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1. INTRODUCTION

Nonnegative polynomials are natural objects to model
various engineering problems. Among the most rep-
resentative applications are the filter design prob-
lems (Alkire and Vandenberghe, 2001; Davidson
et al., 2000; Genin et al., 2000a). Recently, self-
concordant barriers for several cones of nonnega-
tive polynomials have been proposed in the litera-
ture (Nesterov, 2000). They are usually based on re-
sults dating back to the beginning of the 20th cen-
tury. In fact, these cones and their properties were
extensively studied by several well-known mathemati-
cians (Fejér, Toeplitz, . . . ), see e.g. (Karlin and Stud-
den, 1966).

Nowadays, convex optimization techniques allow
us to efficiently deal with these cones, which are
parametrized by semidefinite matrices (Nesterov and
Nemirovskii, 1994; Vandenberghe and Boyd, 1996).
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research fellowship from the Belgian National Fund for Scientific
Research is also gratefully acknowledged by the first author. The
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Although general semidefinite programming solvers
could be used to solve the associated problems, the
inherent structure of these polynomial problems must
be exploited to derive much more efficient algo-
rithms (Alkire and Vandenberghe, 2001; Genin et
al., 2000b). They are usually based on the matrix
structure which shows up in the dual problem. In
particular, solving the standard conic formulation on
cones of nonnegative polynomials using the dual ma-
trix structure has been studied in (Genin et al., 2000b).

In this article, we consider a particular conic formu-
lation where the linear constraints are interpolations
constraints. Indeed, the natural linear constraints on
the coefficients of a polynomial are the ones obtained
as interpolation conditions on the polynomial or its
derivatives : each of them has an unambiguous inter-
pretation. We show that solving the associated opti-
mization problems can be done very efficiently in a
number of flops almost independent of the polynomial
degree. Moreover, these formulations have some inter-
esting properties that are worth pointing out.

Notation. Hereafter all optimization problems are
assumed to be stated in terms of appropriate scalar
products defined over the space of complex matrices.
For any couple of matrices X and Y let us set their
Frobenius scalar product as follows
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hX;Y i
F

:
= Re(TraceXY �) � Re

mX
i=1

nX
j=1

x
i;j
y
i;j
;

where fx
i;j
g
i;j

and fy
i;j
g
i;j

are the scalar entries of
the matrices X and Y , respectively. Both matrices
must have the same dimension m � n, but they are
not necessarily square. The above definition can thus
be applied to vectors and it also follows from the
definition that

hX;Y i
F
= hRe(X);Re(Y )i + hIm(X); Im(Y )i

where h�; �i stands for the standard scalar product of
matrices, i.e. hX;Y i = TraceXY �.

Positive semidefiniteness of a matrix Y is denoted
by Y � 0. Since we deal with polynomials, the

vector of powers �
n
(z) =

�
1 z � � � zn�T is often

used to represent a polynomial by its coefficients. The
diagonal matrix defined by the vector y is denoted by
D(y). The complex unit is written as �, i.e. �2 = �1.
The elements of the canonical basis are written as
fe

k
g
k
, i.e. I

n
=
�
e1 : : : e

n

�
is the identity matrix.

2. NONNEGATIVE POLYNOMIALS

Let us now briefly summarize a few facts about non-
negative polynomials. First of all, the characterization
of such polynomials depends on the curve of the com-
plex plane on which they are defined. These curves
are typically the real axis R, the unit circle e�R or the
imaginary axis �R. The set of nonnegative polynomi-
als on any of these three curves is clearly a convex
cone K, i.e.

�K � K; 8� � 0 (1)

K+K � K (2)

In this article, this special structure is used to for-
mulate various optimization problems in conic form,
based on interpolation constraints.

Let us now examine the cone of nonnegative trigono-
metric polynomials and its dual. Similar results can be
derived for nonnegative polynomials on the real line or
on the imaginary axis, see (Genin et al., 2000b; Nes-
terov, 2000). Further details will be given in a forth-
coming paper.

On the unit circle, the nonnegative polynomials of
interest are the trigonometric polynomials. Remember
that a trigonometric polynomial of degree n has the
form

p(�) =

nX
k=0

[a
k
cos(k�) + b

k
sin(k�)]; � 2 [0; 2�):

(3)
where fa

k
gn
k=0 and fb

k
gn
k=0 are two sets of real

coefficients. Without loss of generality, we can assume
that b0 = 0.

If we define the complex coefficients fp
k
gn
k=0 as

p
k
= a

k
+ �b

k
; k = 0; : : : ; n; (4)

the pseudo-polynomial

p(z) = hp; �
n
(z)i

F
; (5)

evaluated on the unit circle is equal to the trigonomet-
ric polynomial (3). Therefore, we can use either (3) or
(5) to represent the samemathematical object.

