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Abstract: In this paper a new robust control strategy for MIMO LTI plants is presented. The
proposed approach results in an output feedback and the resulting control system exhibits
strong robustness properties. The derivation of the control policy is based on the mathematical
machinery of the Singular Perturbation Theory. More specifically, a high order sliding motion
is imposed, and a suitable definition of a time-varying sliding manifold allows the controlled
plant output to robustly track a prescribed reference trajectory. Simulations are presented
considering a classic IFAC benchmark problem, namely a three-input-three-output binary
distillation column with an unmatched disturbance and bounded control variables. The results
of the simulation show the effectiveness of the proposed approach.
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1. INTRODUCTION

Robustness is a key issue in automatic control ap-
plications. Generally, practical control system de-
sign suffers from model errors, parameter uncertain-
ties, unmodeled dynamics and unknown disturbances
that must be compensated for by a suitable feed-
back strategy. This is why almost all of the closed-
loop strategies must face the problem of robustness.
In the last three decades this problem has been at-
tacked from many directions. For instance, robustness
against structured (Ackermann, 1997) and unstruc-
tured (Dorato, 1992) uncertainties has been consid-
ered, leading to powerful conditions for the design of
robustly stable feedback controllers (i.e. H, and H.
control design strategy). At the end of the 1970s, the
LTR procedure showed how it is possible to recover
the excellent LQ robustness properties when using an
output feedback based on a state observer. Sliding
manifold control strategies (Utkin, 1978) are also de-
voted to confer strong robustness properties. The main
advantage of these strategies is their ability to deal
with MIMO and nonlinear plants subject to severe un-
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certainties. The basic idea is to split the design of the
control action into two subproblems: first the defini-
tion of the desired behavior of the closed-loop system
by assigning a suitable sliding surface (Zinober, 1990)
onto which the system state evolution has to be con-
fined, next the design of a control action that steers the
system state towards the manifold. As a consequence,
when the system slides on the manifold its behaviour
is the nominal one, and robustness is automatically
guaranteed. In order to force the state evolution onto
the manifold different approaches ar possible, e.g.
VSC (Utkin, 1992) or high-gain strategies (Young et
al., 1977), with both state and output feedback.

There is an unavoidable drawback of output feed-
back: asymptotic tracking requires minimum phase
plants (Grizzle et al., 1994). The use of a static
output feedback has been suggested (Zak and Hui,
1993), however, limitations of this approach have been
shown (Edwards and Spurgeon, 2000), the most se-
vere limitation being that in some cases the choice
of the sliding manifold is no longer independent of
that of the control law. In order to overcome this
drawback, one must resort to dynamic output feed-
back (Kwan, 1996).



The contribution of this paper is a dynamic output
feedback strategy based on a high order sliding man-
ifold approach (see (Friedman and Levant, 1994),
(Levant, 1997)). The proposed approach uses a high-
gain strategy based on the Singular Perturbation The-
ory (Kokotovic et al., 1986). Moreover, the main
drawback affecting high-gain techniques, namely the
peaking phenomenon, is avoided by defining a suit-
able time-varying sliding manifold. In the basic ap-
proach, presented in (Cavallo et al., 1993), and devel-
oped in (Cavallo et al., 1999a), (Cavallo ez al., 1999b),
a state feedback control was presented, leading to a
“fast” control variable, while the system state was
“slow”. Thus, the feedback system exhibited no reach-
ing phase in the state, without peaking, and only a
quick transient in the control signal. When using full
state feedback, first order sliding manifold approaches
suffice for defining the behavior of the closed-loop
system. However, when considering output feedback,
high order sliding strategies must be investigated. Due
to the high gain strategy employed, the assumption of
minimum phase plant is required.

A case study is presented to show the effectiveness of
the proposed strategy to control a distillation column.

2. CONTROL STRATEGY

Consider a MIMO plant with r inputs and r outputs
and Smith-McMillan degree n

X=Ax+Bu+y 1)
y=Cx. 2)

where y € R" is the system output, u € R" is the control
input, x € R" is the system state and ¥y € R” is a term
taking into account disturbances and mode] errors. Let
H, be the k-th Markov parameter of the system, i.e.,
H, =CA*1B.

For a given integer p, a sliding manifold  based on

the system output is defined as
={(x?) eR* xR, :
o®y)=0,k=0,..p-1} 3
where 0 : R" xR, — R’ and n(z) are

o(yt) = —y+n(), @
p—1 P

) =e" Y e ®)
i=0 *

and W is a Hurwitz r X r real matrix to be suitably
selected, while ¢;,i = 0,...,p — 1 are real vectors
given by the recursive equation

) SR hmi
Cp =Y (O) - 2 i w Cj»

=0
k=1,....,p—1, ¢, =y(0). (6)

The objective of the control strategy is to steer the
system state towards the manifold so that

: k k —_ —
lim(y® (1) -n®(1))=0, k=0,...,p-1. ()

The following theorem addresses the problem.

Theorem 1. Consider a MIMO plant with minimal
realisation

X=Ax+Bu+} ®)
y=0Cx ®
where ¥ € R" is a state disturbance.

