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Abstract: A gain-scheduled trajectory control is exemplary presented for two
of six available axes of an overhead crane that allows for positioning and
inclining the crane load according to specified trajectories. Besides its
tracking capabilities, the proposed control provides an active oscillation
damping. The overall control structure consists of independent axis control-
lers, which are adapted to measurements of varying system parameters.
These axis controllers take advantage of combined feedforward and feed-
back control as well as observer based disturbance rejection. The achieved
control performance is shown by selected experimental results from an
implementation on a 5 t - bridge crane. Copyright @ 2002 IFAC
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1. INTRODUCTION

Until now, most papers concerning crane control
have focussed on position control of the crane load in
the three dimensional workspace ignoring the addi-
tionally three degrees of freedom as regards load
orientation (Boustany and d`Andréa-Novel, 1992;
Bryfors and Sluteij, 1996; Delaleau and Rudolph,
1998; Nguyen 1994). At the University of Ulm, a
trajectory control concept for an overhead crane has
been developed that focuses on the load motion and
allows for trajectory control as well as active oscilla-
tion damping concerning all six load degrees of free-
dom. For this purpose, the crane has been upgraded
with an orientation unit that is equipped with three
additional axes, each actuated by an torque controlled
DC-motor. By this, the capabilities of an automated
overhead crane are extended considerably and,
moreover, it can be considered as a robot manipulator
that combines the capability of handling heavy loads

with a large workspace. The overhead crane consists
of six actuated axes (fig. 1). The x-, y- and z-axes
allow for positioning of the crane load in the three
dimensional workspace. The crane load can be
hoisted or lowered in z-direction by means of the
rope suspension. The x-axis represents the direction
of the bridge motion, whereas the direction of the
trolley motion on the bridge is referred to as y-axis.

orientation unit and
suspended crane load

trolley

rope
suspension

crane bridge
left rail right rail

Fig. 1. Crane structure
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The orientation unit with additionally three axes for
orientating the crane load is equipped with two addi-
tional translational axes (a- and b-axis) and one rota-
tional axis (c-axis) for the orientation around the z-
axis, i.e. the rope suspension. In the sequel, both the
y-axis and the according axis of the orientation unit,
the b-axis, are regarded exemplary. This involves the
derivation of an appropriate mathematical model,
feedforward and feedback controller design as well
as the design of disturbance observers to compensate
for non-linear friction forces acting on the drives.
The implementation of the proposed control at a 5 t -
bridge crane is described in detail and measurement
results taken from experiments at the bridge crane
emphasise the efficiency of this control approach.

2. MULTIBODY MODEL OF THE CRANE

First, a central mathematical model for both crane
axes under consideration shall be established. This
common model is then used to derive a decentralised
design model for each of these axes, i.e. the y-axis
and the b-axis.
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Fig. 2: Multibody model of the crane system

The motion of the mechanical system in y-direction
is described by a multibody system consisting of
three rigid bodies (fig. 2): the trolley (mass mT, drive
mass moment of inertia JMT, resulting gear transmis-
sion ratio kGT), the carriage of the orientation unit
(mass mC can be neglected, drive mass moment of
inertia JMC, resulting gear transmission ratio kGC) and
the crane load (mass mL, mass moment of inertia JLx).
The load center of gravity CL shows an offset sL in z-
direction. The rope suspension is modelled as a
massless rigid link with length lR0. The kinematics of
the mechanical system in y-direction can be descri-
bed by four generalised coordinates: the position of
the trolley yT (t), the rope angle ϕR (t), the displace-
ment of the carriage bC (t), and the orientation angle
of the load ϕL (t). The controlled variables are the
position yL (t) of the load center of gravity and the
orientation angle of the load ϕL (t). By applying
Lagrange’s equations, non-linear equations of motion
are computed in symbolic form. Under the
assumption of both small rope angles and small load

angles, the following linearised equations can be
stated
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with the mass matrix (2)
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the damping matrix
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according to the control input ][ MCMT FF=u T as
well as the disturbance input ][ FCFT FF=e T,
respectively. The symbolic mathematical model
contains two system parameters with dominant
variations during operation: the rope length lR0 and
the load mass mL, which are combined in the vector
of varying system parameters p = [lR0  mL]T. To take
these model variations into account, the gain sche-
duling technique is utilised. As the varying system
parameters are available by direct measurements, the
complete control structure can be adapted. With the
usual choice of the state vector

T][ qqx �= , (6)
the state space representation becomes
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or in abbreviated notation (7)
eBuBxAx eu ++=� .

