
THE STRUCTURAL IDENTIFIABILITY OF A GENERAL
EPIDEMIC (SIR) MODEL WITH SEASONAL FORCING

N. D. Evans ∗ M. J. Chapman ∗∗ M. J. Chappell ∗ K. R. Godfrey ∗

∗ School of Engineering, University of Warwick,
COVENTRY, CV4 7AL UK

∗∗ School of MIS-Mathematics, Coventry University,
COVENTRY, CV1 5FB UK

Abstract: In this paper it is shown that a general SIR epidemic model, with the force of
infection subject to seasonal variation, and a proportion of the number of infectives measured,
is unidentifiable. This means that an uncountable number of different parameter vectors can,
theoretically, give rise to the same idealised output data. Any subsequent parameter estimation
from real data must be viewed with less confidence as a result. The approach is essentially
that developed by Evans et al. (2002), with modifications to allow for time-variation in
the effective contact rate. This approach utilises the existence of an infinitely differentiable
transformation that connects the state trajectories corresponding to parameter vectors that
give rise to identical output data.
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1. INTRODUCTION

When developing a parametric state space model of
a given physical system, such as the spread of an
infectious disease, the important question of whether
the parameters can be determined uniquely from ex-
perimental data arises. Structural identifiability is con-
cerned with the answer to this question in the the-
oretical situation of noise-free, perfect and continu-
ous measurement/observation data (see, for example,
Bellman and Åström (1970) and the papers in Walter
(1987)). This is a problem relating to the structure
of the mathematical model, and deals with whether
different vectors of parameters give rise to the same
(ideal) measurement data. As such, structural iden-
tifiability is an important theoretical prerequisite to
experiment design and parameter estimation (in which
the aim is to determine the parameters from real, and
possibly noisy, data).

The identifiability of linear models is a well under-
stood concept, with many analytical techniques avail-
able (see Walter (1987), and in particular, the paper
therein by Godfrey and DiStefano III (1987)). For

nonlinear systems, there are relatively few techniques
(the Taylor series approach (Pohjanpalo, 1978), the
similarity transformation approach (Tunali and Tarn,
1987; Vajda et al., 1989), and differential algebra tech-
niques (Fliess and Glad, 1993; Ljung and Glad, 1994)
being among the most common) and significant prob-
lems still remain to be overcome. One such problem
results from the practical consideration that unique
(global) identifiability be sought with respect to a spe-
cific input (Chappell et al., 1990), for example a bolus
(impulsive) input of drug in pharmacokinetics.

A large class of models falling into this category is that
consisting of those without inputs (i.e., an identically
zero input), for example general SIR (susceptible, in-
fected, removed) type models used in the study of epi-
demics (Capasso, 1993). The identifiability of models
of this form is typically approached via a Taylor series
expansion of the output (Pohjanpalo, 1978). However,
the paper by Evans et al. (2002) proposes a new
method which utilises the existence of a smooth map
that connects the state trajectories of different param-
eterisations that yield identical outputs. In this paper it
is shown how this general theory can be applied to a
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general SIR model with seasonal variation in the force
of infection. This general SIR model, together with
the modifications necessary to allow for the temporal
variation, is described in the next section.

2. GENERAL SIR MODEL

The general SIR model, which was introduced by Ker-
mack and McKendrick (1927), is intended to describe
the evolution of an epidemic in a constant and isolated
host population of size N . The population is divided
into three distinct classes: The susceptible class, with
population size S, consisting of those hosts that can
contract the disease and become infectious; the in-
fectious class, with population size I , consisting of
those hosts that have been infected and can transmit
the disease to other hosts; and the removed class, with
population R, consisting of those hosts that have con-
tracted the disease and then died, or recovered with
full immunity against subsequent reinfection.

The ‘law of mass action’ is assumed for the infection
process (S −→ I) so that the per capita rate at which
susceptibles are infected is proportional to the number
of infectives. The constant of proportionality, denoted
by β, is a crucial parameter in the model, called
the effective contact rate. To preserve the constant
population size it is assumed that the birth rate (into
the susceptible class) matches the net mortality rate
(µN ). The SIR model is then given by the following
system of ordinary differential equations (Capasso,
1993):

Ṡ = µN − S (µ + βI) , (1)

İ = I (βS − (µ + σ)) , (2)

Ṙ = σI − µR (3)

where N = S(t) + I(t) + R(t) is a positive con-
stant, 1/µ is the average life expectancy, 1/σ is the
mean infectious period, and β represents the average
fraction of susceptibles contacted by a single infective
that then contract the disease. It is not really necessary
to include an equation for R since it does not appear
in either of the first two equations, except through
the sum N . Moreover, the population sizes S and I
can be scaled to give the proportions, s = S/N and
q = I/N , of susceptibles and infectives respectively.
The parameters µ, β and σ, together with the initial
conditions and the constant N , are all assumed to be
positive and unknown.