Denote the cone of trigonometric polynomials (of
degree n) nonnegative on the unit circle by

KC = fp 2 R � C
n : hp; �

n
(z)i

F
� 0;

z = e��; � 2 [0; 2�)g: (6)

and define the inner product between two vectors p =

(p0; : : : ; pn)
T 2 R�C n and q = (q0; : : : ; qn)

T 2 R�
C
n by hp; qi

F
.

The cone of nonnegative polynomials on the unit
circle can then be characterized as follows (Nesterov,
2000).

Theorem 1.A trigonometric polynomial p(z) =

hp; �
n
(z)i

F
is nonnegative on the unit circle if and

only if there exists a positive semidefinite Hermitian
matrix Y = fy

i;j
gn
i;j=0 such that (y

i;j
= 0 for i or j

outside their definition range) :

p
k
=

8>><
>>:

X
i�j=0

y
i;j
; k = 0

2
X

i�j=k

y
i;j
; k = 1; : : : ; n

(7)

This statement is a direct consequence of Fejér’s The-
orem (Fejér, 1915; Nesterov, 2000). Note that (7)
can be rewritten using the vector �

n
(z), i.e. p(z) =

hY �
n
(z); �

n
(z)i.

By definition, the cone dual to KC is the set of vectors
q = (q0; : : : ; qn)

T 2 R � C
n satisfying the inequality

hp; qi
F
� 0; 8p 2 KC : (8)

If T (s) is the Hermitian Toeplitz matrix defined by the
vector s 2 R � C

n , i.e.

T (s) =

2
666664

s0 �s1 � � � �s
n

s1
. . .

. . .
...

...
. . .

. . . �s1

s
n

. . . s1 s0

3
777775 ; (9)

the cone dual to KC is characterized by T (s) � 0, i.e.

K�
C
= fs 2 R � C

n : T (s) � 0g: (10)

Using the operator dual to T (�), equation (7) can also
be written as p = T �(Y ), which means that

p
k
= hY; T

k
i; k = 0; : : : ; n (11)

where the matrices fT
k
gn
k=0 are defined by the iden-

tity T (s) = 1
2

P
n

k=0(Tksk + T T

k

s
k
);8s 2 R � C

n .



3. THE OPTIMIZATION PROBLEM

The problem of optimizing over the cone of nonnega-
tive polynomials, subject to linear constraints on the
coefficients of these polynomials, has already been
studied by the authors in a wider framework (Genin
et al., 2000b). Remember that this class of problems
is exactly the standard conic formulationintroduced
in (Nesterov and Nemirovskii, 1994). In this section,
we now focus on the particular case of trigonometric
polynomials constrained by interpolation constraints.
The consequent structures of the primal and dual prob-
lems lead to efficient algorithms for solving such prob-
lems.

Several important optimization problem on the unit
circle can be formulated as the following primal prob-
lem

min hc; pi
F

s: t: ha
i
; pi

F
= b

i
i = 1; : : : ;m

p 2 KC
: (12)

where the linear constraints are independent. From a
computational point of view, the problem dual to (12)
has again a considerable advantage over its primal
counterpart. This dual problem reads as follows

max hb; yi
s: t: s+

mX
i=1

y
i
a
i
= c

s 2 K�
C

(13)

Since its constraints are equivalent to T (c�A�y) � 0,
the Toeplitz structure can be used to efficiently solve
this dual problem (Genin et al., 2000b). Using Theo-
rem 1, the primal optimization problem (12) can also
be recast as the semidefinite programming problem

min hT (c); Y i
s: t: hT (a

i
); Y i = b

i
; i = 1; : : : ;m

0 � Y = Y � 2 C
(n+1)�(n+1)

:

(14)

An interpolation constraint on the nonnegative
trigonometric polynomial p(�), i.e. p 2 KC , corre-
sponds to

p(�
i
) =

nX
k=0

[a
k
cos(k�

i
) + b

k
sin(k�

i
)] = b

i
� 0;

(15)
with �

i
2 [0; 2�] and it is equivalent to the linear

constraint

ha
i
; pi

F

:
= p(z

i
) = hp; �

n
(z

i
)i
F
= b

i
; z

i
= e��i :

(16)

Note that T (�
n
(z)) = �

n
(z)�

n
(z)�;8jzj = 1. If all

the linear constraints of (12) are interpolation con-
straints, the dual can thus be written as

max hb; yi
s: t: T (c)� V D(y)V � � 0

(17)

where the Vandermonde matrix V is defined by the
points fz1; : : : ; zmg, i.e.

