where xO7* is the state vedor, u00 is the input,
dOg* is the disturbance vedor and yOQd is the
output. f:(7* - 0", g: '~ 0%, p: O0* - O are
smoath vedor fields, and h; (7' - [J is a smoath
function

x(k+1) =[to(k+D) t(k+D) tr(k+D) ty(k+D

and

F00 =[f,(x(K)  T,(x(K)  fa(x(K) Fo(x(K)]"

The olumn vedor g(x(K)) can be formulated as
gix(k) =[0 AT/c,s 0 0 O (2

and the ontrol variableis the heat flow given off by
the heater/cod er

u(k) = Qca (k) 3

For the present case, the insde temperature has been
chosen as the wntrollable variable of the system
h. (x(k)) =t; (k) and the hed flow Q. as the control

variable and the matrix py(x) is given by

OcAT AT 3 O

Dcﬁ Cr (C4 + Gty )AT oo

0 Gs Cs Cs O

B 0 0 AT OB

_ Cos 0

x(k)) =0

POUD= AT T cigiaT o0
B Cso Cso Ceéo B

[ForAT  CeAT CoslAT od

E Ca1 Ca1 Ca1 E

The perturbations vedor is formulated as

d(k) =[rad(k) rady(k) to(k) t]"

This work use measurements colleded by the
commercial Davis Weather Station (O David
Ingruments Corporation) over 21 conseadtive days
in July-August. This gation is Stuated in San Juan,
Argentina (31°32 lat., 68°31 long.) Fig. 1 shows the
externa climate recorder. Temperature [°C], outside
humidity ratio [kg/kg Dry Air] and wind speed
[Kmv/h] are some of the colleded data that have been
introduced in to the system at each control time. It
should be noted that in this zone the dimate is very
ungtable.

g

g

b)WYt
T O O S O Y
Em:mwh' e AN Wy
= R R N

0o 2 4 6 8 10 1 ¥4 1 18 D
Tine [ceys]

Fig. 1: Climate of the INAUT weather station

FEEDBACK LINEARIZATION OF A
GREENHOUSE

The Input Output Lineaization (I0L) is simmarized
in (Henson 1997%. The lineaizaion of the
greenhouse system adopted here may be referred to
for details in Pifion et al. (1998a). In said work, a
relative degree of the greenhouse system r=1 was
obtained, digurbances were dewmupled and a

diffeomorphism [E(k)",n(k)"] =®"[x(k)] where
& (K) =t (k) , n(k) =[tc(k) t; (k) t (k)] wasalso

defined. Therefore, the transformed system can be
expresed in anorma form as

$1(k+1) = Ay¢ (k) + By (k) (42)
n(k+1) =g (K).n(K) +k(E(K).n(k)d(k)  (4b)
y(k) = &1 (k) (40)

where A;=1, B;=AT. We have introduced here the
smoath functions g and k. The details of how
these functions depend on f, g, p and h can be seen
in Henson (1997). To make the system of eq. (4a) be
linea, the feedback should be shaped as



u(k) = =(cgt (K) + Cot; (K) + gt ¢ (K) + C10Cost 5 (K))
+CoaV(K) = €ty (K)

Thus, the control law exactly lineaizes the map
between the transformed input v and the output .
Consequently, alinea controller can be designed to
satisfy control objectives duch as stpoint tracking. It
is important to note that the n dynamics remain
nonlinesar.

In this work the anadysis is particularized to the
tomato crop. Due to hiologica conditions the
sealling temperature may not be above 37°C on
below 10°C with 3 leaves and 0.21g/n? of dry
weight. The optimal reference and the insde
temperature bounds for obtaining seallings are
recmmmended in a previous work (Sander et al. 1993
and Fullana ¢ a. 1999. Such trgjecory and bounds
were found wsing experimenta results from the
National Indtitute for Agricultural and Livestock
Technology and Research (INTA), San Juan,
Argentina. Therefore, the output variable t(k) is
congtrained so as not to surpassa 3°C band around
the optimal reference of day time temperature and in
order to save energy during the night the insde
temperature may reach 1C under this optimal
reference of temperature.

