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Abstract: This paper addresses the issue of controlling nonlinear processes by the use
of the nonlinear model predictive control formulation. To handle the nonlinearities,
a neuro-fuzzy process model is suggested as a means to model processes with
strong nonlinearities depending on the operating region. In this paper the neuro-
fuzzy approach is used for the modelling and control of a strongly nonlinear pH
neutralization process, both in the face of set-point changes and in the face of
unmodelled disturbances.
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1. INTRODUCTION

Model predictive control (MPC) has received a
strong position when it comes to industrially im-
plemented advanced control methodologies, espe-
cially in the refinery and petrochemical fields, see
for example Qin and Badgwell (1998) and Takatsu
et al. (1998). The MPC formulation is commonly
formulated for linear models. In many problems
relevant in the process control field today, how-
ever, the plant under control shows a strongly non-
linear behavior. Nonlinear MPC (NMPC), simply
put, is model predictive control, where a nonlinear
process model is used for prediction purposes, as
opposed to a linear model used for prediction
purposes in the case of linear MPC (Rawlings
et al., 1994; Henson, 1998; Camacho and Bor-
dons, 1999; Rawlings, 2000).

One main difficulty with nonlinear MPC is that
the nonlinear models needed often are complex
and give rise to computationally burdensome op-
timization problems. Since MPC requires the so-
lution of an optimization problem on-line at every
sampling instant, the computational simplicity is
crucial. Furthermore, process models used in non-

linear MPC control strategies are often difficult to
interpret and understand, thus making the choice
of tuning-parameters a quite ad hoc procedure
(Henson, 1998; Rawlings, 2000).

A neuro-fuzzy modelling technique, recently pre-
sented in the literature (Hu et al., 1998; Hu
et al., 1999), is here used for NMPC of a pH
neutralization process. The controller has been
introduced in Waller et al. (2000). The struc-
ture of the neuro-fuzzy model is physically moti-
vated through linear input/output modelling tech-
niques, as the model consists of a network of a
global linear predictor and several local linear pre-
dictors. Similar modelling techniques have been
introduced in e.g. Johansen and Foss (1993). The
simplicity of the model can be argued to con-
tribute to making the procedure of tuning the
NMPC system more transparent when using the
neuro-fuzzy predictor.

2. NONLINEAR MODEL PREDICTIVE
CONTROL

Nonlinear model predictive control is an open-
loop optimal control sequence calculation where
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the main characteristics of the controller are
(Camacho and Bordons, 1999)

(1) Explicit use of a nonlinear model to predict
the process output at future time instants (a
horizon).

(2) Calculation of a control sequence minimizing
an open-loop objective function.

(3) Receding strategy so that at each instant
the horizon is displaced towards the future,
which involves the application of the first
control signal of the sequence calculated at
each step.

We can briefly formulate the problem for nonlin-
ear MPC as follows. The process is assumed to
have the form of a nonlinear discrete-time input-
output mapping, i.e.,

y(k) = g(ϕ(k)) + e(k) (1)

ϕ(k) = [y(k − 1), ..., y(k − n), u(k − d− 1),

..., u(k −m− d)]T (2)

Where y denotes the process output, u the process
input, n is the number of old outputs in the model,
m the number of old inputs and d is the delay.
The nonlinear mapping is denoted with g and
e denotes an error term. The sampling index is
denoted k.

The open-loop optimization problem which is
solved at every sampling instant can be formu-
lated as minimizing a loss function comprising of
future errors between set-point values and pre-
dicted process outputs and the future control
moves (or the change in them). The loss function
might also include a terminal constraint, or a
terminal penalty term. The minimization is per-
formed with respect to the future control moves,
taking possible constraints into account. A good
treatment of relevant optimization methods is of-
fered in e.g. Gopal and Biegler (1998).

We use the change of the control input ∆u(k)
in the cost function, in order to eliminate steady
state offsets and also to emphasize the smooth-
ness of the control input. In process control, the
smoothness of the control action is often of signif-
icance, in order to e.g. reduce wear on actuators.
We will thus minimize a cost function given by

J =
Ny∑

j=N1

σ(j)[yr(k + j)− ŷ(k + j|k)]2

+
Nu∑

j=1

λ(j)[∆u(k + j − 1)]2 (3)

The weights on the process output are denoted
with σ(j) and on the process input with λ(j).