Let the control law be defined by the differential
equation

e'Dyul" +&"7'D, " V4. 4 eDyi =
Npo(p)+Np_1o(p—1)+...+N1¢+Noo, (10)

where € > 0 is a “small” real constant, and D;,i =
1,...,v,N,i=0,...,p arereal constant r X r matrices
to be selected, with v and p integers such that v > p.

Assume the following:

e the system is minimum phase
e the disturbances are “matched”, i.e. there exists
g € R” such that

x = Bg an

o the integer p and the matrices N;, k=1,...,p
are such that the algebraic equations

p
Y NH, =U (12)

P
YNH_.1=0, k=2,...,p (13)
i=k
are satisfied with U invertible r x r real matrix;
o the polynomial
det (Dys" ++--+D;s+U) (14)
is strictly Hurwitz;

o there exists a real g < 0 such that the roots z;,
i=1,...,p of the polynomial

det (Nps" +N,_ P g +N0) (15)
satisfy
Re(z;)<u, i=1,...,p (16)
e there exists a real ¥ < 0 such that
ReAma (W) < ¥<0 17

where ReAmax(X) denotes the largest real part of
the eigenvalues of the matrix X.



Step Response

Y(1)

Y2)

Y(3)

~

0 50 100 150 50

100 150 50 100 150

Time (sec.)

Fig. 1. Step response of the closed-loop system for £ = 1072 (~) and & = 1073 (——).

Then, there exist &, >0, 8 >0, A <0, with max(y, 1) <

A, such that for any € € (0, &), the solution (x(z,€), u(t,€))

of (8), (10), is such that

p-1
3 y® @, e)ll < 8 +aet, Ve € [0,4e) (18)
k=0

where a > 0 is a constant depending on the data.

PROOF. The first step is to compute the total time
derivatives of the function o (y,?):

k
o® = —catx— 3 H,(u®) + g¢) 4 ¥,
i=1

k=1,...,.p (19)

hence, after some manipulations and using (12), (13),
the RHS of (10) can be written as

P P
- Y NCA - U(u+g)+ Y. Nn®. 0
k=0 k=0

Letting 7 = ¢/, the controller equation in the “fast”
time scale becomes
dvu du
D,— + - — = .
v v + +D1d‘r + Uu = const 2n
Then, Hurwitzness of (14) is necessary and sufficient
for the stability of the boundary layer.

Moreover, by letting € = 0 in (10) and using (20), the
equivalent control & is computed

p p
i=-U"1 (2 NCA*%-Y, Nkn(")) -g (2

k=0 k=0

where X is the state of the reduced order system.
Hence, the reduced order closed-loop system becomes

[ P
¥= (A—BU‘lszCA")f+BU'12Nkn("). 23)
k=0 k=0

Note that the disturbance has been completely re-
jected. In order to discuss the stability of the reduced
order system, we must compute the roots of the poly-
nomial

k=0
sI—A B

P
- Y. NcAt U
k=0

P
det (sI—A +BUTY NkCA") =

det 24)

detU

By noticing that the matrix in the RHS of the above
expression is the Rosenbrock system matrix of the
system with transfer matrix

p
> N, (Cak(sT— 4y B+ Hy) @5)
k=0

and using hypothesis (13), it is possible to prove that
the reduced order closed loop system poles are the
invariant zeros of the transfer matrix
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Fig. 2. Control input of the closed-loop system for € = 1072 (—) and £ = 1073 (—~).

P
Y N s*C(s1 - A)7'B. (26)
k=0

Thus, the minimum phase assumption and condi-
tion (16) guarantee the stability of the reduced order
system.

Moreover, equation

NpO'(p) +Np_]0'(p_1) +--+Nyo=0. (27

along with initial conditions 6*)(0) =0,k=0,...,p —
1 deduced from (4)—(6), implies that the reduced order
system state slides on the manifold for all time
instants. Hence, applying Tikhonov’s Theorem on the
infinite time horizon (Hoppensteadt, 1966), it follows
that, as € — 0, the system state uniformly approaches
the reduced order system state, which in turn slides on
the manifold. O

Note that, even if conditions (6) can not be exactly
fulfilled, due to unknown initial system output deriva-
tives, stability of (27) still assures that the reduced
order system state asymptotically approaches the man-
ifold.

In order to apply Theorem 1, eqns. (12), (13) and
(16) must be simultaneously fulfilled. It can be proved
that this is always possible with a suitable choice
of the order of sliding p, as shown in (Cavallo and
Natale, 2001), and then by solving first the system

HI HT ... Igg N uT
0 Hf - Hy_ || M 0
oo n = (28)
0 0 H J\N] 0

and a multilinear optimisation problem of pole loca-
tion to satisfy condition (16).

3. CASE STUDY

The case study tackles the first benchmark problem
proposed in (IFAC, 1990), namely the control of a
binary distillation column, whose model includes the
effects of pressure variation.

