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Abstract: In this paper, the performance of Auto-Regressive (AR) and Periodic Auto-
Regressive (PAR) algorithms when used to predict cyclostationary signals is analyzed 
and evaluated. Both analytical and computer simulation results indicate that when 
predicting cyclostationary signals, the PAR predictor significantly outperforms the AR 
predictor at the expense of higher computational complexity. Various trade-offs between 
performance improvement and the knowledge of certain signal characteristics as well as 
computational efficiency are thoroughly investigated. For implementation purposes, a 
new adaptive algorithm for realizing the PAR predictor is proposed and its performance 
has been evaluated by means of computer simulations. Copyright © 2002 IFAC 
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1. INTRODUCTION 
 
In order to provide improved multimedia services 
and to enable the global and seamless roaming for 
mobile users, the 3rd-Generation Universal Personal 
Telecommunication Systems (3G UMTS) must 
achieve a high degree of flexibility and adaptation 
even at the physical level (Wiesler, 1999). The radio 
transceivers with software-defined functionality in 
every architectural level, commonly referred to as 
Software Defined Radio (SDR) transceivers, are 
considered as fundamental components of the 
proposed 3G UMTS (Wolmarans, 2000). Compared 
to more conventional transceivers (Zangi, 1999), 
such a SDR transceiver requires a very wideband and 
very high speed Analog-to-Digital Converter (ADC). 
Furthermore, in order to handle the significant Radio 
Frequency (RF) power differences over the required 
wide RF bandwidth, the ADC requires impracticably 
high resolution to satisfy the Signal-to-Noise Ratio 
(SNR) requirement for the weakest signal in the 
receiving band (Salkintzis, 1999). As a result, the 
inherent inability of the commercially available ADC 
to perform well for such emerging wireless 
telecommunication systems is one of major technical 
challenges which could hinder the application of the 
SDR techniques in the base station of the 3G UMTS 
(Zangi, 1999). In (Nie, 1999), we have proposed a 
novel digitization method, which we refer to as 
Adaptive Prediction and Cancellation Digitization 
(APCD), and which can significantly reduce the high 
dynamic range at the input of the ADC. This 
dynamic range reduction is achieved by applying 
appropriate signal prediction techniques to remove 
the strong correlation contained in the received 
signal. In the same reference, it has been shown that, 

by using the APCD method in conjunction with 
Auto-Regressive (AR) and Periodic Auto-Regressive 
(PAR) prediction algorithms, the stringent ADC 
resolution requirements for 3G UMTS applications 
can be relaxed significantly. 
 
Since the SNR improvements offered by the APCD 
method are mainly determined by the prediction gain 
achieved by the signal prediction techniques, how to 
design a prediction algorithm to achieve higher 
prediction gain becomes an interesting and important 
research topic. For any prediction algorithm, its 
performance heavily depends on the statistical 
characteristics of the signal to be predicted. It has 
been widely recognized that most RF signals, such as 
for example GMSK, BPSK and QPSK signals, 
encountered in 3G UMTS are cyclostationary 
signals. This means that for certain values of the lag 
parameter τ, their autocorrelation functions are 
periodic functions, and can be mathematically 
expressed as:  

),()]()([),( * τττ Γ+=+=
∆

trtxtxEtr xx   (1) 
where 0≠Γ  (Gardner, 1994). It should be pointed 
out that although the basic concepts of the AR and 
the PAR models are well-known and have been 
studied extensively in the past (Haykin, 1996 and 
Gardner, 1990), to the best of our knowledge, the 
performance analysis of the AR and the PAR 
algorithms when used to predict cyclostationary 
signals has not been published in the open technical 
literature. In this paper we will analyze and compare 
the performance of the AR and the PAR algorithms 
when used to predict cyclostationary signals. 
Moreover, the analysis results will be verified by 
means of computer simulations. 
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The organization of the paper is as follows. After this 
introduction, Sections 2 will describe the AR 
predictor and analyze its performance degradation. 
Section 3 will introduce the PAR predictor and 
analyze its performance improvement over the AR 
predictor. The various performance evaluation results 
obtained by computer simulations together with 
detailed discussion are summarized in Section 4. 
Finally the conclusions of the paper are contained in 
Section 5. 
 
