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Abstract: In tis paper, the performance of Auto-Regressive (AR) and Periodic Auto-
Regressive (PAR) algorithms when used to predict cyclostationary signals is analyzed
and evaluated. Both analytical and computer simulation results indicate that when
predicting cyclostationary signals, the PAR predictor significantly outperforms the AR
predictor at the expense of higher computational complexity. Various trade-offs between
performance improvement and the knowledge of certain signal characteristics as well as
computational efficiency are thoroughly investigated. For implementation purposes, a
new adaptive algorithm for realizing the PAR predictor is proposed and its performance
has been evaluated by means of computer simulations. Copyright © 2002 IFAC
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1. INTRODUCTION

In order to provide improved multimedia services
and to enable the global and seamless roaming for
mobile users, the 3% Generation Universal Personal
Telecommunication Systems (3G UMTS) must
achieve a high degree of flexibility and adaptation
even at the physical level (Wiesler, 1999). The radio
transceivers with software-defined functionality in
every architectural level, commonly referred to as
Software Defined Radio (SDR) transceivers, are
considered as fundamental components of the
proposed 3G UMTS (Wolmarans, 2000). Compared
to more conventional transceivers (Zangi, 1999),
such a SDR transceiver requiresavery wideband and
very high speed Analog-to-Digital Converter (ADC).
Furthermore, in order to handle the significant Radio
Frequency (RF) power differences over the required
wide RF bandwidth, the ADC requires impracticably
high resolution to satisfy the Signal-to-Noise Ratio
(SNR) requirement for the weakest signal in the
receiving band (Salkintzis, 1999). As a result, the
inherent inability of the commercially available ADC
to peform well for such emerging wireless
telecommunication systems is one of nmgjor technical
challenges which could hinder the application of the
SDR techniques in the base station of the 3G UMTS
(Zangi, 1999). In (Nie, 1999), we have proposed a
novel digitization method, which we refer to as
Adaptive Prediction and Cancellation Digitization
(APCD), and which can significantly reduce the high
dynamic range at the input of the ADC. This
dynamic range reduction is achieved by applying
appropriate signal prediction techniques to remove
the strong correlation contained in the received
signal. In the same reference, it has been shown that,

by using the APCD method in conjunction with
Auto-Regressive (AR) and Periodic Auto-Regressive
(PAR) prediction algorithms, the stringent ADC
resolution requirements for 3G UMTS applications
can be relaxed significantly.

Since the SNR improvements offered by the APCD
method are mainly determined by the prediction gain
achieved by the signal prediction techniques, how to
design a prediction algorithm to achieve higher
prediction gain becomes an interesting and important
research topic. For any prediction agorithm, its
performance heavily depends on the statistical
characteristics of the signal to be predicted. It has
been widely recognized that most RF signals, such as
for example GMSK, BPSK and QPSK signals,
encountered in 3G UMTS are cyclostationary
signals. This means that for certain values of the lag
parameter t, their autocorrelation functions are
periodic functions, and can be mathematically
expressed as.

D

r (tt)=E[xXE)x (t+t)] =r (t+Gt) )
where C1! 0 (Gardner, 1994). It should be pointed
out that although the basic concepts of the AR and
the PAR models are well-known and have been
studied extensively in the past (Haykin, 1996 and
Gardner, 1990), to the best of our knowledge, the
performance analysis of the AR and the PAR
algorithms when used to predict cyclostationary
signals has not been published in the open technical
literature. In this paper we will analyze and compare
the performance of the AR and the PAR algorithms
when used to predict cyclostationary signals.
Moreover, the analysis results will be verified by
means of computer simulations.



The organization of the paper is asfollows. After this
introduction, Sections 2 will describe the AR
predictor and analyze its performance degradation.
Section 3 will introduce the PAR predictor and
analyze its performance improvement over the AR
predictor. The various performance evaluation results
obtained by computer simulations together with
detailed discussion are summarized in Section 4.
Finally the conclusions of the paper are contained in
Section 5.

