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Abstract: A model-set identification algorithm is proposed in a probabilistic frame-
work based on the leave-one-out technique. It provides a nominal model and a
bound of its uncertainty for a provided plant assuming that the effect of the past
inputs decays with a known bound. Since it does not require further assumptions on
the true plant dynamics or on the noise, a risk to make inappropriate assumptions
is small. The number of assumptions is shown to be minimum in the sense that
identification is impossible after removing the assumption made here. An algorithm
similar to the proposed one is constructed based on a mixing property. A simple
plant is identified by means of the proposed algorithm for illustration.
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1. INTRODUCTION

In order to use the robust control scheme, we
need not only a nominal model of the plant to
be controlled but also an upper bound of its un-
certainty. Model-set identification (or worst-case
identification, set-membership identification) is an
identification method to obtain these two and has
actively been investigated in the last decade by
many authors including Zhu (1989), Helmicki et
al. (1991), Milanese and Vicino (1991), Goodwin
et al. (1992), Tse et al. (1993), De Vries and Van
den Hof (1995), and Zhou and Kimura (1995).

In model-set identification, one makes prior as-
sumptions on the true plant dynamics and on
the noise; considers all the models that satisfy
these assumptions and are consistent with the ob-
served input-output data; gives a nominal model
and a bound of its uncertainty so as to cover the
worst case. In the existing algorithms for model-
set identification, it is assumed for example that
the true plant dynamics can be described by an
ARX model of some order, that the noise has a
known hard bound, or that the noise is subject
to a Gaussian distribution. However, it does not
seem to be often the case that the plant dynamics

and the noise actually satisfy these strong assump-
tions. Indeed, many actual plants are infinite-
dimensional and have nonlinearity; The noise usu-
ally contains a modeling error and is not Gaussian.
Even if satisfaction of these assumptions is pos-
sible in principle, it is difficult to make appropri-
ate assumptions using an appropriate bound or an
appropriate distribution because neither the true
plant dynamics nor the noise is directly observ-
able. This problem is serious in model-set iden-
tification, which is for capturing the worst case.
Suppose that the adopted assumptions are inap-
propriate and are not satisfied by the actual plant.
Then we may miss a possible worst case that does
not satisfy those assumptions.

In order to partially resolve this problem, we for-
mulate model-set identification in a probabilistic
framework and apply a technique called the leave-
one-out estimation. The leave-one-out technique
was used by Vapnik (1998) to prove statistical
properties of a support vector machine. It enables
us to make a worst-case estimation with little in-
formation on the underlying probability structure.
In our approach, this technique is used so that one
can perform model-set identification with only one
assumption, which is on the decay rate of the past
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memory in the output. Consequently, a risk to
make inappropriate assumptions is suppressed. It
is possible to prove that identification is impossi-
ble after removing this remaining assumption. In
this sense, the number of assumptions is reduced
to the minimum. We also consider in this paper
generalization of this approach in several direc-
tions.

There are other techniques to perform worst-case
estimation with little information on the object es-
pecially in the field of learning theory. They have
been applied to model-set identification by Oishi
and Kimura (2001) and to conventional identifi-
cation by Bartlett and Kulkarni (1998), Campi
and Kumar (1998), Weyer et al. (1999), Weyer
and Campi (1999, 2000), and Weyer (2000). See
also Khargonekar and Tikku (1996), Tempo et al.
(1997), and Vidyasagar (2001) for their applica-
tion to analysis and synthesis of control systems.
However, it has been often the case that the es-
timation given by learning theory is conservative
and one has to collect millions of data to obtain
meaningful information. In this regard, our ap-
proach seems to be advantageous because it gives
a result from a reasonable number of data as is
seen in Section 4.