At this, the system matrix A, the input matrices Bu
and Be of the control input u and the disturbances e
are introduced, respectively.

3. DECENTRALISED DESIGN MODELS

The mechanical models that are used for the decen-
tralised feedback control design of the y-axis and the
b-axis are directly derived from the central design
model by applying model reduction techniques. For
each axis q = y, b the vector of generalised coordi-
nates q is expressed as a linear combination of gene-



ralised coordinates qq and given reference motions gq
according to

qqq gqJq += , (8)

where qq denotes the vector of generalised coordi-
nates for the design model of reduced order. The
corresponding time derivatives result in

qqq gqJq ��� += , qqq gqJq ������ += . (9)
By inserting these expressions into the equations of
motions, the reduced order equations of motion for
the q-axis are obtained

qequqqqqqq ffqKqDqM +=++ ��� . (10)
The new system matrices are given by

q
T
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The new control input is u
T
qqu fJf = , whereas the

new disturbance vector
[ ]qqqe

T
qqe gKgDgMfJf −−−= ��� (12)

consist of non-linear friction forces as well as cou-
pling forces due to gq and its first two time deriva-
tives.

4. DECENTRALISED FEEDBACK CONTROL

The decentralised design model for the b-axis can be
stated as

bbebbubbbbbb u eFfqKqDqM +=++ ��� . (13)
The new system matrices are given by
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The motor force of the carriage drive represents the
control input ub = FMC, whereas the vector of distur-
bances ][ SFCb yF ��=e T consists of both the non-
linear friction force FFC acting on the carriage drive
and the coupling acceleration of the rope suspension

R0RTS lyy ϕ������ += . The equations of motion are
transformed into state space representation

,u bbebbubbb eBbxAx ++=� (15)
according to the state vector ][ bbb qqx �= T. For
control design the LQR approach based on the time
weighted performance index
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is employed, with the diagonal weighting matrix Qb ≥≥≥≥
0 and the scalar weighting factor rb > 0. Using this
time weighted criterion, the maximum real part s = -
α of the resulting closed-loop poles can be specified.
The corresponding linear feedback control law
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vector
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is calculated with the solution P(mL,i ) of the alge-
braic Riccati-equation (ARE) (18)
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Here, the matrix Abα = Ab + α I has to be utilised
according to the chosen performance index. The
solution of ARE P(mL,i ) and, hence, the gain matrix

T
FB,bk  are continuous if both the system matrices Ab

and bbu depend continuously on the load mass mL and
constant weightings are used, i.e. Qb = const. and rb
= const. In order to allow for gain scheduling, the
control design is performed for a specified number of
operating points i representing the range of possible
system parameter variation. Then, an approximated
description is derived for this set of controller gains
using look-up tables in combination with linear
interpolation between the operating points. In fig. 3,
the controller gain kFB,1(mL ) for the first state
variable bC is depicted exemplary.
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Fig. 3. Feedback control gain kFB,1(mL ) in depen-
dence on the load mass mL

To avoid hidden weightings, the elements of the
diagonal matrix Qb and rb are divided by the squared
maximum values of the according variables, respec-
tively. The resulting closed-loop poles due to this
gain-scheduled LQR design are variable in contrast
to a gain scheduling based on a fixed pole configura-
tion (Aschemann, et al., 2000a). The control design
for the y-axis is performed analogously and leads to
the feedback control law y

T
FB,yFB,y )(u xpk−= , in

which the vector ][ LTLTy yyyy ��=x T denotes

the state vector and RL0RTL )sl(yy ϕ++=  repre-
sents the load position that is used for feedback.

