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Abstract: In this paper, a nonsingular terminal sliding mode concept is introduced for
the control of a class of nonlinear dynamical systems. This nonsingular terminal sliding
mode control not only enables the £nite time convergence of the system equilibrium, but
also eliminates the singularity problem associated with conventional terminal sliding mode
control. Simulations are presented to show the effectiveness of the design.
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1. INTRODUCTION

Variable structure systems (VSS) are well known for
their robustness in system parameter variations and
external disturbances (Utkin 1992), (Zinober 1993).
VSS have been successfully used in many applica-
tions, such as robots, aircrafts, DC and AC motors,
power system, process control and so on. Of particular
interest in VSS is the so called sliding mode control,
which is designed to drive and then constrain the sys-
tem states to lie in a set of prescribed switching man-
ifolds. When in the sliding, the closed-loop response
becomes totally insensitive to both internal parameter
uncertainties and external disturbances.

Conventional switching manifolds, which represent
the desired dynamic performance of VSS, are usually
linear hyperplanes, which result in asymptotical con-
vergence. For some applications requiring high pre-
cision, these manifolds may not be able to deliver
fast convergence without imposing strong control. To
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overcome this problem, recently, a terminal sliding
mode (TSM) control has been developed (Yu and Man
1996), (Yu and Man 1998), (Man and Yu 1997), (Wu
et al 1998). It offers some superior properties such
as fast £nite time convergence and less steady state
errors. However, the conventional TSM controller de-
sign methods have a common drawback, that is there
exists a singularity problem in the TSM control. Exist-
ing methods to address this problem adopt an indirect
way to avoid the singularity.

In this paper, we presents a nonsingular terminal slid-
ing mode concept and use it for the control design of
a class of nonlinear dynamical systems. We will show
that this new terminal sliding mode does not incur the
singularity problem while maintaining the major ad-
vantages of the conventional TSM control. Simulation
results are presented to show the effectiveness of the
control design.
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2. THE NONSINGLUAR TERMINAL SLIDING
MODE CONCEPT

To illustrate the concept of the nonsingular terminal
sliding mode concept, we consider the second order
dynamical system

ẋ1 = x2

ẋ2 = f(x) + b(x)u (1)

where x = (x1, x2)T is the state, f(x) and b(x) (�= 0)
are smooth nonlinear functions, and u is the scalar
control.

The conventional TSM is described by the following
nonlinear switching line

s = x2 + λ x
q/p
1 (2)

where λ > 0, and p, q are odd positive integers (p >
q). The sliding mode s = 0, i.e.

x2 + λ x
q/p
1 = 0 (3)

can be achieved by an appropriate design of the con-
trol u using, for example, the criterion

sṡ ≤ −K|s| K > 0.

One commonly used control design satisfying this
criterion is

u =−b−1(x)(f(x) + g(x) +
λq

p
x

(q−p)/p
1 x2

+Ksign(s)) (4)

Under this control, it can be easily proved that the state
will reach the sliding mode s = 0 in tr, where

tr =
|s(0)|

K

When the sliding mode s = 0 is reached, the second
order system will enter the prescribed sliding mode

x2 + λ x
q/p
1 = ẋ1 + λ x

q/p
1 = 0 (5)

The time taken from x1 from x1(tr) �= 0 to 0, ts, is
determined by

ts =
p

λ(p − q)
|x1(tr)|(p−q)/p (6)

As seen from (4), the singularity may occur at the
third term containing x

(q−p)/p
1 x2 if x2 �= 0 while

x1 = 0. This situation will not occur in the sliding
mode because s = 0 means x2 = −λx

q/p
1 hence as

long as 2q > p > q, the term x
(q−p)/p
1 x2 will be

equivalent to x
(2q−p)/p
1 which will be nonsingular. The

singularity problem may occur in the reaching phase
when there is little control to enforce x1 �= 0 while
x2 �= 0. Indirect approach can be used to avoid this
(Man and Yu 1997, Wu et al 1998).