2. IDENTIFICATION WITH A SMALL
NUMBER OF ASSUMPTIONS

2.1. Identification algorithm

In this paper, a plant to be identified is a single-
input-single-output discrete-time time-invariant
causal system with an input uk and an output
yk, where k is an integer. It is supposed that the
input-output relation of the plant is described by
an unknown but fixed conditional probability dis-
tribution Pyk|uk−1,uk−2,..., which is invariant with
k. This means that the output yk is affected by
a stochastic noise and its probability distribution
varies depending on what inputs uk−1, uk−2, . . .
are provided. Note that the plant is allowed to
have quite a large class of dynamics including non-
linear one. We let the inputs {uk} be a sequence of
random numbers, which distribute independently
and identically in [−1, 1]. Here we make an as-
sumption crucial for our purpose. Assume that
the output yk can be approximated by an auxil-
iary signal yk with |yk−yk| ≤ φ for any k and that
yk is statistically independent of yk′ and uk′ when-
ever |k − k′| ≥ K. The value of yk does not need
to be known though those of φ and K should be
known. Let us call this property approximate K-
independence henceforth. The assumption of this
property, which was used by Weyer et al. (1999),
is acceptable because the effect of the past inputs
decay exponentially fast in many practical plants
and the amount of this effect may be estimated

by preliminary experiments. Since the output yk

is directly observable, an assumption on yk is con-
sidered to be easier to make than those on the true
plant dynamics or the noise.

We approximate the plant output yk us-
ing the one-step-ahead predictor xT

k h associ-
ated with the d-th order FIR model, where
xk = [uk−1 . . . uk−d]T and h =
[h1 . . . hd]T. Suppose that the input-output
data u1, u2, . . . , uN ; y1, y2, . . . , yN are provided.
From them we extract n :=

⌊
N/K

⌋
pairs

{(y(j), x(j))}n
j=1, where y(j) := yjK and x(j) :=

xjK = [ujK−1 . . . ujK−d]T. Now obtain the
pair (h, a) that minimizes a under the conditions
|y(j) − xT

(j)h| ≤ a, j = 1, . . . , n, and write it
as (h∗, a∗). Moreover, find h that maximizes
|hi − h∗

i | for each i = 1, . . . , d under the condi-
tions |y(j) − xT

(j)h| ≤ a∗ + 2φ, j = 1, . . . , n, and
write the maximum value as ei. The above op-
timization can be carried out by means of linear
programming. Now sample a new input-output
pair (yk0 , xk0) at k0 ≥ N + K. We then have the
next theorem.

Theorem 1. There holds |yk0 − xT
k0

h∗| ≤ a∗ +
2φ+

∑d
i=1 ei with probability greater than or equal

to 1 − (d + 1)/(n + 1). Here the probability is
measured with respect to the input-output data
{(yk, xk)}N

k=1 and the newly sampled input-output
pair (yk0 , xk0).

Consider an identification algorithm that gives
yk = xT

k h∗ as a nominal model and a∗ + 2φ +∑d
i=1 ei as its uncertainty bound. Theorem 1 gives

a probabilistic guarantee to this algorithm. This
guarantee is not asymptotic, that is, it is mean-
ingful with a finite n. Note also that this algo-
rithm captures the worst case since Theorem 1
holds irrespective of the probabilistic properties
of the plant and the noise. One may notice that
only a small part of input-output data is used in
the proposed algorithm. This is because we sup-
pose that two outputs closer in time than K may
be dependent on each other to any level; we can
expect fresh information to be obtained only at
every K time instances.

2.2. Proof of Theorem 1

Lemma 1. Let (h∗, a∗) minimize a subject to
|y(j) − xT

(j)h| ≤ a, j = 1, . . . , n, and let (h
∗
, a∗)

minimize a subject to |y(j) − xT
(j)h| ≤ a, j =

1, . . . , n. Then there hold |a∗ − a∗| ≤ φ and
|h∗

i − h
∗
i | ≤ ei for each of i = 1, . . . , d.

Proof. Note that a∗ is equal to infh maxj=1,... ,n

|y(j) − xT
(j)h| and the infimum is attained at



h = h∗. The corresponding relation holds on
a∗ and h

∗
, too. Since the discrepancy between

maxj |y(j) − xT
(j)h| and maxj |y(j) − xT

(j)h| is less
than or equal to φ for any h, the inequality
|a∗ − a∗| ≤ φ has to hold. It is also seen that
maxj |y(j) − xT

(j)h
∗| − φ ≤ maxj |y(j) − xT

(j)h
∗| =

a∗, which is combined with a∗ ≤ a∗+φ and implies
maxj |y(j) − xT

(j)h
∗| ≤ a∗ + 2φ. By the definition

of ei, there has to hold |h∗
i − h

∗
i | ≤ ei. �

To the newly sampled input-output pair
(yk0 , xk0), we can associate yk0

, which approxi-
mates yk0 . Write (yk0

, xk0) as (y(n+1), x(n+1)) to
see that {(y(j), x(j))}n+1

j=1 is a set of n+ 1 indepen-
dently identically distributed input-output pairs.
Now one can show the next lemma, which is based
on the technique of leave-one-out estimation used
by Vapnik (1998).