5. CENTRAL FEEDFORWARD CONTROL

The central feedforward control action consists of
both a linear part and a non-linear part. The linear
feedforward control part provides the reference
forces according to the linear system model and is
calculated with the reference trajectory. Aim of the
feedforward control design is an perfect tracking of
specified trajectories for the controlled variables: the



load position in y-direction yL as well as the load
orientation ϕL. Both controlled variables are com-
bined in the output vector (19)
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where the matrix C describes the linear dependence
on the state vector x. For the central feedforward
control part the following form has been chosen,
where the index d denotes the decentralised parts on
the diagonal and the index c stands for the central
off-diagonal parts
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It represents a linear combination of all reference
values and its first four time derivatives, which are
combined in the reference vectors (21)
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Alternatively, this feedforward control law can be
expressed in the frequency domain using a transfer
function matrix
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By rewriting both decentralised feedback control
laws in dependence on the state vector x
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the command transfer function matrix becomes (24)
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The feedforward gain vectors )(T
ij

T
ij pkk = , which

depend on the varying system parameters p, can be
calculated in symbolic form by applying the final
value theorem of the Laplace transform to the ele-
ments of G(s). Up to the fourth time derivative of the
reference trajectory, ideal tracking behaviour is
aimed at for the diagonal elements, whereas ideal
decoupling is aimed at for the off-diagonal elements
(Aschemann, et al., 2000b).

Fig. 4. Identified friction characteristic and non-
linear friction model of the b-axis

The non-linear feedforward control part is dedicated
to provide an open-loop compensation for the non-
linear friction forces. The identified non-linear fric-
tion characteristic and an approximating friction
model are shown in fig. 4 for the b-axis, exemplary.

The non-linear feedforward control part for the b-axis
is given by the non-linear friction model =NF,bu

)b(FF ref,CFCFC
�=  evaluated with the reference ve-

locity of the b-axis. This reference velocity can be
derived in symbolic form from the linear feedforward
control part. It results in a linear combination of the
reference vectors wy and wϕ . (25)
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The non-linear friction model )y(FF ref,TFTFT �=  of
the y-axis is evaluated with the reference trolley
velocity ref,Ty� .

6. DISTURBANCE OBSERVER DESIGN

As the friction characteristics depend on lots of fac-
tors and may change during operation time, the non-
linear feedforward control part cannot achieve a
perfect disturbance rejection. Therefore, additional
measures are necessary to cope with changeable
friction characteristics. For this purpose, a reduced
order disturbance observer is employed for each axis.
In the following, the design approach is presented at
the example of the b-axis. As disturbance model for
the friction force FFC an integrator model has proved
advantageous, i.e. 0FFC =�  (Aschemann, et al., 2000
a, b). Since all state variables are forthcoming, the
measurement vector of the observer is identical to the
state vector bbB xy = . The input vector of the ob-
server ][ Slin,bObB yu ��=u T consists of the control
input DC,bLF,bFB,blin,bO uuuu ++=  except the non-
linear feedforward part and the acceleration of the
load suspension Sy�� . The state space representation
of the reduced observer is given by (26)
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concerning measurement vector ybB and observer
input ubB are introduced, respectively. The observer
dynamics can be specified by pole placement. By
proposing a closed-loop characteristic polynomial

0s 0 =+α , the observer gain h3 results in
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h 2
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. (30)

The estimated friction force FCF̂  can be directly
applied to the carriage drive, i.e. kb,DC = 1. Hence, the
observer based disturbance compensation results in

FCFCDC,bDC,b F̂F̂ku == . (31)

7. CONTROLLER IMPLEMENTATION

The trajectory control scheme is shown in fig. 5 for
the b-axis, exemplary. The complete control law for
the b-axis