In this paper, we propose a very simple dynamics
which is able to avoid this problem completely. The
simple nonsingular terminal sliding mode (NTSM) is
based on the following modified TSM model

s = λx1 + xγ
2 (7)

where γ = p/q > 0 with p, q and λ being defined as
before and we assume 1 < γ < 2. One can easily see
that when s = 0, the NTSM (7) is equivalent to (2) so
the time to reach the equilibrium x1 = 0 in the sliding
mode is the same (6).

The key point of using (7) is that the derivative of s
along the system dynamcis does not result in terms
with negative (fractional) powers.

To design the NTSM control, we use the Lyapunov
function

V (x) =
1
2
s2

which derivative along the dynamics (1) is

V̇ = sṡ

= s(λẋ1 + γxγ−1
2 ẋ2)

= s(λx2 + γxγ−1
2 (f(x) + b(x)u)) (8)

If the control is taken as

u =−b−1(x)(f(x) + λγ−1x2−γ
2

+Ksign(s)) (9)

then we have

sṡ = −K|x2|γ−1|s| < 0

It is easily seen that the control (9) does not contain
any terms with negative (fractional) power due to
1 < γ < 2, meaning there will be no singularity. One
question remains is whether the NTSM s = 0 will
be reached in £nite time. The answer is yes. Indeed,
substituting the control (9) into the second equation of
(1) yields

ẋ2 = −λγ−1x2−γ
2 − Ksign(s) (10)

It can be easily seen that if x2 = 0, then (10) becomes

ẋ2(t) = −Ksign(s)

which suggests that x2 = 0 while x1 �= 0 is not an
attractor. For the cases of s > 0 and s < 0, we can
obtain ẋ2 < −K and ẋ2 > K respectively. It means
there exists a vicinity of x2 = 0, |x2(t)| < δ for a
small δ > 0, so that we have ẋ2 < −K for s > 0 and
ẋ2 > K for s < 0 respectively. Therefore the crossing
of trajectory from one boundary of the vicinity x2 = δ
to the other boundary x2 = −δ for s > 0 and from
x2 = −δ to x2 = δ for s < 0 is £nite time. For
the region outside the |x2(t)| < δ, the time to reach
the boundaries of the vicinity is £nite. Indeed, we can
easily show that

sṡ < −δK|s|,



meaning the £nite time reachability of the boundaries.
Therefore we can conclude that the TSM s = 0 will
be reached from anywhere in the state space in £nite
time.

In practice, the switching function sign will result in
chattering in system response. One practical solution
is to replace the switching function by a saturation
function, such as

sat(z) =
{

sign(z) if |z| > φ
z/φ if |z| ≤ φ

(11)

We can easily prove that if |s| < φ, then |x1| < φ
and furthermore, |ẋ1| < (2φ)1/γ . This gives a guide
of how to choose the width of the saturation function
in order to ensure satisfactory steady state error due to
the introduction of the approximation of the switching
function.

In the following section, we shall discuss the sliding
mode control design of a class of nonlinear dynamical
systems using the proposed NTSM.

3. NTSM CONTROL OF A CLASS OF
NONLINEAR DYNAMICAL SYSTEMS

Consider the nonlinear dynamical system

ẋ1 = f1(x1,x2) (12)

ẋ2 = f2(x1,x2) + g(x1,x2) + B(x1,x2)u (13)

where x1 = (x11, x12, . . . , x1n)T ∈ Rn, x2 =
(x21, x22, . . . , x2n)T ∈ Rn, f1 and f2 are smooth
vector functions and g represents the uncertainties and
disturbances satisfying ‖g(x1,x2)‖ < lg where lg >
0, B is a nonsingular matrix and u ∈ Rn is the control
vector. We further assume that (x1,x2) = (0,0) if
and only if (x1, ẋ1) = (0,0). Also

∂f1
∂x2

B(x1,x2)

is assumed to be nonsingular. Note that many practical
dynamical systems satisfy this condition, for example,
the mechnical systems. Robotic systems are certainly
a special case of (12) and (13).

We now construct the following NTSM for the design:

s = Λx1 + ẋΓ
1 (14)

where Λ = diag(λ1, . . . , λn), (λi > 0), Γ =
diag(γ1, . . . , γn) (1 < γi < 2) for i = 1, . . . , n, and
xΓ

1 is represented as

xΓ
1 = (xγ1

11, . . . , x
γn

1n)T

We also adopt the notion that

d(xΓ
1 )

dt
= Γdiag(xγ1−1

11 , . . . , xγn−1
1n )ẋ1 (15)

which can be easily verified.