4 THE MPC + FL APFROACH

The reason for introducing this combination
approach is to increase wmputing efficiency by
lineaizing the plant and by reformulating the MPC
problem on the new linearized coordinates. This is
not easy to do solve, unlessthe nonlinea congtraints
and the objedive function are convex. Thus, the
originaly nonlinead modd used for the MPC
prediction becomes linea, which leads to an easier
implementation of the MPC algorithm and a
significant reduction of the computations involved in
the nonlinea optimization problem.

4.1 Satement of the problem

The MPC algorithm isformulated so as to solve (on-
line and at every instant) an optimal control problem
with finite horizon. The objedive function (5) used
hereis given in terms of the new control variable v.
In contrary to the NLMPC design, the criterion isin
terms of the origina inputs u, instead of the FL
control variables. Details of the NLMPC have been
deliberately excluded from this paper becuse of
space limitations. Then, the objective function is,

NP » NC 2
J(k) = Z||y(k+i|k) T Yr(k+ik) ||Q * z"V(k”lk)“R )
1=1 =1

subjeded to the linea system (4a) and the nonlinea
congtraints (7) and (8), where

Y(i):  Output predictive vector at k.

Yr ijy:  Referencetrajedory.

Vi Sequence of control computed at k;
V(k+i|k)=0 for i>NC. V(kik) is the @ntrol
move at k.

QR Positive definite matrices representing
weights on the states and new control
variables.

NP, NC: Prediction and
(NC=NP.)

control  horizon

Fig. 2. MPC+ FL structure used

A main feature of MPC is that process constraints
can be diredly incorporated into the online
optimization performed at each time sep. The big
advantage of MPC compared to the other control
techniques is its multivariable nstraint handling
capability and it is therefore very successful in
industrial applications.

Fig. 2 shows the proposed hybrid MPC+FL structure
for controlling nonlinea systems with hard
congtraints at the input. An inner FL loop is
embedded in an externa predictive antrol loop,
lineaizing the greenhouse nonlinear plant and
tracking its own reference input v, consdering the
congtraints in  the manipuated variable
(heaer/coder) and in the controlled variable (insde
temperature). The linea properties of the FL loop
are preserved, i.e. the a. (4a) holds, only if the
original constraints on u are satisfied. This implies
that MPC design in the external logp must be made
subjed to implicit constraints on the new input v.
Hence, the red input is bounded

0<U,,,<300V/m’ to the heater. Then, the new
input v of the linearized plant, after the mapping, is,

v(k) = a(¢ (k),n(k)) + b(¢ (k),n(k))u(k)
+y (& (K).n(k)w(k)

where

a(¢(k)n(k)) = f(S(k).n(k))/ co5
b(& (k),n(k)) = AT /c,s
y(¢(k).n(K)) = C11/Cy5

one can derive the following expressons for a
constraint set Q,,,



Vinin (K) = a(€ (k)11 (K)) + D& (K).17 (K))Urnin (k) 7,
+y(&(K).n(k)w(k)

Vimax(K) = a(€ (k)11 (K)) + (& (k)11 (K)) Umax(K) (g
+y(&(K).n(k)w(k)

It is clea that, due to the FL, origind hard
congtraints (Unin,Umax) @€ mapped into the MPC
constraints on v. In this case the new constraint
representsthe inside temperature rate.

5. SIMULATIONS RESULTS

Various smulation tests were applied to gain some
insight on the performance property and efficiency
of the MPC+FL approach as compared to the
NLMPC. Both NLMPC and MPC+FL were
implemented using Matlab 5.3 software. The model
used for the prediction in NLMPC was defined by
the original nonlinea greenhouse system (see . 1),
whereas the mnstraints are hard for bath the
hed/cod flow and the output variable.

In our application, the error and the ntrol are
weighed in a different usy during the day and the
night to get a grea saving in energy. Qq and Q, are
defined factors that weigh the error during the day
and the night respedively. Whereas Ry and R,
denote the mntrol weight for the day and the night.

Several  experiments were simulated having
NC=NP=4. In every case the mntrol objective was
achieved. The desired trgjedory was corredly
tracked and the imposed constraints were fulfill ed.
The  difference  between  the  MPC+FL
implementation for different weights is shown in
Fig. 4. The output temperature of the greenhouse
during a two day experiment is shown by fine line.
In this case, the foll owing can be observed:

* In Experiment. 1. The dot dot-dashed line
response was obtained with R=10, Qg=1,
R.=Q,=0. Here, the eror between the desired
reference trajedory and the output is noticed
during the night, but it does not pose any hazards
to the crop’s growth as it is gill within the
allowed temperature range. During the day, the
error is small and the energetic consumption is
low.