Lemma 2. When a∗ is chosen as is stated above,
the probability to have |y(n+1) −xT

(n+1)h
∗| > a∗ is

less than or equal to (d + 1)/(n + 1).

Proof. Let us find (h, a) that minimizes a under
the condition |y(j)−xT

(j)h| ≤ a for j = 1, . . . , n+1
instead of j = 1, . . . , n. We consider the proba-
bility with which the minimum value of a changes
when arbitrary one of the n + 1 conditions is re-
moved. If this probability is shown to be less than
or equal to (d+1)/(n+1), the claim of the lemma
is ensured.

The inequalities |y(j) −xT
(j)h| ≤ a, j = 1, . . . , n +

1, are decomposed into [xT
(j) 1]

[
h
a

]
≥ y(j) and

[−xT
(j) 1]

[
h
a

]
≥ −y(j). Among these 2(n + 1)

inequalities, we notice those satisfied with the
equality at the minimizing point (h

∗
, a∗). By the

Karush-Kuhn-Tucker necessary condition for opti-
mality, the vector [0 . . . 0 1] can be described as a
linear combination with positive coefficients of the
vectors [xT

(j) 1] and [−xT
(j) 1] corresponding to the

inequalities noticed above. Since the description
may not be unique, we notice the vectors included
in common by all of such descriptions. The num-
ber of such vectors should be less than or equal to
d + 1.

The minimum value of a changes only when the
inequality to be removed corresponds to one of
those vectors. Hence its probability is no greater
than (d + 1)/(n + 1). �

Now the theorem is proven. Assume that |yk0
−

xT
k0

h
∗| ≤ a∗, which holds with probability greater

than or equal to 1 − (d + 1)/(n + 1) by Lemma 2.

Then we have

|yk0 − xT
k0

h∗|
≤|yk0 − yk0

| + |yk0
− xT

k0
h
∗| + |xT

k0
(h

∗ − h∗)|

≤φ + a∗ +
d∑

i=1

ei ≤ a∗ + 2φ +
d∑

i=1

ei.

3. DISCUSSION

The proposed identification algorithm is investi-
gated in several aspects.

3.1. Minimality of the number of assumptions

The proposed identification algorithm relies on the
assumption of approximate K-independence. It is
shown here that identification is impossible after
removing this assumption. In this sense, the num-
ber of assumptions is set minimum possible in the
proposed identification algorithm.

The plant and the inputs are considered as before
except that approximate K-independence is not
assumed. This means that the class of considered
plants is taken larger than before. Supposing that
the input-output data {(yk, xk)}N

k=1 are provided,
we consider two functions of them, ĥ and â. Each
pair of these functions can be regarded as an iden-
tification algorithm; The desired algorithm is the
one that guarantees |yk0 − xT

k0
ĥ| ≤ â with high

probability for a newly sampled input-output pair
(yk0 , xk0). However, it is not possible to guarantee
this for all the considered plants.

Theorem 2. For any algorithm (ĥ, â) and any
time instant k0 > N , there exists a plant that es-
tablishes∣∣∣yk0 − xT

k0
ĥ

({(yk, xk)}N
k=1

)∣∣∣ ≥ â
({(yk, xk)}N

k=1

)
+ 1

with probability one.

To prove this theorem, just consider the plant hav-
ing the deterministic dynamics

yk = xT
k ĥ

({(y�, x�)}N+k−k0
�=1+k−k0

)
+ â

({(y�, x�)}N+k−k0
�=1+k−k0

)
+ 1,

which is nonlinear but time-invariant. The in-
equality in the theorem obviously holds for this
plant.

3.2. Relaxation of the assumption

Theorem 2 states that the assumption of approx-
imate K-independence cannot be removed. How-
ever, it does not mean that this assumption cannot
be relaxed or replaced by some other one.