2. AUTO-REGRESSIVE (AR) PREDICTOR

As most RF signals to be digitized by the SDR
receiver are modulated real signals, which become
real discrete signals after sampling, here we will
focus our analysis on such rea discrete signals. For
this family of signals, their autocorrelation function
can be expressed as:

Iy (N, M) 5 E[x(mx(n+m)] =r(n+P,m) (2
where P 1 0. Because ry(n,m) isa periodic function
with a period of P, it can be deconposed into the
sum of a series of sinusoidal waves with frequencies
of kiP, where k T {0, 1,..., P-1}* and k/P ae
referred to as the cycle frequencies of the
cyclostationary signal x(n). To facilitate our analysis,
a mathematically more convenient expression for EQ.
2 isused asfollows:

rXin (I)gE[X|(n)XJ(n+|)] ) Integerl (3)
where
A (M=X(PHK) @

In many applications, for mainly reasons of
simplicity, when no prior knowledge about the
statistical characteristics of the signal to be predicted
is available, the signal is assumed to be a stationary
signal. Hence, the AR predictor is a simple but
effective signal prediction algorithm (Haykin, 1996).
However, since the AR predictor is based upon the
stationary model, its performance may degrade when
itisused to predict cyclostationary signals.

2.1 Algorithm Description

A L"™-order AR predictor can be expressed as:
Yar(n) =WigX() (5)
where W, =[w,_,w w,, ]" are the prediction

o1+
coefficients, X(n)=[x(n-1),x(n- 2),...,x(n- L)]"
are the L past samples of the signal to be predicted,
and T denotes transposition. When x(n) is a
cyclostationary signal, it is easy to show that the
mean sguare of the prediction error ear(n) isaso a
periodic function, i.e.

E[€3= ()] = E[(X(N) - Yar(N))’] = Elezx(n+ P)] .(6)

1 LAJnIas otherwise noted, from here on we assume that
kl {01,...,P-1}.

It is mathematically convenient to use the following
notations: X, (n) =X(nP+k), e,...(n)=e,,(NP+k)
R =E[X,(n)X(n)], and P, =Ex (MX (n]. To

achieve the highest prediction gain, War should
minimize Jag Where

Rl
Jar = E[Q €hr k(M) =

k=0
p-1
2 2 T T
a {E[xc(n)] +WarRWg - 2P Wpg} . (7)
k=0

Setting 1J/1W,, =0, the following optimal solution
for Wagr can be obtained:

P:1 P:1
W =[a Rda Rl (8)
k=0 k=0

and the minimum value for Jar is given by

_ 1 , 1 . Rl . 1

Jak =a Elxc(m]- [ R la RdTa Rd. 9
k=0 k=0 k=0 k=0

Furthermore, we note that the highest prediction gain

for x(n) isgiven by

a Ex(n)
;"::; = P-1 lcoP—l P-1 P-1 . (10)
a Ex(n]- [d R'IIa RI(A RI

2.2 Algorithm Performance

For any RF signa with cyclostationary
characteristics, it has been well established that
although both its carrier signal and its equivalent
baseband signal can contribute to its cyclostationary
characteristics, as compared to the contribution of the
carrier signal, the contribution of the equivalent
baseband signal can amost be ignored (Garnder,
1994). Thus, we can reasonably assume that the
equivalent baseband signal is a stationary signal.
Furthermore, according to Wold's Decomposition
Theorem (Haykin, 1996), any stationary signal can
be decomposed into an AR process of an appropriate
order, and a deterministic process, i.e. the process
can be completely determined by its own past. Since
theoretically the deterministic process does not affect
the performance of the predictors, we can omit it and
represent any stationary signal with an AR process
when we analyze the performance of the AR
predictor. As aresult, in order to obtain an analytical
performance measure for the highest prediction gain

G of the AR predictor employed to predict RF
signals, we have used the following generalized
cyclostationary signal:
K.
X () = é u; (n)cos(pT'nﬂc ) (11)
i i

where u;j(n) are AR processes, f; are constants taking
values between 0 and 2p, and K,/P=2f /f_,

where f;; are the frequencies of the carrier signals.
According to Nyquist's sampling theorem, f_> 2f_,
thus K,/ P takes values between 0 and 1.



For the simplicity of the mathematical analysis, but
without loss of generality, in this paper, Xx.(n) has
been further simplified to xz(n) as following, which
only has one carrier signal and one f-order AR
process:

Xg(n) =u(n) cos(% n+f) (12

where u(n) can be expressed as:

u(n) =Cu(n- 1) +v(n) (13)
where - 1< C <1 and v(n) is a stationary, zero mean,
memory-less Gaussian random process with
E[v?(n)] = P,. Thus, the autocorrelation function of
Xg(N) isgiven by:

Elxg ()X (n+m)] =

C"R,

2(1- C%)
Clearly, when K/P1 0, xg(n) is a cyclostationary
signal which has only one cycle frequency of K/P.
Furthermore, when K/P =0 then x (n)=u(n). It
has been shown in (Haykin, 1996) that because u(n)
is a 1™ -order AR process, the optimal signal
predictor for u(n) is a I™-order AR predictor given
by:

Yu(n) =Cx,(n-1). (15)
In the same reference it is also shown that increasing
the order of the AR predictor will not increase the

highest prediction gain of u(n), G, whichis:

pu 1

1
max _
Gpu = o2 (16)

{cos[% @Cn+m)+ %]+ cos(% mi}. (14)

However, when K/P 1 0, based upon Egs. 810, the

max

highest prediction gain of xg(n), G will decrease

seriously as compared with GJF. Meanwhile,
increasing the order of the AR predictor will increase
G - For example, if the T-order AR predictor is
employed to predict xg(n), according to Eq. 8, the
optimal predictor isgiven by:

Yose (1) = CoosEExs (n- 3, e

and according to Eq. 10, the highest prediction gain
G isgivenby:

1
e, e (18)

1- C2cos? (%)
If the 2%-order AR predictor is employed to predict

xs(n), according to Eq. 8, the optimal predictor is
given by:

Cws(%)(l- 2c2cosz(%)+c2)

Yoar 2(M) = Xs(n- 1

1- C2 cos? (ﬁ)
P
- c2sin2K,
+—PKXG(n- 2) (19)
1- C? cos® (%)
and according to Eq. 10, the highest prediction gain

G, isgiven by:

PAR- 2

1- C2 cos? (ﬁ)
P . (20)

Gmax —_
pPAR-2 —
1- 2C2cos? (%) +2c* cosz(%) -ct

From Egs. 18 and 20, as a function of K/P, the
highest prediction gains of xs(n) for the - and the
2"-order AR predictors are calculated and shown in
Fig. 1.
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Figure 1. Performance Degradation of the AR Predictor

o

In this figure, because we are more interested in the
relation between K/P and G, C is fixed at 0.995,

PAR !
and thus according to Eq. 16, G} =20 dB. From
the results presented in Fig. 1, it is clear that firstly,
the factor of cos(pnK/P+f) will significantly
decrease the highest prediction gain achieved by the
AR predictor, especially when K/P =0.5. For that
case, as E[x (n)x,(n- D] =0, the optimal 1*-order
AR predictor is given by y,...(n) =0, which means
that the 1™-order AR predict cannot predict xg(n) at
all. Secondly, with the existence of cospnK/P+f),
increasing the order of the AR predictor can
effectively increase the highest prediction gain of
Xs(Nn), G - However, it appears logical that G is

upperbounded by G7 .

2.3 Algorithmic Implementation

One well-known adaptive algorithm to implement the
AR predictor is the Least Mean Square (LMS)
algorithm, which can be mathematically described as
follows (Haykin, 1996):

yARA(n) :WARA(n)T X(n) (21)

eARA(n) = X(n) - yARA(n) (22)

Waga(N+1) =W, () + 20,50 (M) X (N) (23)
where m referred to as adjustment step, is a small
positive constant. In (McLernon, 1991) it has been
proven that for cyclostationary signals, when mis
small, Wara(n) will convergetoWs? in the mean:

P-1 P-1
lim EWara(n] =[@ ReI '@ Pl (24)
m® 0 k=0 k=0



3. PERIODIC AUTO-REGRESSIVE
(PAR) PREDICTOR

When certain characteristics about the signal to be
predicted are known in advance, such as for example,
the modulation scheme, Baud rate or carrier
frequency, more appropriate signal prediction
algorithms that can exploit these known signal
characteristics should achieve better performance.
The PAR predictor, which is based upon the PAR
model (Garnder, 1994), is a more accurate, yet more
complicated algorithm to predict cyclostationary
signals than the AR model.

3.1 Algorithm Description

In general, an L~ M™ -order PAR predictor can be
described as below:

yPAR(n) = WFTARF (n) X(n) (25)
where

—_nwT T T T
Wear =[Wear - Wenrz -+ Wearom +1] - (26)

Weari = [Weari1: WeaRi 2s-++»
i=12,...