3.1 Plant description

The linearised model for a 8 plates distillation column
is

X=Ax+Bu+Ew 29)
y=Cx (30)

where the inputs u = (u; u, uy )T are the reboiler
steam temperature, the condenser coolant tempera-
ture and the controlled reflux, respectively; the out-
puts y = (¥, ¥, ¥; )" are the composition of more
volatile component in bottom product, the composi-
tion of more volatile component in top product and
the pressure, respectively; the disturbance input @ is



the change of input feed concentration. All the other
state variables are the compositions of more volatile
component in the various plates. Rather than measur-
ing all of the 11 state variables, resorting to an output
feedback is less expensive in terms of sensors. All the
numerical values can be found in (IFAC, 1990), and it
is possible to verify that the system is asymptotically
stable and minimum phase. Moreover, the disturbance
is not matched with the input, hence condition 11
is not fulfilled. However the proposed controller can
effectively reject all the components of the disturbance
along the (B), which constitutes the main contribu-
tion. The requirements are to design a controller to
regulate the 3 outputs against the unmeasurable distur-
bance with as fast a settling time as possible, subject to
the constraints on the control inputs |u | < 2.5, |u,| <
2.5, |uz} <0.30, Vt for a disturbance |@| < 1, Vr.

3.2 Controller design

The first step of the design procedure is to compute the
Markov parameters of the plant and construct the ma-
trix  and the related system of linear equations (28)
in the unknowns N,. The integer p is chosen as the
minimum index of Markov parameters sufficient to
guarantee the solvability of the system = ,
i.e., k is increased until the condition

rank  =rank ( )

is satisfied. However, this procedure is not general and
it does not always lead to a finite number p defining
the order of the sliding strategy. This problem can
be solved in general, as described in (Cavallo and
Natale, 2001). In the present case study, it is easy to
find that p = 2. Since there are infinite solutions, the
one which maximise the number of null elements in
the matrix N, is selected, so that the degree of the
polynomial (15) is minimised. By applying a pseudo-
inversion algorithm and choosing U = I, it results

—1.492 0 0.136 0 -347.102 0
N, = 1.492 0 0.081 |,N,=| O 347.1020
0.027 0 0.001 0 -3.0540

With this choice only 4 arbitrary stable roots of
detN(s) have to be selected. By locating the desired
roots not too far from the open-loop poles of the plant
(so as to limit the control effort) e.g., in {—0.4+
J0.2, —0.3 % j0.1}, and using a standard optimisation
algorithm, N, is

0915 0.699 0.542
Ny = 0.593 0.193 0.225
—0.078 —0.573 —0.043

The second step of the procedure is to design the
denominator of the controller by designing the poly-
nomial matrix D(s). This can be done by assigning
the roots of det D(s) compatibly with the choice of the
matrix U. A diagonal polynomial matrix D(s) is im-

posed, whose determinant has roots {—0.5, —1, —2}.
The resulting controller has transfer matrix
NS+ Nis+N

T 353 +€27/252 + €7 /25

C(s) 31

The last step of the design is the definition of the
function 7(¢) so that 6(0) = &(0) = 0. Moreover, the
regulation of the output to a desired value y, can be
simply achieved by replacing y with the regulation
error y —y, in o. In the case of a step reference
input with null initial conditions on the plant, this is
obtained by filtering the reference signal with a second
order filter, i.e.

F(s) = diag {f(s),f(s),f(s)}
with  f(s) = !

1+28 /ns + 5%/ o}

In this way, for € — 0, the bandwidth of the closed-
loop system is the bandwidth of F(s). As requested
by the benchmark, { and @, have been selected to
have as fast a settling time as possible, compatibly
with the control input limits. The values { = 0.8,
@, = 0.07rad/s guarantee a settling time of approx-
imately 82s. The performance of the controller can
be improved by decreasing the parameter €. For the
values of € = 1072 and £ = 1073, the step response
is reported in Fig. 1. First, it can be recognised how
the actual settling time is very close to the desired one
for both values of €. Then, it is evident how for the
lowest value of € the channels of the closed-loop sys-
tem are very well decoupled, which is confirmed also
by the analysis of the singular values of the closed-
loop system depicted in Fig. 3, where the dashed lines
(€ = 10~3) are much closer to each other than the solid
lines (e = 10~2). In any case, this good performance is
obtained respecting the bounds imposed on the control
inputs, in fact in Fig. 2 all the three control signals are
below the limit values, for all the time and, although
“fast”, they do not exhibit peaks. To test the ability of
the closed-loop system to reject disturbances, a distur-
bance signal w(¢) has been applied to the system, as a
square wave with a period of 500s and the maximum
foreseen amplitude. The resulting output signals (re-
ported in Fig. 4), have amplitudes much lower than the
amplitudes of the same outputs in the open-loop case,
which are of the order of 0.1 (graphically not reported
due to lack of space).

4. CONCLUSION

In this paper a new MIMO robust output feedback
control strategy has been presented. The proposed
controller is based on a high order sliding manifold
approach and guarantees strong robustness properties
that are typical of high-gain control systems. How-
ever, the main problem affecting the latter, namely the
“peaking phenomenon” is avoided by using a time-
varying sliding manifold. The effectiveness of the pro-
posed strategy is shown on an IFAC benchmark of the
control of a binary distillation column.
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