Each of the parameters in the model has practical
significance and so it is essential to establish identi-
fiability before any parameter fitting can be performed
with confidence. Moreover, the parameter combina-
tion R0 = βN/(µ + σ), called the basic reproduc-
tion rate, is the average number of secondary cases
resulting from one primary infection when introduced
into a completely susceptible population and is crucial
when considering control of the disease: If R0 < 1

the number of newly infected cases decreases to zero
and the disease dies out, and if R0 > 1 an epidemic
occurs. Thus the aim of any control strategy is to
reduce R0 below 1. Typically this might be achieved
by blocking the transmission of the disease, i.e., re-
ducing β, through vaccination and/or culling. Hence it
is essential that β be identifiable in order to design an
effective strategy.

The identifiability of the model (1)–(3) will be anal-
ysed for the case where a proportion of the number
of infectives is measured. This output is appropriate
when the ratio of the number of cases to the number
of infectious individuals in the population is assumed
to be constant, and the data consist of the reported
number of cases. For example, this was the situation
assumed in Weber et al. (2001) for respiratory syncy-
tial virus. The corresponding output for the model (1)–
(3) is given by:

y = kI (4)

where the parameter k is positive and unknown.

A further level of complication is added in models
for diseases that have a force of infection that is
subject to seasonal, or other temporal, fluctuations.
For these models the constant effective contact rate, β,
is replaced by a periodic function of time, β(t) say. For
example, Grenfell et al. (1995) modelled the dynamics
of measles using the function

β(t) = β0 (1 + β1 cos (2πt)) . (5)

With t measured in years this corresponds to a func-
tion with an annual period. This will be the function
used in this paper for the effective contact rate. To
ensure that β(t) > 0, for all t ≥ 0, it is assumed that
|β1| < 1.

3. STRUCTURAL IDENTIFIABILITY

In this section, nonlinear systems of the following
form are considered:

ẋ(t,p) = f(x(t,p),p), (6)

x(0,p) = x0(p), (7)

y(t,p) = h(x(t,p),p), (8)

where p ∈ Ω, an open subset of R
q , is a constant

parameter vector, and the output y(t,p) ∈ R
r. For

all p ∈ Ω, denote by M(p) the largest connected
open subset of R

n containing x0(p) such that both
f(·,p) and h(·,p) are analytic on M(p). Let τ(p)
be the supremum of the set of all τ > 0 such that
x(t,p) ∈ M(p) for 0 ≤ t ≤ τ .

Definition 1. Given a parameter vector p, then p ∈ Ω
is said to be indistinguishable from p, written p ∼ p,
if y(t,p) = y(t,p) for all t ∈ [0, τ(p)). (In particular,
this means that τ(p) ≥ τ(p).)

If p ∼ p, for p,p ∈ Ω, then it is not possible to
distinguish between the parameter vectors p and p



from ideal output data on [0, τ(p)). With respect to
this definition, the identifiability problem is to deter-
mine whether there exist other parameter vectors that
are indistinguishable from a given one.

Definition 2. A model of the form (6)–(8) is said to be
globally identifiable at p ∈ Ω if p ∈ Ω and p ∼ p

imply that p = p. If this is true on some suitably
small neighbourhood of p then the model is locally
identifiable at p ∈ Ω.

If the system (6)–(8) is globally identifiable at p, then
the resulting (ideal) output data from the model are
unique.

Definition 3. If (6)–(8) is globally (locally) identifi-
able at p for all p ∈ Ω, except for a subset of a closed
set of (Lebesgue) measure zero, then it is said to be
structurally globally (locally) identifiable. The model
is said to be unidentifiable if it is not structurally lo-
cally identifiable.

The Lie derivative of h ∈ C∞(M(p)) (i.e., h is real-
valued and infinitely differentiable on M(p)) along
the vector field f is the smooth function given by

Lfh(x) =
∂h

∂x
(x)f(x).