We now design the NTSM control for the system (12)
and (13). Consider the Lyapunov function

V =
1
2
sT s (16)

The time derivative of (16) along the dynamics (12)
and (13) is

V̇ = sT ṡ = sT (Λẋ1 +
d(ẋ1)

dt
)

= sT (Λẋ1 + Γdiag(ẋγ1−1
11 , . . . , ẋγn−1

1n )ẍ1)

(17)

Since

ẍ1 =
∂f1
∂x1

ẋ1 +
∂f1
∂x2

ẋ2

=
∂f1
∂x1

ẋ1 +
∂f1
∂x2

(f2 + g + Bu) (18)

Then (17) becomes

V̇ = sT (Λẋ1 + Γdiag(ẋγ1−1
11 , . . . , ẋγn−1

1n ) ×
(
∂f1
∂x1

ẋ1 +
∂f1
∂x2

(f2 + g + Bu)) (19)

If the control u is chosen as

u =−
(

∂f1
∂x2

B(x1,x2)
)−1 (

K
s
‖s‖+

∂f1
∂x2

f2(x1,x2) +
∂f1
∂x1

f1(x1,x2) +
∂f1
∂x2

g(x1,x2)

Γ−1Λẋ(2I−Γ)
1

)
(20)

then (17) becomes

V̇ = −K
n∑

i=1

|ẋi1|γi−1 s2
i

‖s‖ < 0

which can be shown to indicate the £nite time conver-
gence of s = 0 using similar arguments in Section 2.

One can easily see that the NTSM control (20) does
not involve any terms which has negative powers.
When in the sliding mode s = 0, we have

λix1i + ẋγi

1i = 0

which is equivalent to

ẋ1i + λ
1/γi

i x
1/γi

1i = 0

which £nite time convergence is well understood (see
Section 2 and references (Yu and Man 1996, Yu and
Man 1998, Wu et al 1998)). Hence we can claim the
the NTSM control can deliver £nite time convergence
without any singularity.

In the following, we shall use a simulation to demon-
strate the effectiveness of the controller proposed.



4. SIMULATIONS

Consider the nonlinear dynamical system as

ẋ1 = x2
1 + x2

ẋ2 = x1 cos(x2) + u (21)

The switching manifold is chosen as

s = x1 + ẋ
5/3
1 (22)

Apparently (22) is equivalent to x
3/5
1 + ẋ1 = 0 if

s = 0. According to Section 3, if we design the
controller as

u = −x1 cos(x2)−2x1(x2
1+x2)− 3

5
ẋ

1/3
1 − 3

5
sign(s)

then
sṡ = −|x2/3

2 ||s|
which, as demonstrated in Sections 2 and 3, will result
in £nite time convergence toward s = 0. Therefore,
following the NTSM in s = 0, the system state will
converge to zero in £nite time.

Several simulations were done to demonstrate the ef-
fectiveness of the control design. The initial condition
is x(0) = (1, 1)T . We £rst use the pure switching
function in the controller. Figure 1 shows the phase
plane response of x1–x2. Figure 2 depicts the re-
sponses of the states x1, x2, ẋ1, the switching function
s and the control signal. One can easily see that no sin-
gularity occurs. We also replaced the pure switching
function by a saturation function with width φ = 0.1.
Figure 3 shows the phase plane response of x1–x2.
Figure 4 depicts the responses of the states x1, x2, ẋ1,
the switching function s and the control signal. One
can easily see that no singularity occurs and also no
discontinuous switching occurs.

5. CONCLUSION

In this paper, a nonsingular terminal sliding mode
control has been proposed for a class of nonlinear
dynamical systems. This control nonsingular terminal
sliding mode control not only enables the £nite time
convergence of the system equilibrium, but also elimi-
nates the singularity problem associated with conven-
tional terminal sliding mode control. Simulations have
shown the effectiveness of the design. Further work
will be pursued in the connections of this class of
terminal sliding mode to other £nite time mechanism
such as 2–sliding modes.
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