The capability to handle constraints is considered
one of the main motivations to use (nonlinear)
MPC. The optimization problem formulated in
equation (3) is in the case of constraints present
solved subject to the input inequality constraints

umin ≤ u(k + j|k) ≤ umax, 0 ≤ j ≤ Nu − 1 (4)

∆umin ≤ ∆u(k + j|k) ≤ ∆umax, 0 ≤ j ≤ Nu − 1

and the output inequality constraints

ymin ≤ y(k + j|k) ≤ ymax, 1 ≤ j ≤ Ny (5)

3. NEURO-FUZZY MODELLING

A key issue to address when designing a NMPC
controller is the choice of process model, i.e. the
choice of the structure of the (nonlinear) process
model to be used. Here we can roughly distinguish
between two (or three) kinds of models. Firstly
there are models based on fundamental relation-
ships and secondly there are models based on em-
pirical data. The third kind of model would be one
combining fundamental and empirical modelling
techniques (which usually is referred to as a hybrid
model).

For a presentation of a few of the nonlinear process
models utilized for NMPC in the recent literature,
see Waller et al. (2000).

Here, we shall consider a neuro-fuzzy (also re-
ferred to as a quasi-ARMAX) modelling scheme
as a model to be used in the NMPC formulation,
which has been introduced by Hu et al. (1998).
Basically, the idea of the model is to express the
process as comprising of two parts, a global linear
model and a network of local linear models. The
nonlinear model is then a combination of this
global model and some of the local models, as
activated according to a fuzzy logic system. The
fuzzy logic system activates local models based
on the information in the whole regression vector.
Furthermore, we include an explicit evaluation of
the modelling error between the actual process
output and the output as given by the neuro-
fuzzy model in the overall model. Starting from
the process description in equation (1), the model
can be approximated as follows. The nonlinear
mapping is approximated using the neuro-fuzzy
model according to

g(ϕ(k))) ≈ g0 + ϕT
NL(k)Θ (6)

where g0 is a bias term and

Θ = [θT ω11 . . . ωrL]T

ϕNL(k) = [ϕT (k) ϕT (k)⊗ ϕT
Nf

(k)]T

ϕT
Nf

(k) = [Nf (pj , ϕ(k)), j = 2, . . . L]



Θ is the parameter vector, θ are the parameters of
the global model and ωij are the parameters of the
local models. Kronecker production is indicated
by ⊗. The parameters Θ can be evaluated using
e.g. a recursive least squares algorithm. ϕ is the
regression vector and Nf is the network of fuzzy
logic systems. pj in turn are the position and scale
parameters of the fuzzy logic system. See Hu et al.
(1998) for details.

As long as the process is operated at its nominal
state, and the error between the process and the
neuro-fuzzy model is small, there is no obvious
need for compensating for the plant/model mis-
match. However, in the presence of e.g. distur-
bances, the mismatch might be significant and
thus the modelling error should be compensated
for explicitly. In this paper this is done through
approximation of the modelling error e(k) accord-
ing to

ê(k|k) = ê(k − 1|k − 1) + α(y(k)− (7)

(g0 + ϕT
NL(k)Θ)− ê(k − 1|k − 1))

and assuming a constant error over the prediction
horizon, i.e.

ê(k + j|k) = ê(k|k), j = 1, 2, ..., Ny (8)

The forgetting factor α is chosen in order to give
the error evaluation a memory. In our case, we
chose α = 0.5 as a compromise between smooth
error evaluation and quick response to sudden
disturbances. This provides the controller with
integral action.

The predicted output is thus computed recursively
according to

ŷ(k + 1|k) = g0 + ϕ̂T
NL(k + 1|k)Θ + ê(k + 1|k)

based on the regression vector

ϕ̂(k + 1|k) = [y(k) y(k − 1) ...

u(k − d) u(k − d− 1) ...])

and the two-step ahead prediction

ŷ(k + 2|k) = g0 + ϕ̂T
NL(k + 2|k)Θ + ê(k + 2|k)

in turn based on

ϕ̂(k + 2|k) = [ŷ(k + 1|k) y(k) ...

u(k − d + 1) u(k − d) ...])

and similarly for the rest of the prediction horizon.