Let fp(·) = f(·,p) and, for l, 1 ≤ l ≤ r, hp
l (·) =

hl(·,p). The system (6)–(8) is said to satisfy the
Observability Rank Condition (ORC) at x0(p) if there
exist functions µ1(x,p), . . . , µn(x,p) of the form
hj(x,p), for some j, or Lm

fphp
l (x), for some l and

m, such that the Jacobian matrix, evaluated at x0(p),
of the function defined by

Hp : x 7−→ (µ1(x,p), . . . , µn(x,p))
>

is nonsingular (see the paper by Hermann and Krener
(1977) for more details, particularly in the context of
observability).

If a system satisfies the ORC at the initial condition,
for a particular parameter vector p, then it is possible
to construct a smooth mapping from the state corre-
sponding to a parameter vector indistinguishable from
p to the state corresponding to p. The following result
then lays the foundation for a method for testing the
identifiability of system (6)–(8).

Theorem 4. Suppose that system (6)–(8) satisfies the
ORC at x0(p) for some p ∈ Ω. If p ∈ Ω is such that
p ∼ p, then there exists an open neighbourhood Vp of
x0(p) and a smooth map λ : Vp −→ λ (Vp) such that

Hp (λ(x)) = Hp (x) , (9)

for all x ∈ Vp, and

λ(x0(p)) = x0(p), (10)

fp(λ(x(t,p))) =
∂λ

∂x
(x(t,p))fp(x(t,p)), (11)

hp(λ(x(t,p))) = hp(x(t,p)), (12)

for all t ∈ [0, τ(p)) with x(t,p) ∈ Vp, where x(t,p)
is the solution of system (6)–(8) for p.

PROOF. Since (6)–(8) satisfies the ORC at x0(p)
there exists an open neighbourhood W of x0(p) such
that Hp is a diffeomorphism from W to Hp (W ).

Since p ∼ p, it is seen that (1 ≤ j ≤ r)

hj(x(t,p)) = yj(t,p) = yj(t,p) = hj(x(t,p))

for all t ∈ [0, τ(p)), and so

Hp (x(t,p)) = Hp (x(t,p)) (13)

for all t ∈ [0, τ(p)). Setting t = 0 in this equa-
tion shows that Hp (x0(p)) ∈ Hp (W ). Therefore
there exists a neighbourhood Vp of x0(p) such that
Hp (Vp) ⊂ Hp (W ) and a smooth map λ : Vp −→
λ (Vp) defined by

λ(x) = H−1

p (Hp(x)) .

It is seen from its construction and (13), that this
map satisfies (9), (10) and (12) (since h(x(t,p)) =
h(x(t,p)) for 0 ≤ t < τ(p)). For equation (11) note
that

fp(λ(x(t,p))) = ẋ(t,p) =
∂λ

∂x
(x(t,p))ẋ(t,p)

=
∂λ

∂x
(x(t,p))fp(x(t,p))

for all t ∈ [0, τ(p)) with x(t,p) ∈ Vp. 2

Suppose that the system (6)–(8) satisfies the ORC at
x0(p), for some p ∈ Ω. Denote by S(p) the subset
of Ω, containing p, of all possible parameter vectors
p such that λ, defined in (9), satisfies (10)–(12). If
this set consists only of p then the system (6)–(8) is
globally identifiable at p. However, if S(p) consists
of more vectors than just p, it cannot be concluded
that the system is not globally identifiable.

Remark 5. Let W be any open subset, containing
x0(p), of M(p) such that Hp is a diffeomorphism
when restricted to W . If x(t,p) ∈ W for all t ∈
[0, τ(p)) and p ∼ p (some p ∈ Ω), then the neigh-
bourhood Vp of x0(p) (in Theorem 4) can be chosen
such that x(t,p) ∈ Vp for all t ∈ [0, τ(p)).

This remark gives rise to the following corollary to
Theorem 4.

Corollary 6. Suppose that system (6)–(8) satisfies the
ORC at x0(p) for some p ∈ Ω, and that there
exists an open set W such that x(t,p) ∈ W , for
all t ∈ [0, τ(p)), and Hp : W −→ Hp (W ) is a
diffeomorphism. Then p ∼ p, p ∈ Ω, if and only
if there exists an open neighbourhood Vp of x0(p)
and a smooth map λ : Vp −→ λ (Vp) that satisfies
equation (9) for all x ∈ Vp, and equations (10)–(12)
for all t ∈ [0, τ(p)).