V =

2
6664
1 : : : 1

z1 : : : z
m

...
...

zn1 : : : zn
m

3
7775 : (18)

Assumption 1.The components of the vector b are
strictly positive, i.e. b

i
> 0;8i.

Remark 2.Since we work with nonnegative polyno-
mials, this assumption on the vector b is not restrictive.
If there exists an integer i such that b

i
= 0, one can

factorize p(z) as p(z) = ~p(z)(z � z
i
) and rewrite the

optimization problem using the polynomial ~p(z).

4. SOLVING THE OPTIMIZATION PROBLEM

4.1 Strict feasibility

The standard assumption on the primal and dual prob-
lems is the so-called “strict feasibility” assumption.
This assumption is necessary in order to properly de-
fine the primal and dual central-path and thus to solve
our pair of primal and dual problems (Nesterov, 1996).
Moreover, it ensures that the optimal values of both
problems coincide, which is an important property to
solve our class of problem efficiently.

Assumption 2.(Strict feasibility). There exist points
p̂ 2 intK, ŝ 2 intK� and ŷ 2 R

m that satisfy the
following linear system

Ap̂ = b; (19)

ŝ+AT ŷ = b: (20)

Our particular problem class allows us to further dis-
cuss the interpretation of the previous assumption.
More specifically, we could get some information
about the strict feasibility of our problem in advance.

First, we analyze the strict feasibility of the primal
constraints. If the number of interpolation points is
less or equal to n + 1, i.e. m � n + 1, it is clear that
there exists a strictly positive polynomial ~p such that
A~p = b. Indeed, ifm = n+1, let fl

i
(z)gn+1

i=1 be the set
of Lagrange polynomials of degree n associated to the
interpolation points. By definition, these polynomials
satisfy the identities

l
i
(z

j
) = Æ

ij
; 1 � i; j � n+ 1 (21)

where Æ
ij

is the well-known Kronecker delta. The
polynomial ~p(z) =

P
n+1

i=1 b
i
jl
i
(z)j2 clearly satisfies

all our interpolation constraints and belongs to intKC .
If m < n+ 1, we can add n+ 1�m “extra” interpo-
lation constraints and check that the (original) primal
problem is always strictly feasible. If the number of
interpolation points is strictly greater that n + 1, we
cannot say anything in advance about the primal strict
feasibility.



Let us now analyze the strict feasibility of the dual
constraints. The structure of our interpolation con-
straints allows us to specifically characterize the in-
terior of the dual space. It is composed by the set of
vector s such that

T (s) = T (c�A�y) = T (c)�
mX
i=1

y
i
�
n
(z

i
)�

n
(z

i
)� � 0:

(22)
If m � n + 1, we conclude from this inequality
that there always exists s 2 intK�

C
. Another simple

situation arises when c 2 intK�

C
, i.e T (c) � 0. Then

the dual problem is always strictly feasible. Such a
situation occurs when we want to minimize an integral
of the polynomial p(�) on a finite interval I � [0; 2�) :

hc; pi =
Z
I

p(�)d� (23)

subject to interpolation constraints. This situation is
frequent in practice and one easily checks that in this
case c 2 intK�

R
, that is T (c) � 0.

Let us point out a remarkable property of our class of
problems. If the number of constraints is equal ton+1,
both primal and dual problems are strictly feasible and
this property is independentof the data. Except for that
particular case, there usually exists a trade-off between
strict primal and dual feasibility.

Therefore, the largest class of interpolation problems
on nonnegative trigonometric polynomials of degree
n, for which strict feasibility holds and does not de-
pend on the interpolation points, satisfies the follow-
ing assumption.

Assumption 3.The number m of interpolation con-
straints is less or equal to n+1 and the objective vector
c satisfies T (c) � 0.

From now on, we only focus on problems which
fulfill this assumption. The hypothesis on c could be
relaxed sometimes but we have kept it in order not to
shadow the inherent simplicity of our problems. When
appropriate, we shall point out the possible extensions
and leave them to the reader.