Let us relax this assumption by supposing that the
inequality |yk −yk| ≤ φ holds only in a probabilis-
tic sense, that is, it holds with probability greater
than or equal to 1 − p. This relaxation is practi-
cally reasonable because it is sometimes difficult to
guarantee |yk − yk| ≤ φ with 100% confidence. In
order that the statement of Theorem 1 continues
valid with this relaxed assumption, it suffices that
there hold the n + 1 inequalities, |y(j) − y(j)| ≤ φ,
j = 1, . . . , n, and |yk0 − yk0

| ≤ φ. The probability
with which at least one of these n + 1 inequalities
fails to hold is (n + 1)p at most. Hence the next
theorem can be derived from Theorem 1.

Theorem 3. There holds |yk0 − xT
k0

h∗| ≤ a∗ +
2φ+

∑d
i=1 ei with probability greater than or equal

to 1 − (d + 1)/(n + 1) − (n + 1)p.

A major difference from Theorem 1 is that the
confidence achieves the maximum when n is equal
to �√(d + 1)/p� or �√(d + 1)/p� − 1. When n is
larger than this value, increase of the input-output
data does not imply increase of the confidence.

3.3. Analysis of a given model

Suppose that a linear model yk = xT
k h0 has al-

ready been obtained for a plant at hand and we
want to analyze the quality of this model. The
leave-one-out technique used in Section 2 is appli-
cable to this problem, too. In fact, one can obtain
a better result for the present problem than for the
previous identification problem since the existence
of the model makes the problem easier.

With the notation of Section 2, compute
maxj=1,... ,n |y(j)−xT

(j)h
0| and regard it as a qual-

ity index of the model yk = xT
k h0. Let (yk0 , xk0)

be a newly sampled input-output pair at k0 ≥
N + K. Then the next property holds.

Theorem 4. There holds the inequality

|yk0 − xT
k0

h0| ≤ max
j=1,... ,n

|y(j) − xT
(j)h

0| + 2φ

with probability greater than or equal to 1−1/(n+
1). Here the probability is measured with respect to
the input-output data {(yk, xk)}N

k=1 and the newly
sampled pair (yk0 , xk0).

Proof. Computing maxj=1,... ,n |y(j) − xT
(j)h

0| is
equivalent to finding the minimum a under the
conditions |y(j) − xT

(j)h
0| ≤ a, j = 1, . . . , n. The

difference between this minimization problem and
the one considered in Section 2 is that the mini-
mization variable is a here but (h, a) there. Hence
the leave-one-out technique can be used here but
the variable dimension is set to unity in place of
d + 1. This proves the above theorem. �

Comparing this theorem to Theorem 1, one can
see that the result obtained here is better than
the previous one. Namely, the upper bound of
|yk0 − xT

k0
h0| does not include the term

∑d
i=1 ei;

The result holds with more confidence 1−1/(n+1);
The computational load to obtain ei is eliminated.
Hence the application here is considered to be
more useful than the previous one in many cases.
Note also that the relaxation of Section 3.2 is pos-
sible in this application, too.

3.4. Assumption of a mixing property

We assumed approximate K-independence in or-
der to apply the leave-one-out technique to a
dependent stochastic process. In the litera-
ture, a mixing property is often assumed for the
same purpose. See Campi and Kumar (1998),
Weyer and Campi (1999), and Weyer (2000) for
its use in system identification; See Karandikar
and Vidyasagar (2001) and Vidyasagar and
Karandikar (2001) for its application in learning
theory. In this subsection, we derive a result sim-
ilar to the one in Section 2 by assuming a mixing
property instead of approximate K-independence.

Let Q be the probability measure on the stochas-
tic process {(yk, xk)}∞k=−∞ and Q0

−∞ and Q∞
1

be its semi-infinite marginals. With σK being
the σ-algebra generated by the random variables
(yk, xk), k ≤ 0 or k ≥ K, define the function

β(K) := sup
A∈σK

∣∣Q(A) − (Q0
−∞ × Q∞

1 )(A)
∣∣.