4. CONTROL OF A PH-NEUTRALIZATION
PROCESS

4.1 The pH-neutralization Process

The process used to illustrate the control results
is a pH-neutralization process, previously studied

and presented in the literature (Sandström and
Gustafsson, 1994; Gustafsson et al., 1995). The
process consists of a continuous stirred tank re-
actor with a constant volume and feed flow. The
feed stream is a water-phosphoric acid solution
of varying concentration. The control stream is a
concentrated solution of calcium hydroxide. Fig-
ure 1 shows a schematic illustration of the pH pro-
cess. The objective of the controller is to control
the pH value throughout the range of operating
regions, and in the face of varying disturbances.
This process has recently been used to illus-
trate multimodel robust control in Nyström et al.
(1998), and in Nyström et al. (1999). See the refer-
ences (Sandström and Gustafsson, 1994; Gustafs-
son et al., 1995; Nyström et al., 1998; Nyström et
al., 1999) for details on the process and the model
used to simulate the real process here.
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Fig. 1. A schematic illustration of the pH process.

In figure 2 the incremental gain of the process
is shown as a function of the operating region,
when the process is operating at its nominal feed
flow rate and composition. The gain is numerically
calculated from the titration-curve as ∂y

∂u and
plotted as a function of the pH-value in the upper
graph, and as a function of the process input u
in the lower graph. The incremental gain of the
process changes from around 170 at pH=2.5 to
over 7600 at pH=4.55, down again to about 330
at pH=6. The nonlinearities are not merely static,
also dynamic nonlinearities are present.

4.2 Identification

We identify a neuro-fuzzy model by running a
sequence of small step changes through the entire
operating region, gradually moving the sequence
through the titration curve, both upwards and
downwards. This is done in order to excite the
process in all regions represented by the set of lo-
cal models in the network. The feed flow rate and
the feed composition are kept constant during the
whole identification sequence. The sample time of
the identification is 0.2 minutes. All time units un-
less stated otherwise are in minutes. The conver-
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Fig. 2. The process gain as a function of the pH
value (upper graph) and as a function of the
process input (lower graph).

gence of the neuro-fuzzy model requires repeated
calculations with the same data, in order to get a
model with sufficient modelling capabilities.

The parameters for the neuro-fuzzy model are
chosen such as to achieve a sufficient modelling
accuracy with as few parameters as possible. This
can be done due to the nature of the model
where prior process knowledge can be utilized. We
choose the model structure for the global model
and for all local models as having n = 2, m = 2
and d = 5 (i.e. 1 minute time delay in the process).
These parameters are sufficiently large to model
the process, but small enough to keep the numer-
ical calculations at a reasonable level. Numerical
tests have not shown any significant improvement
in the prediction ability when the number of pa-
rameters are increased. The activation regions of
the local models are linearly spaced in terms of
the pH value within the regions of interest, for the
pH-value between 2.2 and 7.4, and corresponding
values for the process input between 0 and 0.01.
In the model, 30 local models are used. Further,
we scale the process input by the factor of 500,
so that the magnitude of the process input and
output are the same.

Better prediction in the high gain region can be
achieved with a larger number of local models,
at the cost of slower computations. However, for
the purpose of this study, the prediction accuracy
with 30 local models is sufficient.

4.3 Control Results

The NMPC controller minimizes a loss function
at every sampling instant. A number of future
control moves (the control horizon) is calculated
each time, and the first control move of this
control horizon is implemented. The calculations
are then repeated at the next sampling instant.

Although the MPC formulation is considered to
have an intuitive appeal, the choice of all relevant
parameters for the MPC controller can, regard-
less, be quite cumbersome (Rawlings, 2000; Hen-
son, 1998; Rohani et al., 1999). This is the case
especially when using nonlinear models. A signif-
icant amount of heuristics might in that case be
necessary.

The choice of the prediction and the control hori-
zons is first performed. Based on the recommen-
dations in (Rohani et al., 1999), we chose a control
horizon as small as possible, in order to reduce the
computational burden. In our example, a control
horizon of Nu = 2 is sufficient. The prediction
horizon is chosen as N1 = 6 (the first process
output affected by the calculated control moves)
and Ny = 12. The end of the prediction horizon
should be large enough so that the control moves
have an effect on them. Thus, Ny ≥ Nu + d + 1
should hold. If the prediction horizon is longer
than the control horizon, the future control moves
beyond the control horizon are assumed constant
in calculation of the prediction horizon. We keep
the weight on the process output (the pH value)
constant, σ(j) = 1, and only adjust the weight on
the inputs (λ(j)).

The constraints formulated for this problem are
hard constraints on the absolute value of the
inputs,

umin ≤ u(k + j) ≤ umax (9)
with umin = 0 and umax = 0.01.