PROOF. Suppose that p ∼ p for some p ∈ Ω. From
Remark 5 it is seen that Vp can be chosen such that
x(t,p) ∈ Vp for all t ∈ [0, τ(p)). Hence applying
Theorem 4 it is seen that λ = H−1

p ◦Hp satisfies (9)–
(12) for all t ∈ [0, τ(p)).

Conversely, let Vp be a neighbourhood of x0(p) and
λ : Vp −→ λ (Vp) be a smooth map that satisfies (9),
and (10)–(12) for all t ∈ [0, τ(p)). Defining z(t) =
λ(x(t,p)) it is seen that z(·) is the solution of the
following system:

ż(t) =
∂λ

∂x
(x(t,p))fp(x(t,p)) = fp(z(t)),

z(0) = λ(x0(p)) = x0(p)

and so, by the uniqueness of solutions, z(t) = x(t,p).
Moreover, equation (12) implies that

y(t,p) = y(t,p)

for all t ∈ [0, τ(p)). Hence p ∼ p. 2

In the case of Corollary 6, the set S(p) consists of
precisely those parameter vectors that are indistin-
guishable from p. If there exists a neighbourhood, N ,
of p such that S(p) ∩ N = {p} then the system is
locally identifiable at p. These results are structural
if they remain true for all parameter vectors p except
possibly where the components of p satisfy some a
priori algebraic equation.

4. IDENTIFIABILITY ANALYSIS

Before considering the case with seasonal forcing an
identifiability analysis for a general SIR model, with
a proportion of the infectives measured, is presented.
The model equations, (1) and (2) (since (3) is not
necessary), together with the output (4), are of the
form (6)–(8) and so Theorem 4, or Corollary 6, can
be used in the structural identifiability analysis.

Example 7. The general SIR model (1)–(2), together
with the output (4), can be written in the form

ẋ1 = p1p4 − x1 (p1 + p2x2) x1(0) = p5

ẋ2 = x2 (p2x1 − (p1 + p3)) x2(0) = p6

y = p7x2

where x1 = S, x2 = I , p1 = µ, p2 = β, p3 = σ,
p4 = N , and p7 = k. Let the vector of unknown
parameters be denoted by p = (p1, . . . , p7)

> and the
set of possible p be given by Ω =

{

p ∈ R
7 : pi > 0

}

.
It is seen that M(p) = R

2.

To see that the ORC is satisfied at x0(p) let µ1(x,p)=
p7x2, and

µ2(x,p) = Lfpµp
1
(x) = p7x2 (p2x1 − (p1 + p3)) ,

where µp
1
(x) = µ1(x,p). The Jacobian matrix of the

function defined by Hp(x) = (µ1(x,p), µ2(x,p))>

is given by

∂Hp

∂x
(x) =

(

0 p7

p2p7x2 p7(p2x1 − (p1 + p3))

)

.

Given any p ∈ Ω this matrix has full rank for all
x ∈ W = {x ∈ R

2 : x2 6= 0}. Since x(t,p) ∈ W for
all [0, τ(p)) Corollary 6 can be applied to perform an
identifiability analysis.

The smooth transformation λ, constructed via (9), is
given by

λ(x) =

(

p1 + p3 − p
1
− p

3
+ p

2
x1

p2

,
p
7
x2

p7

)>

.

From the choice of µ1 and (9) it is seen that λ auto-
matically satisfies (12). It can be seen, by substituting
for λ, that the last component of (11) is automatically
satisfied. The first component can be rewritten in the
form

c1 + c2x1(t,p) + c3x2(t,p)

+ c4x1(t,p)x2(t,p) = 0 (14)

where

c1 = p7(p1(p1
+ p

3
− (p1 + p3) + p2p4) − p

1
p
2
p
4
),

c2 = p7(p1
− p1)p2

, c3 = p2(p1
+ p

3
− p1 − p3)p7

,

c4 = p
2
(p7p2

− p2p7
).

Setting t = 0 in (14) and its first three derivatives with
respect to t gives a system of equations that can be
solved for the ci to give ci = 0 for all i. Solving this
resulting set of four equations for the components of
p gives

p
1

= p1, p
2
p
4

= p2p4, p
3

= p3, p
7
/p

2
= p7/p2.