4.2 One interpolation constraint

Let us now solve the primal problem

minfhc; pi : p(�z) = hp; �
n
(�z)i = b; p 2 KC g: (24)

Both primal and dual optimal solutions can easily
be computed in an explicit way using Assumption 3.
They are given by the expressions :

y =
1

hT (c)�1�
n
(�z); �

n
(�z)i ; (25)

p = T �(qq�); q =
T (c)�1�

n
(�z)

hT (c)�1�
n
(�z); �

n
(�z)i : (26)

The following example shows a well-known applica-
tion of this result.
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Fig. 1. Energy density spectrum (jH(e �!)j2 – n=7)

Example 3.(Moving average system). Let h[n] be a
discrete time signal and H(e�!) be its Fourier trans-
form. The function jH(e�!)j2 is known as the en-
ergy density spectrum because it determines how the
energy is distributed in frequency (Oppenheim and
Schafer, 1989). Let us compute the signal which has
the minimum energy

2�E =

Z
�

��

jH(e�!)j2d! (27)

and satisfies jH(e�0)j = 1.

This is exactly an example of the problem class (24).
Since p(e�!) = jH(e�!)j2 is a trigonometric poly-
nomial,

R
�

��
p(e�!)d! = p0. The vector c which

defines the objective function is thus equal to c =

[1; 0; : : : ; 0]T . The interpolation constraint is obvi-
ously defined by �z = �

n
(e�0) and b = 1.

Therefore, the optimal primal solution is given by

p = T �(qq�); q =
[1; : : : ; 1]T

n+ 1
: (28)

and the corresponding Fourier transform H(e �!) can
be set to

H(e�!) =

nX
i=0

1

n+ 1
e��!: (29)

As shown in Figure 1, jH(e�!)j2 is an approxima-
tion of a low-pass filter. The corresponding signal is
exactly the impulse response of the moving average
system:

h[k] =

8<
:

1

n+ 1
0 � k � n+ 1

0 otherwise
: (30)

Since convolution of a discrete signal x[n] with h[n]

returns a signal y[n] such that

y[k] =
1

n+ 1

nX
l=0

x[k � l]; (31)

y[n] is the “moving average” of x[n].



4.3 Two interpolation constraints

Before investigating problems with two interpolation
constraints, we state the following proposition, which
gives the optimal solution of a 2-dimensional SDP
problem.

Proposition 4.Let b1; b2 2 intR+ and �;  2 R and
� 2 C . The optimal value of the optimization problem

max b1y1 + b2y2

s: t:

�
� �

� 

�
�
�
y1 0

0 y2

�
(32)

is reached at the optimal point

y1 = �� j�j
r
b2

b1
; y2 =  � j�j

r
b1

b2
(33)

and it is equal to b1�+ b2 � 2j�jpb1b2.

If the number of interpolation constraints is equal to 2,
the dual problem (13) is now given by

max hb; yi
s: t: T (c) � y1�n(z1)[�n(z1)]

� + y2�n(z2)[�n(z2)]
� :

(34)
The dual constraint is thus given by

T (c)���
n
(z1) �n(z2)

� �y1 0

0 y2

� �
�
n
(z1) �n(z2)

�� � 0:

(35)
Define the matrix M

T
(c; z1; z2) = (m

i;j
)1�i;j�2 by

m
i;j

= hT (c)�1�
n
(z

j
); �

n
(z

i
)i;8i; j. Using a Schur

complement approach, the previous linear matrix in-
equalities can be rewritten as

M
T
(c; z1; z2)

�1 � D(y): (36)

Using Proposition 4, the optimal dual solution is thus
given by

y1 =
1

det(M
T
)
[hT (c)�1�

n
(z2); �n(z2)i

� jhT (c)�1�
n
(z1); �n(z2)ij

r
b2

b1
];

y2 =
1

det(M
T
)
[hT (c)�1�

n
(z1); �n(z1)i

� jhT (c)�1�
n
(z1); �n(z2)ij

r
b1

b2
]:

Let us define the vector
�
v1 v2

�
T

as the solution of the
linear system�

1 0

0 �

��
M

T
(c; z1; z2)

�
1 0

0 �

� �
v1
v2

�
=

"p
b1p
b2

#
(37)

where � is equal to e�� arghT (c)�1�n(z2);�n(z1)i . The
vector

q = T (c)�1
�
�
n
(z1) �n(z2)

� �1 0

0 �

� �
v1
v2

�
(38)

corresponds to a trigonometric polynomial p(z) =

jhq; �
n
(z)ij2 which satisfies our interpolation con-

straints and such that hc; pi = hb; yi. The vector
p = T �(qq�) is thus the (primal) optimal one.

4.4 More interpolation constraints (m � n+ 1)

Under Assumption 3, the above analysis can always
be carried out. The key step is to use the spectral
factorization of nonegative polynomials.

