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Abstract: This paper investigates the controller synthesis problem of uncertain systems
with time varying delays. A robust controller with delay compensation is proposed, based
on Lyapunov function method. The stability criterion of the closed-loop system, which is
dependent on the size of the time delay and the size of its derivative, is derived in the
form of linear matrix inequalities (LMI). Examples show that the results using the method

in this paper are less conservative than most existing results by other methods. Copyright
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1. INTRODUCTION

The study of stability and stabilization of time delay
systems has attracted considerable attention over the
past several decades because of their practical

applications (Boyd.S., et al., 1994)-( Zheng Feng., et
al., 1995). In these works, the derived results can be
classified into two categories. delay independent
results (Boyd.S., et al., 1994)(M.S.Mahmoud., et al.,
1999)(M.S.Mahmoud., et al., 2001(Kim JH., et al.,
1996)(Choi H.H., et al., 1996) and delay dependent
results (Cao Y.Y., et al., 1998)(Cao0 Y.Y., et al.,
2000)(Carlos  E. De  Souze, et al.,
1999)(M.S.Mahmoud, et al., 2001)(Li Xi, et al.,
1997). Generally, the delay dependent results are less
conservative than the delay independent ones when
thetime delay is small.

Recently, a number of research works focused on the
study of delay dependent methods via memoryless
controller for uncertain systems with time delay.
When time delay is time varying or constant, some
memoryless controller design methods (Cao Y.Y ., et
a., 1998)(Cao Y.Y., et al.,, 2000)(Carlos E. De
Souze,, et al., 1999)(M.S.Mahmoud, et al., 2001)(Li
Xi, et al.,, 1997) were proposed, based on the
Lyapunov function method and first order
transformation (Gu Kegin., et al., 2001). To reduce
the conservatism of the existing results, Gu (2000)
used the discretized Lyapunov functional approach to
propose a new design method of a robust controller.
The given controller can stabilize the origina system
with larger maximum allowed value of time delay
than the existing ones by other methods. However,
only systems with polytopic uncertainty and constant
delay were addressed in (Gu Kegin., et al., 2000). It
isdifficult to extend the method in (Gu Kegin., et al.,
2000) to systems with norm-bounded uncertainties
and time varying delays. To study stabilization of
time delay systems, a memoryless controller and a
memory controller were proposed. See (Cao Y.Y ., et
al., 1998)(Ca0 Y.Y., et al., 2000)(Carlos E. De
Souze., et al., 1999)(M.S.Mahmoud, et al.,
1999)(M.S.Mahmoud, et al., 2001)(Li Xi, et al.,
1997)(Gu Kegin., et al., 2000)(Gu Kegin., et al.,
2001)(Kim JH., et al., 1996)(Sophie Tarbouriech, et

al.,, 1999)(Choi H.H., et al.,, 1996) for the
memoryless case and (Young Soo Moon, et al.,
2001)(Zheng Feng, et al., 1995) for the memory case.
Although the proposed memoryless controllers are
easy to implement, they often tend to be more
conservative, especially when the past information
on the system can be employed. By using past state
or past input information, delay dependent
controllers were designed in (Young Soo Moon, et
al., 2001)(Zheng Feng, et al., 1995)and were shown
by examples to be less conservative than memoryless
controllers. The shortcoming of the methods (Y oung
Soo Moon, et al., 2001)(Zheng Feng, et al., 1995) is
that the time delay must be assumed to be known and
constant.

In this paper, we investigate the problem of delay
dependent robust controller design for systems with
norm-bounded uncertainties and time varying delays.
To obtain a transformed system, a neutral model
transformation and first-order  transformation
(M.SMahmoud, et al., 2001) are employed
simultaneously. Unlike the memoryless controllers
(Cao Y.Y.,, e d., 1998)(Ca0 VY.Y., e al,
2000)(Carlos  E. De  Souze, e al,
1999)(M.S.Mahmoud, et al., 2001)(Li Xi, et al.,
1997)(Gu Keqgin, et al., 2000), the given controller
provides feedback of the current state and past state
information. The advantages of our method are two.
First, more information on the state is used to
implement the controller. Seconds, the time delay
can be time varying and the exact value of the time
delay is not required to be known. The derived
stability criterions are expressed in terms of LMI,
which can be effectively solved by using various
optimization algorithms (Boyd.S.,, et al., 1994).
Notation: R" denotes the n-dimensional Euclidean
space, R™™ is the set of nxm rea matrices, | is
the identity matrix, || stands for the induced matrix
2-norm. The notation X >0 (respectively, X >0),

for Xe R™" means that the matrix X is a red
symmetric positive definite (respectively, positive
semi-definite). C, denotes the set of all continuous

functions, from [-%, 0] to R".