* In Expeiment 2. With R;=0.001, Q=100
R~=Q,=0, the dot-dashed line response was
obtained. Better performanceis achieved dueto a
minimum-error  follow-up, though the energy
demands are greater than with the previous
experiment (20 W/m? Vs. 17 W/m? in the
previous experiment). The mean square errors
obtained for these experiments were 0.5°C and
0.2°C, respedively.

* In Experiment 3: (Represented in badd-line) With
R~=0, Q=10; R=Q,=0, in this case the energy

demand is less than in the other cases and the
temperature error is within the permitted values.
Thislag experiment was made only in order to
later be mmpared with the non-linea controller
response.
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Fig. 3. MPC+FL, Experiment 1 (dot-dot-dashed
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Other simulations using the NLMPC method were

performed. In al cases the objedives under
restrictions were al so reached.
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Fig. 4. Comparison of MPC+FL (bdd line) Vs.
NLMPC (dotted ling). Congtraints and setpoint
(dashed ling). Output temperature (fine line)

If NLMPC is compared to MPC+FL (see Fig. 4);
with NC = NP = 2 and Q4=10, Q,=0, Ri=R.,=0, it can
be stated that:

* Both the output (inside air temperature) and
control variables (hea flow) obtained by the
NLMPC and MPC+FL techniques show a similar
behavior. Notice that for NLMPC design the
criterion is described in terms of the original inpus
u, instead o the FL control variablesv.

* The ontrol action to achieve such a foll ow-up
is adso very similar. This follow-up is kept within



the maximum and minimum bounds permitted by
the heater capacity.

*  For bath techniques, amean square error around
1.5 °C is obtained to MPC+FL and 1:8 °C to
NLMPC. The mean values of the control signas
were 16 W/m? and 13 W/m?, respedively.

* |t is noticeable that during the night bath the
MPC+FL and the NLMPC have ohtained a
temperature value smaller than the output
temperature. This phenomenum is cdled thermal
inversion and takes place in unheaed greenhouses
in clea sky zones. This has been amply studied in
the literature and for more details refer to a
(Takakura, 1993

In all cases the sampling time was 3 min. Notice that
MPC+FL and NLMPC methods can be mmpared
only if there is no weight on the control variable,
i.e, R=0. As has been mentioned above this accurs
because NLMPC uses the origina cost whereas the
MPC+FL is based on the new cost given in terms of
the new coordinates and the new control variable.

Although the performance for MPC+FL and
NLMPC is vey sdsmila, the asociated
computational effort to gotimization is very different
(0.006 sec Vs 13 secrespedively in a Pentium |11
550 MHz, 128 Mbytes RAM). This arises from
MPC+FL using linea models which avoid the
computationally demanding prediction integrations,
resulting in a significant deaease of computational
load. It should be noticed that the NLMPC method
allows diread weighting o the energy consumption
whereas the MPC+FL method uses indred
weighting through a @mplex nonlinea function.
Therefore, the seacond method is more suitable for
any diread control implementation intended for
incrementing the greenhouse profit due to its easy
energetic consumption interpretation.

6. CONCLUSIONS

A nonlinea model of a greenhouse subjed to
constraints and real disturbances was analyzed.
Using an observer, the complete state vedor was
obtained to carry out the I/O Linearization. By
deaeasing the computation burden and making the
performance analysis easier, the discussed hybrid
control structure, MPC+FL, enabling to dfer a
general approach to the solution of nonlinear control
problems.

This approach produces nonlinea state dependent
congtraints. It means that an optimization problem
for a nonlinear greehouse system subjed to hard
constraints in the inpu has been transformed to a
new optimization problem for a linea greenhouse
system subject to nonlinea constraints in the new
input.

Due to its relative computational efficiency, the
MPC+FL strategy seams to be attractive for a class

of feedback lineaizable systems. This gudy is
intended to ke continued in a future practicd
implementation, where the physical limitations of
the heater/coder will be mnsidered as well as the
necessary restrictions for an optimal performance
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