It now only remains to consider the initial condi-
tion (10). It is seen that

λ(x0(p)) =

(

p5

p6

)

=

(

(p
2
p
5
)/p2

(p
7
p
6
)/p7

)

and so p
2
p
5

= p2p5 and p
6
p
7

= p6p7. Therefore the
set S(p) is given by

{

p ∈ Ω : p
1

= p1, p3
= p3, p2

p
4

= p2p4,

p
2
p
5

= p2p5, p2
p
6

= p2p6, p7
/p

2
= p7/p2

}

and, since the analysis holds for generic p, the model
is unidentifiable.

In terms of the original model parameters, the follow-
ing are uniquely determined by the output:

• The parameters µ and σ;
• The combinations of parameters βN , βS(0),

βI(0) and k/β.

This means that an uncountable number of different
parameter vectors can give rise to the same output
data. These parameter vectors correspond to particular
choices for β. Note that the basic reproduction rate
R0 is globally identifiable since it is the ratio of
βN and µ + σ which are both globally identifiable
combinations.

If the size of the population, N , is known, then p
4

=
p4 so that the set S(p) consists of the parameter vector
p only. Similarly if any one of S(0), I(0), or k is
known then S(p) = {p}. In these cases the model
is structurally globally identifiable.



When the (constant) effective contact rate β is re-
placed by the time-varying function defined in (5) then
it is necessary to modify the model slightly in order
to allow for the time-dependence of f . Let x3 =
β1 cos (2πt) and note that x3 satisfies the following
second order differential equation:

ẍ3 + 4π2x3 = 0,

with initial conditions x3(0) = β1, and ẋ3(0) = 0.
The time-dependence of β, therefore, can be incorpo-
rated into the model by including two extra states, x3

and x4, that satisfy the following system of equations:

ẋ3 = x4, x3(0) = β1,

ẋ4 = −4π2x3, x4(0) = 0.

Note that, since cos(2πt) = x3/β1, and 2π sin(2πt)=
(−x4)/β1 are, in principle, known functions of time,
the following outputs can also be included in the
model:

y1 = x3/β1 and y2 = x4/β1.

Example 8. The general SIR model (1)–(2), together
with the output (4) and seasonal forcing, modelled by
the periodic (in time) function (5), can be written in
the form

ẋ1 = p1p4 − x1 (p1 + p2x2(1 + x3)) x1(0) = p5

ẋ2 = x2 (p2x1(1 + x3) − (p1 + p3)) x2(0) = p6

ẋ3 = x4 x3(0) = p7

ẋ4 = −4π2x3 x4(0) = 0

y1 = x3/p7

y2 = x4/p7

y3 = p8x2

where x1 = S, x2 = I , p1 = µ, p2 = β0,
p3 = σ, p4 = N , p7 = β1, and p8 = k. Let the
vector of unknown parameters be denoted by p =

(p1, . . . , p8)
> and the set of possible p be given by

Ω =
{

p ∈ R
8 : pi > 0 (i 6= 7), |p7| < 1

}

. It is seen
that M(p) = R

4.

To see that the ORC is satisfied at x0(p) let µ1(x,p)=
x3/p7, µ2(x,p) = x4/p7, µ3(x,p) = p8x2, and

µ4(x,p) = Lfpµp
3
(x)

= p8x2 (p2x1(1 + x3) − (p1 + p3)) .

The Jacobian matrix of the function defined by
Hp(x) = (µ1(x,p), . . . , µ4(x,p))> is given by

∂Hp

∂x
(x) =









0 0 1/p7 0
0 0 0 1/p7

0 p8 0 0
p2p8x2(1 + x3) α1 p2p8x1x2 0









where α1 = p8(p2x1(1 + x3) − (p1 + p3)). Given
any p ∈ Ω this matrix has full rank for all x ∈ W =
{x ∈ R

4 : x2 6= 0, x3 6= −1}. Since x(t,p) ∈ W for
all [0, τ(p)) Corollary 6 can be applied to perform an
identifiability analysis.

The smooth transformation λ, constructed via (9), is
given by

λ(x) =

(

λ1(x),
p
8
x2

p8

,
p7x3

p
7

,
p7x4

p
7

)>

where

λ1(x) =
p
7
(p1 + p3 − p

1
− p

3
+ p

2
x1(1 + x3))

p2(p7
+ p7x3)

.