2. SYSTEM DESCRIPTION AND MAIN
RESULTS

Consider the following uncertain system with time
varying delay
%(t) =[A+ AARIX() +[A + AA Ot ~ o) +[B+ ABOUC) .
D
X(s)=9(s) , se[-7, 0], 2)
where x(t)e R" and u(t)e R™ are the system dtate
and the control input, respectively. 1(t) represents
the time delay which is continuously differentiable
and satisfies 0< g(t) <7 and (t) <d <1. ¢(t) e C,
is the initia function. A , AL and B are constant
matrices of appropriate dimensions. AA(t) , AA(t)
and AB(t) denote the parameter uncertainties which
satisfy
[aA®) AA®M ABW]=DFMIE E, E]
where D, E;, E, and E; are known matrices and
F(t) is unknown time varying matrix which
satisfies |[F(t)|<1.
The following Lemmas will be used in our main

result.
Lemma 1(Carlos E. De Souza, et al., 1999): For

any x, ye R™" and for any positive symmetric
definite matrix Pe R™",
2X"y<x"PIx+y"Py.
(2). Let A,D,E and F represent rea matrices of
appropriate dimensions with ||F||<1. Then we have:
(8). For any scalar € >0,
DFE+E'F'D' <& 'DD' +£E'E.

(b). For any matrix P=P' >0 and scalar £>0
such that el —EPE' >0,

(A+DFE)P(A+DFE)" <

APAT + APE" (el —EPET) ™ EPAT +eDD".
(c). For any matrix P=P" >0 and scalar £>0
such that P—eDD' >0,
(A+DFB'PY(A+DFB < AT (P-eDD") *A+e'E'E.
Lemma 2(Dong Yue and Sangchul won, 2001):
Consider an operator D():R"—=R" with

t

D(y(t)) = y(t) + B I y(s)ds , where y(t)e R" and
toh

Be R™". For a given scalar §, where 0<8<1, if

there exists a positive definite symmetric matrix P
such that

-8P hB'P <o
hPB  -P |
then the operator D(y(t)) isstable.

Next, we give our main result.
Theorem 1. Suppose that scalars T>0 and d<1
are given. Then the system (1) with the control

t
u(®) =YX '[x®)+ [ Ax(9)ds] ®
X
is asymptoticaly stable for any 1(t) satisfying
0<t(t)<7T and (t)<d <1, if there exist positive
definite matrices X , X, (k=123 , Y
(i=1234) and matrix Ye R™ and positive
scalars €5 (j =12,..,7) such that

z —araay of
T T
SYARAT =% Q<0 4
Q Q E
(-, Y,AT YE!
AY, —X;+gsDD'" 0 |[<O0 (5)
EY, 0 —gg
[- Y3 YA Y65 |
AY; —X,+gDD' 0 |<0, (6)
E2Y3 0 —86|
-y, YB' YE] |
BY —X3+£7DDT 0 <01 (7)
EsY 0 —gl

where
T=X(A+A)T +(A+A)X+BY+YTBT +

(81 +%Ez +€3 +E4)DDT +
T T
S A Xo+ Xa)Al 5V

QI{XEE X =X =X 0 Xgf YTE§i|

N al
N | al
N | al

T T ATeT B aT T
Q; = _EYlAl E; _TYlAl _TYlAl

T, T Ty aTeT
-—Y, -——Y,A E 00

2 1A 2 1A By

) T T T
E=diag| 1-d)egl —=Y; =Y, —(@1-4d)Y.
g[( )Es o Sv 2( )Ys

EEIEIEI
SE2 1 4 .
2

Proof: Define a neutral transformation as

t
2(t) = X(t) + '[Alx(s)ds. )
-T2
Using (8), wedesign a ::ontrol ler as
u(t) = Kz(t) (9)

where K is a constant matrix that will be designed
later.