WPARi,L]T )
, 2M+1, 27)

F(n) =[L (D), L(cos@p ﬁ n)), L(sin(2p % n)),...,

L (cos(2p —n)) L (sin(zp Kt L))" (28)
In the above equations, L(2) isa L‘h-order diagonal
matrix with z as its diagona elements, and
K4/P,....Ku/P are the cycle frequencies of x(n). Since
x(n) is now assumed to be a cyclostationary signal,
we can easily find that the mean sguare of the
prediction error epar(n) isa periodic function, i.e.
E[e%AR(n)] = E[(x(n) - yP/—\R(n))Z] = E[eg’AR(n +P)].(29)

Thus, to facilitate our analysis, we rewrite Eq. 28 as

F =[L(),L (cosZp ﬁk», L (sin(@ %k»,...,

L(cos(2p—k)) L (sin(2p =M Ky k))]T and Ej. 29 as
ePAR_k(n):ePAR(nP+ k). To achieve the highest
prediction gain, Weag should let:

P-1
[¢]
Jear =E[Q ar. k()] =
k=0
Rl
{EDXZ(M] +WEagF  ReF fWopg - 2P
k=0
be minimized. Setting 1J/IW,,,=0, it s
straightforward to get the following optimal solution
for Weag:

F EWPAR} (30)

P-1 P-1
[o] ~ o

Wohs =[a FRF 1A PF il (31)
k=0 k=0

the mini mum valuefor Jpar:

JIPhk = a E[x¢ (n)] -
k=0

R Bl .
[A RFl'la FrRFela PF ] (32

k=0 k=0 k=0
and the highest prediction gain for x(n):
P-1
& EE(m)]
PmF?f)\(R_ P-1 P- K0 P-1 P-1 :

o > o T T-17 2

a EXX]- [@ RFJTIA FRFel A RF

k=0 k=0 k=0 k=0

(33)
3.2 Algorithm Performance

When the PAR predictor described by Eq. 31 is
employed to predict xg(n) (see Eq. 12), the optimal
1" 1% PAR predictor is given by:

Yoo 11(0) = C{oosEE) +sinEpan( .-

21 cot -
2pK
cos( - 2f)sin(——n)]}xs (n- 1) (34)

and based upon Eq. 33, the hlghest prediction gain is
given by:

e 1
GpPAR 1= 2 . (35)

1- C?[cosz(%) +1]

From Eqg. 35, when C is still fixed at 0.995, as a
function of K/P, the highest prediction gains of Xz(n)
for the I 1% PAR predictors are calculated and are
shown in Fig. 2 together with the previously obtained
result when the 1%-order AR predictor was analyzed.
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Figure 2. Performance Comparison of the AR and the PAR Predictor

From this figure, it is clear that as compared with the
AR predictor, the PAR predictor can effectively
increase the highest prediction gain. The maximum
improvement of 3 dB is achieved at K/P =05,
where the 1*-order AR predictor cannot provide any
prediction gain. Clearly, similar results can also be
derived for the higher order PAR predictors.
However, because of the complication of the
mathematical analysis, performance evaluation for
the higher order PAR predictor will be performed by
computer simulations and will be presented in
Section 4. As the trade-offs of the performance
improvement, the penalty of using the PAR predictor
is that the cycle frequencies of the signal to be
predicted must be known in advance. Furthermore, as
compared to the AR predictor, the PAR predictor
requires higher computational effort. For example, in
a L™-order AR predictor, the number of prediction
coefficientsis L, but in a L” M™ PAR predictor, that



number increasestoL” (2M+1).
3.3 Algorithmic Implementation

Contrary to the AR predictor case, the algorithmic
implementation of the previously described PAR
predictor is not a trivial issue and to the best of our
knowledge this problem has not been addressed in
the open technical literature. Perhaps the most
straightforward approach to implement the PAR

predictor is to calculate W2 by using Eqg. 31.

PAR
However, in order to derive P, R¢ and
1

b1 N
gé_ F kRkF[H which involves much calculation on
€x=0 u

expected value and matrix inversion, this approach
requires significant computational power, especialy
when higher order PAR predictors are considered.
These computational intensive calculations make it
very difficult to be used to in the real time signal
prediction. In this paper, we will propose an
aternative approach which essentialy is an
extension of the LM S algorithm for the AR predictor
described in Egs. 21-23. The main idea of the new

approach is to adaptively calculate WS>, by using a
recursive algorithm, as follows:

Yeara k (M =Woaga  (MF X, (N), (36)
epara-k (M =% (N) - Ypara k(M) (37)
Weara (k+1) (N) =Wpara k (M) + 2MBp ARk (NF X (N)
k1 {0,1,..., P-2} (38)
Woara- o(N +1) = Woara - (p- 1) (N) + 2Mepara - (p-1) (MF p-1Xp. 1(N)
(39)
where
Woama (M) = [\NPTARA-Lk (N),Wepean. 2k (M), Wopea @M +),k (1"
(40)
WPARA— ik ( n) = [WPARA-i Lk ( n)’WPARA- i,2k (n)’ ARl WPAF\’A- i,Lk (n)]T
i=1,2.. M+l (41)