DC,bFB,bNF,bLF,bb uuuuu +++= (32)
represents the sum of linear feedforward ub,LF, non-
linear feedforward ub,NF, linear state feedback ub,FB,
and observer based disturbance compensation ub,DC.
The corresponding motor torque ubM is obtained by
premultiplying with the inverse gain transmission
ratio, i.e. b

1
GCbM uku −= . Note that all subsystems are

adapted to the measured parameter vector p. The
carriage position bC is measured by an encoder. The
load angle ϕL is obtained as the sum of the small
angular rope deflection at the trolley and the relative
angular deflection between rope and orientation unit,
which both are measured by incremental encoders.
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Fig. 5. Trajectory control scheme for the b-axis

8. EXPERIMENTAL RESULTS

The efficiency of the proposed control scheme shall
be shown by measurements at a 5 t – bridge crane. At
first, trajectory tracking concerning the b-axis with
deactivated remaining axes is considered. The refe-
rence trajectory for the b-axis consists of a movement
from ϕL = 0° to ϕL = 6°, an 10 seconds break, and the
return movement to ϕL = 0°.

As can be seen in the upper part of fig. 6, the feed-
forward disturbance rejection works quite well.
Moreover, a further reduction of the tracking error as

depicted in the lower part of fig. 6 can be achieved
by additional use of a disturbance observer.

0 5 10 15 20 25 30 35 40
-1

0

1

2

3

4

5

6

7

time [s]

ph
i L [d

eg
re

e]

reference angle
measured angle 

0 5 10 15 20 25 30 35 40
-1

0

1

2

3

4

5

6

7

time [s]

ph
i L [d

eg
re

e]

reference angle
measured angle 

Fig. 6. Reference and measured load angle without
(upper part) and with (lower part) observer based
disturbance compensation for mL=800 kg

In the following figures, a reference trajectory is
tracked with the y-axis, while the b-axis should keep
its reference value identical to zero, i.e. ϕL,ref ≡ 0.
During the specified motions of the trolley by 2 m,
the acceleration of the rope suspension Sy��  acts as a
disturbance on the b-axis control. Fig. 7 and 8 pro-
vide a comparison of reference values and measured
values for both controlled variables: the load position
yL and the load inclination ϕL.

In fig. 7, measurement results are shown for a pure
decentralised feedforward control, where the b-axis
feedforward control is exclusively calculated with the
reference wϕ and the y-axis feedforward control is
solely based on the reference wy. The tracking
behaviour concerning the load position is quite well
with maximum deviations of less than 6 cm but the
load angle ϕL shows maximum deviations of about 2°
from its reference value zero. Steady-state accuracy
is about 1 cm for the load position and about 0.3° for
the load inclination.

In fig. 8, measurement results are presented for the
same reference motion as in fig. 7, but now with the
complete feedforward control as described in chapter
5. It is obvious that the compensation of the coupling
forces leads to a reduction of the tracking error of the
b-axis by approximately factor four with deviations
of about 0.5°. The remaining oscillations with an



amplitude of approximately 0.2° can be tolerated
from a practical point of view.
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Fig. 7. Comparison of reference and measured con-
trolled variables for mL = 930 kg, lR = 4.85 m with
decentralised instead of central feedforward control
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Fig. 8. Comparison of reference and measured con-
trolled variables for mL = 930 kg, lR = 4.85 m with
central feedforward control

9. CONCLUSION

A trajectory control approach is presented for the
load position as well as the load inclination of an
overhead crane, which has been upgraded with an
additional orientation unit. Based on a multibody
model of the crane, feedback and feedforward con-
trollers as well as disturbance observers are derived
in symbolic form. This allows for an adaptation of
the complete control structure using the gain sche-
duling technique with respect to the varying system
parameters rope length and load mass. Measure-
ments, taken at a 5 t – bridge crane, show the benefits
of the proposed control scheme as regards control
performance and steady-state accuracy. Concerning
the load position the achieved tracking error remains
below 6 cm with a steady-state error less than 1 cm.
The tracking error with respect to the load inclination
is about 0.6° with a steady-state error of about 0.3° in
the case of coupling force compensation using central
feedforward control.
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