A series of set-point changes is first studied. The
composition of the feed is at its nominal value, i.e.
the same composition as used during the iden-
tification, through-out the set-point simulations.
With a constant weight, λ(j) = λ0, on the input,
the response in the low gain region will be too
sluggish, if the response in the high gain region is
appropriately quick. See the simulation results in
figure 3 with λ(j) = 50.

Thus, the input weight must be relative to the
operating region. In our case, we chose an input
weight relative to the predicted process outputs,
i.e.

λ(j) = λ0Ws(j + N1), j = 1, 2, ..., Nu (10)

Ws(k) =
1

max(KP )
KP (ŷ(k))

KP (ŷ) is the incremental process gain as a func-
tion of the predicted process output, as presented
in figure 2, the upper graph. Results with this
relative input weighting (λ0 = 150) is presented
in figure 4. Further tuning can of course be per-
formed, if considered necessary. In our example,
the response to set point changes in the low gain
regions can be speeded up by decreasing the input
weight in the low gain regions. A slightly modified
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Fig. 3. pH value as resulting from a series of set-
point changes. Upper curve shows the actual
process output (solid line) and the set-points
(dotted line), and the lower graph shows the
control effort, i.e. the process input. Time in
minutes on the x-axis. The input weight is
constant over the entire operating range.

tuning based on the relative input weighting is
presented in figure 5. The modifications simply
consist of decreasing the input weights in the
regions where the response according to figure 4
is too sluggish.
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Fig. 4. pH value as resulting from a series of set-
point changes. Upper curve shows the actual
process output (solid line) and the set-points
(dotted line), and the lower graph shows the
control effort, i.e. the process input. Time in
minutes on the x-axis. The input weight is
scaled relative to the process gain.

If we look at the case with unmodelled disturbance
in the feed flow concentration, the results are as
presented in figure 6. The process is run at set-
point values of pH = 3, 4, 5 and 6. The disturbance
in the feed concentration occurs at time = 15
minutes from 0.01 moll−1 to 0.011 moll−1 and at
time = 65 minutes back to 0.01 moll−1. This is
the same disturbance as studied in Nyström et
al. (1998) and Nyström et al. (1999). It is worth
mentioning that this disturbance has not been
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Fig. 5. pH value as resulting from a series of set-
point changes. Upper curve shows the actual
process output (solid line) and the set-points
(dotted line), and the lower graph shows the
control effort, i.e. the process input. Time in
minutes on the x-axis. The input weight is
modified, based on the relative weighting.

used in any way during the identification, design
nor tuning of the controller.
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Fig. 6. pH value (upper graph) as resulting from
a change in feed composition (a step dis-
turbance), at four different set-point values,
pH=3, 4, 5 and 6. Lower graph shows the cor-
responding process inputs. Time in minutes
on the x-axis. The input weight is relative to
the pH value.

5. DISCUSSION AND CONCLUSIONS

A neuro-fuzzy approach to process control using
the nonlinear model predictive control formula-
tion has been presented. The model used for pre-
dicting the future outputs consists of a network
of a global linear predictor and several local lin-
ear predictors, and the interpolation between the
models is done using a fuzzy logic system. This
modelling combines high prediction capabilities
with the fundamental understanding and simplic-
ity of linear ARMAX modelling. Furthermore, as



the model has a clear structure adjusted for the
problem at hand, the amount of parameters is
kept low. The neuro-fuzzy model is capable of
modelling the behavior of a highly nonlinear pH
neutralization process to a high accuracy.

As the model is designed to model the process ac-
curately at different operating regions, the results
with excellent control quality regardless of oper-
ating region are not surprising. We note, however,
that since the MPC formulation expects relative
weights on input changes and output errors, this
relation must be adjusted depending on the par-
ticular operating region. This is in the example in
this paper done by scaling the input weight with
the incremental gain of the process.

The NMPC controller works very well on a highly
nonlinear pH-neutralization process, and com-
bines ease of use with good control quality. The
control quality with respect to eliminating the
effect of disturbances in the feed flow concentra-
tion is of the same quality as the best results
achieved in Nyström et al. (1999), and the results
achieved here are more successful then the results
in Nyström et al. (1998) when it comes to set-
point changes.

The controller would benefit from further studies.
This paper acknowledges the problem of tuning
NMPC controllers, and the vast amount of heuris-
tics needed, especially in the choice of parameters
for the used nonlinear model, control and predic-
tion horizons and the choice of weights for the
inputs and the outputs. Although in this paper
the choice of parameters for the identified model
is simplified due to the simplicity of the model
structure, this weakness of the NMPC formulation
in general should be addressed.
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