 

2. AUTO-REGRESSIVE (AR) PREDICTOR 
 
As most RF signals to be digitized by the SDR 
receiver are modulated real signals, which become 
real discrete signals after sampling, here we will 
focus our analysis on such real discrete signals. For 
this family of signals, their autocorrelation function 
can be expressed as: 

),()]()([),( mPnrmnxnxEmnr xxxx +=+=
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where 0≠P . Because rxx(n,m)  is a periodic function 
with a period of P, it can be decomposed into the 
sum of a series of sinusoidal waves with frequencies 
of k/P, where k ∈ {0, 1,…, P-1}1, and k/P are 
referred to as the cycle frequencies of the 
cyclostationary signal x(n) . To facilitate our analysis, 
a mathematically more convenient expression for Eq. 
2 is used as follows: 
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where 

)()( knPxnxk +=
∆

. (4) 
 
In many applications, for mainly reasons of 
simplicity, when no prior knowledge about the 
statistical characteristics of the signal to be predicted 
is available, the signal is assumed to be a stationary 
signal. Hence, the AR predictor is a simple but 
effective signal prediction algorithm (Haykin, 1996). 
However, since the AR predictor is based upon the 
stationary model, its performance may degrade when 
it is used to predict cyclostationary signals.  
 
2.1 Algorithm Description 
 
A Lth-order AR predictor can be expressed as: 

)()( nXWny T
ARAR =  (5) 

where T
ARLARARAR

wwwW ],,,[
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K=  are the prediction 

coefficients, TLnxnxnxnX )](,),2(),1([)( −−−= K  
are the L past samples of the signal to be predicted, 
and T denotes transposition. When x(n) is a 
cyclostationary signal, it is easy to show that the 
mean square of the prediction error eAR(n) is also a  
periodic function, i.e. 
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1 Unless otherwise noted, from here on we assume that 

k∈{0,1,…,P-1}. 

It is mathematically convenient to use the following 

notations: )()( knPXnXk +=
∆

, )()( knPene ARkAR +=
∆

− , 
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achieve the highest prediction gain, WAR should 
minimize JAR where 
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Setting 0=∂∂ ARWJ , the following optimal solution 
for WAR can be obtained: 
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and the minimum value for JAR is given by 
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Furthermore, we note that the highest prediction gain 
for x(n) is given by 
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2.2 Algorithm Performance 
 
For any RF signal with cyclostationary 
characteristics, it has been well established that 
although both its carrier signal and its equivalent 
baseband signal can contribute to its cyclostationary 
characteristics, as compared to the contribution of the 
carrier signal, the contribution of the equivalent 
baseband signal can almost be ignored (Garnder, 
1994). Thus, we can reasonably assume that the 
equivalent baseband signal is a stationary signal. 
Furthermore, according to Wold’s Decomposition 
Theorem (Haykin, 1996), any stationary signal can 
be decomposed into an AR process of an appropriate 
order, and a deterministic process, i.e. the process 
can be completely determined by its own past. Since 
theoretically the deterministic process does not affect 
the performance of the predictors, we can omit it and 
represent any stationary signal with an AR process 
when we analyze the performance of the AR 
predictor. As a result, in order to obtain an analytical 
performance measure for the highest prediction gain 

max
pARG  of the AR predictor employed to predict RF 

signals, we have used the following generalized 
cyclostationary signal: 
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where ui(n) are AR processes, φi are constants taking 
values between 0 and 2π, and sciii ffPK /2/ = , 
where fci are the frequencies of the carrier signals. 
According to Nyquist’s sampling theorem, cis ff 2> , 

thus ii PK /  takes values between 0 and 1. 



     

 
For the simplicity of the mathematical analysis, but 
without loss of generality, in this paper, xc(n) has 
been further simplified to xG(n) as following, which 
only has one carrier signal and one 1st-order AR 
process: 
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π

+= n
P
K

nunxG  (12) 

where u(n) can be expressed as: 
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where 11 <<− C  and v(n) is a stationary, zero mean, 
memory-less Gaussian random process with 

v
PnvE =)]([ 2 . Thus, the autocorrelation function of 
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Clearly, when 0≠PK , xG(n) is a cyclostationary 
signal which has only one cycle frequency of K/P. 
Furthermore, when 0=PK  then )()( nunxG = . It 
has been shown in (Haykin, 1996) that because u(n) 
is a 1st -order AR process, the optimal signal 
predictor for u(n) is a 1st-order AR predictor given 
by: 

)1()( −= nCxny uu . (15) 
In the same reference it is also shown that increasing 
the order of the AR predictor will not increase the 
highest prediction gain of u(n) , max

puG , which is: 
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However, when 0≠PK , based upon Eqs. 8-10, the 

highest prediction gain of xG(n), max
pARG  will decrease 

seriously as compared with max
puG . Meanwhile, 

increasing the order of the AR predictor will increase 
max
pARG . For example, if the 1st-order AR predictor is 

employed to predict xG(n), according to Eq. 8, the 
optima l predictor is given by: 
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and according to Eq. 10, the highest prediction gain 
max

1−pARG  is given by: 
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If the 2nd-order AR predictor is employed to predict 
xG(n), according to Eq. 8, the optimal predictor is 
given by: 
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and according to Eq. 10, the highest prediction gain 

max
2−pARG  is given by: 
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From Eqs. 18 and 20, as a function of K/P, the 
highest prediction gains of xG(n) for the 1st- and the 
2nd-order AR predictors are calculated and shown in 
Fig. 1. 
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Figure 1. Performance Degradation of the AR Predictor  
 