If β(K) converges to zero as K → ∞, the
process {(yk, xk)}∞k=−∞ is said to be β-mixing
or absolutely regular (Nobel and Dembo, 1993;
Karandikar and Vidyasagar, 2001; Vidyasagar and
Karandikar, 2001). Let us assume the β-mixing
property instead of approximate K-independence.
The rest of the setup and the identification proce-
dure are the same as in Section 2. Here we have
the following.

Theorem 5. There holds |yk0 −xT
k0

h∗| ≤ a∗ with
probability greater than or equal to 1−(d+1)/(n+
1) − (n + 1)β(K).

Proof. Due to Lemma 2 of Nobel and Dembo
(1993) (also see Karandikar and Vidyasagar
(2001) and Vidyasagar and Karandikar (2001)),
there holds the inequality∣∣∣Q(|yk0 − xT

k0
h∗| ≤ a∗) −

(Q0)n+1
(|yk0 − xT

k0
h∗| ≤ a∗)∣∣∣ ≤ (n + 1)β(K),

where Q0 is the marginal distribution of one input-
output pair (yk, xk) and (Q0)n+1 is its (n+1)-fold
product. With the measure (Q0)n+1, the input-
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Figure 1. Identified system

output pairs {(y(j), x(j))}n
j=1 and (yk0 , xk0) are

statistically independent. Hence one can use the
technique of Lemma 2 and obtains

(Q0)n+1
(|yk0 − xT

k0
h∗| ≤ a∗) ≥ 1 − (d + 1)/(n + 1).

This ensures the theorem. �

The present result is advantageous to the one in
Section 2 because the bound of modeling error
does not include the terms 2φ +

∑d
i=1 ei. The

confidence seems to have a term proportional to n
just like the result in Section 3.2. However, since
β(K) → 0 as K → ∞, one can make the confi-
dence arbitrarily close to unity as the number of
input-output data, N , grows. A disadvantage of
the present approach is that the definition of β(K)
is abstract and it is not obvious how one can esti-
mate its value for a provided actual plant. This is
the reason why we mainly propose the approach
of Section 2.

4. EXAMPLE

The proposed identification algorithm is applied
to a simple example plant.

Consider a pendulum shown in Figure 1, whose
dynamics is described by ML2θ̈ = −MgL sin θ −
cθ̇ + u. Here, the mass is taken as M = 1 kg, the
length of the arm as L = 1 m, the coefficient of the
friction as c = 2 Nms/rad, and the acceleration of
the gravity as g = 9.8 m/s2. The torque u(t)[Nm]
is provided as u(t) = uk for k ≤ t < k + 1, where
the input sequence {uk} is a sequence of indepen-
dent random numbers that distribute uniformly
in [−1, 1]. The output is the angle θ(t)[rad] sam-
pled at a discrete time t = k and is denoted by
yk. Based on a preliminary experiment we as-
sume approximate K-independence with K = 6
and φ = 0.001. In fact, one can theoretically con-
firm that the true plant dynamics satisfies this as-
sumption.

We use the one-step-ahead predictor

xT
k h := [uk−1 uk−2 uk−3][h1 h2 h3]T

associated with the third-order FIR model in order
to approximate yk. The number of input-output
data, N , is chosen as 2400, which implies n = 400.
The computational time to solve the associated
linear programming problems is 1.17 s with Pen-
tium II 450 MHz and 128 MByte memory. As a
result, we have h∗ = [0.137 − 0.0462 0.0145]T,
a∗ = 0.00556, e1 = 0.00349, e2 = 0.00375, and
e3 = 0.00387. By Theorem 1, the inequality
|yk0 − xT

k0
h∗| ≤ 0.0187 holds with probability

greater than 99.0%.

5. CONCLUSION

In this paper, we saw how one can identify a pro-
vided plant in the worst-case sense using the leave-
one-out technique. The proposed identification
algorithm gives a nominal model and its uncer-
tainty bound with a non-asymptotic probabilistic
guarantee. The number of assumptions is kept
small in order to reduce a risk to make too op-
timistic assumptions. Generalization of the algo-
rithm is possible in several directions. The exam-
ple in Section 4 suggests that the proposed algo-
rithm gives a meaningful result with a reasonable
number of input-output data. This is important
because many existing learning-theoretic identifi-
cation algorithms often require a large number of
data beyond the practical level.
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