WPARA—i,j,k(n) = WPARA—i,J(nP+ k) J = l’ 2""’ L (42)

Clearly, agorithm described by Egs. 36-39 is not as
computational intensive as the one described by Eg.
31, because it only includes matrix addition and
multiplication, and no calculation on expected value
or matrix inversion is required. Furthermore, when
m® 0, after a sufficiently large number of
iterations, i.e. n® ¥ , the algorithm described by
Eqgs. 36-39 will let Whara(n) converge to W2, of
Eq. 31 in the mean.?

4. COMPUTER SIMULATION RESULTS
AND DISCUSSION

In order to thoroughly evaluate the performance the
AR and the PAR predictors offer, we have employed
the computer simulation approach. More specifically,
we have implemented in software the various

2 The proof of this statement is not given sinceit is considered to
be beyond the scope of this paper.

prediction algorithms proposed and anayzed in the
previous sections. In particular, the algorithms
described by Egs. 21-23 (for the AR predictor) and
by Egs. 36-39 (for the PAR predictor) with
m =0.0005 were realized and used to evaluate the

overall system performance. This specific value of m
was obtained by trial and error. As the signals to be
predicted, we have considered two kinds of signals,
Xs(n) (see Eq. 12) and BPSK signal corrupted by
Additive White Gaussian Noise (AWGN). For al the
simulations, unless otherwise noted, the following
parameters have been chosen: a) the BPSK signal is
shaped by a square root raise cosine filter with the
excess bandwidth a =0.5; b) L=5, because
extensive computer simulations have shown that
when L >5, the achieved prediction gain increase
becomesvery small; c) R /f =0.02, where Rsisthe

Baud rate of the BPSK signal.

In order to compared the performance of the AR and
the PAR predictors, firstly, we have assumed that the
signal to be predicted is xg(n) with C =0.995. For
this case, the following four different predictors have
been employed: i) the 1*-order AR predictor, ii) the
1 1%-order PAR predictor, iii) the 2™-order AR
predictor, and iv) the 2" 1¥-order PAR predictor.

=i
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Figure 3. Performance Comparison of the AR and the PAR Predictor - |

Their performance in prediction gain G, as a
function of K/P, is illustrated in Fig. 3. Comparing
the results of Fig. 3 with Figs. 1 and 2, we can
conclude that the analytical results about the
performance of the AR and the PAR predictor given
in Sections 2 and 3 are well verified by the numerical
results obtained here.

Secondly, we have assumed that the signal to be
predicted is a BSPK signal and an AWGN signal
with RF power difference of 30 dB. It has been
shown in (Garnder, 1994) that although the BPSK
signal has more than one cycle frequencies, the most
important cycle frequency is K/P =2f /f_. Thus,

in order to simplify the complexity of the simulation,
only this cycle frequency is exploited in the PAR
predictor. When the 5"-order AR and the 5 1 PAR
predictors ae employed respectively, their
performance in prediction gain G;, as a function of
K/P, is illustrated in Fig. 4. The performance of
higher order predictors (eg. L=6-10) is not
included in Fig. 4, because extensive computer
simulation have shown that higher order predictors



can hardly improve the prediction gain G, by more
than 1 dB. Finaly, in the same figure, we have
included an upper bound of G, of x(n) which is
numerically obtained by the method presented in
(Bernhard, 1998).

Clearly, the obtained results in Fig. 4 indicate that
the PAR predictor can achieve much better
prediction gains than the AR predictor. Moreover, in
Fig. 4, the relatively gap between the prediction
gains achieved by the PAR predictor and their upper
bounds shows that we still have great potentials to
improve the performance of the signal prediction
algorithms.

Prediction Gain -G, (dB)
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Figure 4. Performance Comparison of the AR and the PAR Predictor - 11

5. CONCLUSION

In this paper, by analysis and by means of computer
simulations, we have illustrated that as compared
with the AR predictor, the PAR predictor is a better
algorithm to predict cyclostationary signals.
However, as the trade-offs of the performance
improvement, certain statistical characteristics about
the cyclostationary signals must be known in
advanced and higher computational effort is required
by the PAR predictor.
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