In this figure, because we are more interested in the 
relation between K/P and max

pARG , C is fixed at 0.995, 

and thus according to Eq. 16, 20max =puG  dB. From 

the results presented in Fig. 1, it is clear that firstly, 
the factor of )cos( φπ +PnK  will significantly 
decrease the highest prediction gain achieved by the 
AR predictor, especially when 5.0/ =PK . For that 
case, as 0)]1()([ =−nxnxE GG , the optimal 1st-order 

AR predictor is given by 0)(1 =nyARG , which means 
that the 1st-order AR predict cannot predict xG(n) at 
all. Secondly, with the existence of )cos( φπ +PnK , 
increasing the order of the AR predictor can 
effectively increase the highest prediction gain of 
xG(n), max

pARG . However, it appears logical that max
pARG  is 

upperbounded by max
puG . 

  
2.3 Algorithmic Implementation 
 
One well-known adaptive algorithm to implement the 
AR predictor is the Least Mean Square (LMS) 
algorithm, which can be mathematically described as 
follows (Haykin, 1996): 
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where µ, referred to as adjustment step, is a small 
positive constant. In (McLernon, 1991) it has been 
proven that for cyclostationary signals, when µ is 
small, WARA(n) will converge to op

AR
W  in the mean: 
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3. PERIODIC AUTO-REGRESSIVE 
(PAR) PREDICTOR 

 
When certain characteristics about the signal to be 
predicted are known in advance, such as for example, 
the modulation scheme, Baud rate or carrier 
frequency, more appropriate signal prediction 
algorithms that can exploit these known signal 
characteristics should achieve better performance. 
The PAR predictor, which is based upon the PAR 
model (Garnder, 1994), is a more accurate, yet more 
complicated algorithm to predict cyclostationary 
signals than the AR model. 
  
3.1 Algorithm Description 
 
In general, an thML × -order PAR predictor can be 
described as below: 
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In the above equations, Λ(z) is a Lth-order diagonal 
matrix with z as its diagonal elements, and 
K1/P,…,KM/P are the cycle frequencies of x(n). Since 
x(n)  is now assumed to be a cyclostationary signal, 
we can easily find that the mean square of the 
prediction error ePAR(n) is a  periodic function, i.e. 
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Thus, to facilitate our analysis, we rewrite Eq. 28 as 
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be minimized. Setting 0=∂∂ PARWJ , it is 
straightforward to get the following optimal solution 
for WPAR: 
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the minimum value for JPAR: 

−= ∑
−

=

1

0

2min )]([
P

k
kPAR nxEJ

][][][
1

0

1

0

1
1

0
∑∑∑

−

=

−

=

−
−

=

ΦΦΦΦ
P

k
kk

P

k

T
kkk

T
P

k
kk PRP  (32) 

and the highest prediction gain for x(n): 
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3.2 Algorithm Performance 
 
When the PAR predictor described by Eq. 31 is 
employed to predict xG(n) (see Eq. 12), the optimal 
1×1st PAR predictor is given by: 
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and based upon Eq. 33, the highest prediction gain is 
given by:  
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From Eq. 35, when C is still fixed at 0.995, as a 
function of K/P, the highest prediction gains of xG(n) 
for the 1×1st PAR predictors are calculated and are 
shown in Fig. 2 together with the previously obtained 
result when the 1st-order AR predictor was analyzed. 
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Figure 2. Performance Comparison of the AR and the PAR Predictor   

 
 

From this figure, it is clear that as compared with the 
AR predictor, the PAR predictor can effectively 
increase the highest prediction gain. The maximum 
improvement of 3 dB is achieved at 5.0/ =PK , 
where the 1st-order AR predictor cannot provide any 
prediction gain. Clearly, similar results can also be 
derived for the higher order PAR predictors. 
However, because of the complication of the 
mathematical analysis, performance evaluation for 
the higher order PAR predictor will be performed by 
computer simulations and will be presented in 
Section 4. As the trade-offs of the performance 
improvement, the penalty of using the PAR predictor 
is that the cycle frequencies of the signal to be 
predicted must be known in advance. Furthermore, as 
compared to the AR predictor, the PAR predictor 
requires higher computational effort. For example, in 
a Lth-order AR predictor, the number of prediction 
coefficients is L, but in a L×Mth PAR predictor, that 



     

number increases to L×(2M+1). 
 
3.3 Algorithmic Implementation 
 
Contrary to the AR predictor case, the algorithmic 
implementation of the previously described PAR 
predictor is not a trivial issue and to the best of our 
knowledge this problem has not been addressed in 
the open technical literature. Perhaps the most 
straightforward approach to implement the PAR 
predictor is to calculate op

PAR
W  by using Eq. 31. 