Again, because of the choice of µ1, equation (12) is
automatically satisfied by λ. It can be seen, by sub-
stituting for λ, that the last three components of (11)
are automatically satisfied. The first component can be
rewritten in the form

p2p8c1x2(t,p)α2(t)
2 − p8

(

c6x3(t,p)

+ c3x3(t,p)2 + p
7
(c7 + p7c1x4(t,p))

)

+ p
2
x1(t,p)

(

x2(t,p)α2(t)α3(t)(c5 + c5x3(t,p))

− p8p7
(c2p7

α3(t) + c2p7x3(t,p) + p7c2x3(t,p)2

+ c4x4(t,p))
)

= 0 (15)

where

α2(t) = p
7

+ p7x3(t,p), α3(t) = 1 + x3(t,p),

c1 = (p
1

+ p
3
) − (p1 + p3), c2 = p1 − p

1
,

c3 = p7(p1
p
2
p
4
p
7
− p1p2p4p7),

c4 = p
7
− p7, c5 = p

2
p
7
p8 − p2p7

p
8
,

c6 = p
7

(

p1p7(c1 − 2p2p4) + p
1
p
2
p
4
(p7 + p

7
)
)

,

c7 = p
7

(

p1(c1 − p2p4) + p
1
p
2
p
4

)

.

Setting t = 0 in (15) and its first six derivatives, with
respect to t, gives a system of equations that can be
solved for the ci to give ci = 0 for all i. Solving this
resulting set of seven equations for the components of
p gives

p
1

= p1, p
2
p
4

= p2p4, p
3

= p3,

p
8
/p

2
= p8/p2, p

7
= p7.

It now only remains to consider the initial condi-
tion (10). It is seen, since λ1(x) = (p

2
x1)/p2, that

λ(x0(p)) =
(

p5, p6, p7, 0
)>

=
(

(p
2
p
5
)/p2, (p2

p
6
)/p2, p7, 0

)>

and so p
2
p
5

= p2p5 and p
2
p
6

= p2p6. Therefore the
set S(p) is given by

{

p ∈ Ω : p
1

= p1, p3
= p3, p7

= p7, p2
p
4

= p2p4,

p
2
p
5

= p2p5, p2
p
6

= p2p6, p8
/p

2
= p8/p2

}

and, since the analysis holds for generic p, the model
is unidentifiable.

In terms of the original model parameters, the follow-
ing are uniquely determined by the output:

• The parameters µ, σ and β1;
• The combinations of parameters β0N , β0S(0),

β0I(0) and k/β0.

It is interesting to note that the amplitude of the
seasonal variation, β1, is globally identifiable, but the
average value, β0, is unidentifiable. Therefore, for a



given output, β0 > 0 is free for choice, with the
other parameters being chosen to satisfy the relations
in S(p).

As in Example 7, if the size of the population, N , is
known, p

4
= p4 and so S(p) = {p}. This is also true

if any one of S(0), I(0), or k is known. In these cases
the model is structurally globally identifiable.

One might also wish to test for the structural iden-
tifiability of the model (1)–(3) in the case when a
proportion of the rate of incidence is measured. This
corresponds to a measurement of the number of newly
infected individuals and can be modelled by the inclu-
sion of an output of the form

y = kSI

in the model. This output could also be allowed to vary
seasonally as the force of infection, which gives rise to
an output of the form

y = k(1 + β1 cos(2πt))SI.

At present the extra complexity in the identifiability
analysis caused by the inclusion of outputs of these
forms, is beyond the computational bounds of the
symbolic package Mathematica (Wolfram, 1999) that
was used for the above examples. This is a topic of
ongoing research.

5. CONCLUSIONS

It has been shown that a general SIR model, with
the force of infection subject to seasonal variation,
is unidentifiable when a proportion of the number of
infectives is measured. This type of output is appro-
priate for models of diseases with a short period of
infection, such as respiratory syncytial virus (Weber
et al., 2001). However, if the size of the total popula-
tion is known, or it is known what proportion of the
number of infectives is measured, then the model is
structurally globally identifiable.

The methodology employed in this paper for the iden-
tifiability analysis is essentially that developed by
Evans et al. (2002). Small modifications to the model
were necessary to apply the theory when the effective
contact rate was subject to temporal variation. This
approach utilises the existence of a smooth transfor-
mation connecting the state trajectories corresponding
to indistinguishable parameter vectors. As such it is
similar to the similarity transformation approach for
controlled parametric models (Vajda et al., 1989).
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