Remember that the optimization problem of interest
reads as follows :

min hc; pi
s: t: hp; �

n
(z

i
)i
F

= b
i
i = 1; : : : ;m

p 2 KC
: (39)

If we use an arbitrary spectral factor q(z) of the non-
negative trigonometric polynomial p(z), i.e. p(z) =

jq(z)j2 or p = T �(qq�), the primal optimization prob-
lem can be rewritten as

min hT (c)q; qi
s: t: hq; �

n
(z

i
)i =

p
b
i
e��i i = 1; : : : ;m

: (40)

where f�
i
gm
i=1 is a set of phases.

Define ~b as the component-wise square root of b, the
signatures f�

i
gm
i=1 by �

i
= e��i ;8i and the matrix

M
T

by

M
T
(c; z1; : : : ; zm) = V �T (c)�1V (41)

where V =
�
�
n
(z1) � � � �n(zm)

�
The optimal solution of (40) is then equal to

q = T (c)�1VM
T
(c; z1; : : : ; zm)�1D(~b)�: (42)

The corresponding optimal value is thus a function of
the signature vector � :

hT (c)q; qi = ��D(~b)M
T
(c; z1; : : : ; zq)

�1D(~b)�

(43)
and the optimal solution of problem (40) is given by

min ��D(~b)M
T
(c; z1; : : : ; zm)�1D(~b)�

s: t: j�
i
j = 1; i = 1; : : : ;m

: (44)

In general this class of problems is NP-hard. Ifm > 2,
an explicit solution would be difficult to obtain easily
from this new problem. However, we can now derive
an algorithm based on the following relaxation of
problem (44) :

min hM�1
T

(z1; : : : ; zm); Xi;
s: t: d(X) = b

0 � X = X� 2 C
(m+1)�(m+1)

: (45)

where d(X) is the vector defined by the diagonal
elements of X and e is the all-ones vector.

Theorem 5.If Assumption 3 holds, relaxation (45) is
exact.

Remark 6.The proof shows that it would be sufficient
to assume that W1T (c)W

�
1 � 0 for some W1 in order

to get an exact relaxation. For simplicity reasons, we
leave the exact reformulation of our statement in that
case to the reader.



The optimal coefficients p can be retrieved from the
solution X of (45) via the identity

p = T �(T (c)�1VM
T
(c; z1; : : : ; zm)�1X

M
T
(c; z1; : : : ; zm)

��V �T (c)�1
): (46)

The complexity of solving relaxation (45) is only a
function of the desired accuracy � and the number
of interpolation constraints m. If Assumption 3 holds
and if the original problem has been pre-processed,
it can be solved in a number of iterations that do not
depend on the degree n. Indeed, solving the dual of
(45) using a standardpath-following scheme requires
O(
p
m log 1

�

) Newton steps. At each step computing
the gradient and the Hessian of the barrier function

f(y) = � log det(M�1
T

(z1; : : : ; zm)�D(y)) (47)

requires O(m3) flops. Note that the pre-processing
can be done via fast Toeplitz solvers, see (Kailath and
Sayed, 1999).

If the number of interpolation constraints is strictly
greater than n + 1, strict feasibility of the primal
problem depends on the data. Therefore, a general
procedure which solves efficiently the primal problem
and uses the structure of the interpolation constraints
is not likely to exist. An appropriate preprocessing
could lead to a dual constraint having the following
structure

Ĉ � V̂ D(y2)V̂
� � D(y1): (48)

where y1 2 R
n+1 and y2 2 R

m�n�1 . As the Toeplitz
structure of the dual constraint is lost, the resulting
algorithm cannot use the underlying displacement op-
erator nor a divide-and-conquer strategy to evaluate
the gradient and the Hessian of the self-concordant
barrier function. This strategy will thus be slower than
the one designed in (Genin et al., 2000b).

5. EXTENSIONS

Most of the previous results still holds in the context
of nonnegative matrix polynomials. As before, these
nonnegative polynomials could be defined on the real
line, on the imaginary axis and on the unit circle. We
refer to (Genin et al., 2000b) for the parametrization
of theses cones using the set of positive semidefinite
matrices.

Let N = D(0; 1; : : : ; n) and p(k)(�) be the k-th
derivative of p(�). If all the linear constraints of (12)
are interpolation constraints on the derivatives, i.e.

ha
i
; pi

F

:
= p(ki)(�

i
) = hp; (�N)ki�

n
(z

i
)i
F

= b
i
;

z
i
= e��i ;8i (49)

the dual problem (13) reads now as follows

max hb; yi
s: t: T (c)�

mX
i=1

y
i
T ((�N)ki�

n
(z

i
)) � 0

: (50)

Since T ((�N)m�
n
(z)) has a special structure, we

could use it to get an equivalent optimization problem
with a structure similar to one obtained with standard
interpolation constraints.

More details on both extensions will be provided in a
forthcoming article.
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