However, in order to derive Pk, Rk and 
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expected value and matrix inversion, this approach 
requires significant computational power, especially 
when higher order PAR predictors are considered. 
These computational intensive calculations make it 
very difficult to be used to in the real time signal 
prediction. In this paper, we will propose an 
alternative approach which essentially is an 
extension of the LMS algorithm for the AR predictor 
described in Eqs. 21-23. The main idea of the new 
approach is to adaptively calculate op

PAR
W  by using a 

recursive algorithm, as follows: 
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Clearly, algorithm described by Eqs. 36-39 is not as 
computational intensive as the one described by Eq. 
31, because it only includes matrix addition and 
multiplication, and no calculation on expected value 
or matrix inversion is required. Furthermore, when 

0→µ , after a sufficiently large number of 
iterations, i.e. ∞→n , the algorithm described by 
Eqs. 36-39 will let WPARA-k(n) converge to op

PAR
W  of 

Eq. 31 in the mean.2 
 
 

4. COMPUTER SIMULATION RESULTS 
AND DISCUSSION 

 
In order to thoroughly evaluate the performance the 
AR and the PAR predictors offer, we have employed 
the computer simulation approach. More specifically, 
we have implemented in software the various 

                                                 
2 The proof of this statement is not given since it is considered to 
be beyond the scope of this paper.   

prediction algorithms proposed and analyzed in the 
previous sections. In particular, the algorithms 
described by Eqs. 21-23 (for the AR predictor) and 
by Eqs. 36-39 (for the PAR predictor) with 

0005.0=µ  were realized and used to evaluate the 

overall system performance. This specific value of µ 
was obtained by trial and error. As the signals to be 
predicted, we have considered two kinds of signals, 
xG(n) (see Eq. 12) and BPSK signal corrupted by 
Additive White Gaussian Noise (AWGN). For all the 
simulations, unless otherwise noted, the following 
parameters have been chosen: a) the BPSK signal is 
shaped by a square root raise cosine filter with the 
excess bandwidth 5.0=α ; b) 5=L , because 
extensive computer simulations have shown that 
when 5>L , the achieved prediction gain increase 
becomes very small; c) 02.0/ =ss fR , where Rs is the 
Baud rate of the BPSK signal. 
 
In order to compared the performance of the AR and 
the PAR predictors, firstly, we have assumed that the 
signal to be predicted is xG(n) with 995.0=C . For 
this case, the following four different predictors have 
been employed: i) the 1st-order AR predictor, ii) the 
1×1st-order PAR predictor, iii) the 2nd-order AR 
predictor, and iv) the 2×1st-order PAR predictor. 
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Their performance in prediction gain Gp, as a 
function of K/P, is illustrated in Fig. 3. Comparing 
the results of Fig. 3 with Figs. 1 and 2, we can 
conclude that the analytical results about the 
performance of the AR and the PAR predictor given 
in Sections 2 and 3 are well verified by the numerical 
results obtained here. 
 
Secondly, we have assumed that the signal to be 
predicted is a BSPK signal and an AWGN signal 
with RF power difference of 30 dB. It has been 
shown in (Garnder, 1994) that although the BPSK 
signal has more than one cycle frequencies, the most 
important cycle frequency is sc ffPK /2/ = . Thus, 
in order to simplify the complexity of the simulation, 
only this cycle frequency is exploited in the PAR 
predictor. When the 5th-order AR and the 5×1st PAR 
predictors are employed respectively, their 
performance in prediction gain Gp, as a function of 
K/P, is illustrated in Fig. 4. The performance of 
higher order predictors (e.g. 106 −=L ) is not 
included in Fig. 4, because extensive computer 
simulation have shown that higher order predictors 



     

can hardly improve the prediction gain Gp by more 
than 1 dB. Finally, in the same figure, we have 
included an upper bound of Gp of x(n)  which is 
numerically obtained by the method presented in 
(Bernhard, 1998). 
 
Clearly, the obtained results in Fig. 4 indicate that 
the PAR predictor can achieve much better 
prediction gains than the AR predictor. Moreover, in 
Fig. 4, the relatively gap between the prediction 
gains achieved by the PAR predictor and their upper 
bounds shows that we still have great potentials to 
improve the performance of the signal prediction 
algorithms. 
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Figure 4.  Performance Comparison of  the AR and the PAR Predictor -  II  
 
 

5. CONCLUSION 
 

In this paper, by analysis and by means of computer 
simulations, we have illustrated that as compared 
with the AR predictor, the PAR predictor is a better 
algorithm to predict cyclostationary signals. 
However, as the trade-offs of the performance 
improvement, certain statistical characteristics about 
the cyclostationary signals must be known in 
advanced and higher computational effort is required 
by the PAR predictor. 
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