Taking the time derivative of z(t) and combining (1),
(9) and Leibniz-Newton formula, we obtain the
following transformed system



z(t) = (A+ A X(L) + AA(L) x(t) + AA (t) x(t — (1))
t-%/2
A [{(A+BAE)X(E) + (A + BA(S)X(s—(S)
t—1(t)
+(B+ AB(S))Kz(s)}ds +(B+AB(t))Kz(t), (10)
Construct a Lyapunov functional as
V(%) =V (%) +V2(%) (11)
where x(s)=x(t+s), se[-1, 0],

Vi(x) = Z' (t)Pz(t)

t t t
V(%)= j X' (9TXds+ j JXT(V)Q>(v)d\ds€r>
t-(t) t-7/2s
t—7(t) t— T(t)
j j X" (V)Gx(v)dvds +— jx (9)GX(s)ds®
t-7/2 s t —7(t)
t—7(t) t—7(t)
_[ f X" (V—7(V))Wx(v— 7(V))dvds
t-7/2 s
t
+% ‘[XT (s—T(S))W(s—1(5))ds
t—1(t)

2(1 d)t T(:)( (s\Wx(s)ds
t—1(t) t—1(t)
@ j j z (v)Rz(v)dvds+— j 7 (9Rx(9)ds,
t-1/2 s t T(t)

(12
where ® is “+” as 1:(t)<% and “-“ as T(t)%' P,

T, Q, G ,W and R are symmetric positive definite
matrices.

al

Itiseasy to show that as t(t) > —

N

t—1(t) t—1(t)
j Ix (v)Gx(v)dvds<E j xT ()Gx(s)ds,

t-t/2 s t—z(t)
t—1(t) t—(t)

J-z (v)Rz(v)dvds<E j " (s)Rz(s)ds
t-7/2 s t=7(t)

and
t—1(t) t—T(t)
j X (v — 2(V)(v — 7(v))dvdls
t-T/2 s

t
< % j X7 (s—7()Wx(s—1(S))ds,
t—1(t)
thus, V,(x) is positive definite. Moreover, V(%)
and V,(x) are continuously twice differentiable in

X andonceint.
Next, to prove the negative of time derivative of
V(x) , wewill consider two cases.

First, we consider the case when 1(t) < % .

We rewrite (10) as

2(t) = (A+ A)X(t) + AA() x(t) + AA () x(t — (1))
t—1(t)
+A I{ (A+AA(9)X(S) + (A + AA ())X(s - T(3))
t-7/2
+(B+ AB(S))Kz(s)}ds +(B+ AB(t))Kz(t) .
(13)
Taking the time derivative of V;(x) with respect to
time t and combining (8), we obtain

Vi(x) = 22" ()[P(A+ A) + PBK]Z((t)

t
— 27" ()P(A+ A)A j x(s)ds
t-7/2 t
J.x(s)ds
t-7/2
+ 22" (t)PDF (t) E x(t — T(t)) + 22" ()P
t—1(t)
A j {(A+AA(S))X(S) + (AL + AA () X(s—1(s))
t-T/2
+(B+AB(S))Kz(s)}ds + 27" (t)PDF(t) E;Kz(t).
(14)

+27" (t)PDF (t)E;z(t) — 22" (t)PDF (t)E,B

Using Lemma 1 and noting that %—‘c(t) S% , we

have
22" (t)PDF(t)E;z(t) < Z' (t)[e,PDD' P+¢; E/ E;]z(t),
(15)
t
—27" (t)PDF(t)ElAl j X(s)ds <
ng (t)e,PDD" Pz(t)
t
+ [x"(9e2 A E] ELAX(9)TS,
t-7/2
(16)
22" (t)PDF (t)E,x(t —7(t)) < " (t)e;PDD T Pz(t)
+x' (t—7(t)e3 E, Eox(t—7(t)), (17)
27" (t)PDF (t) EgKz(t) <
Z" (t)e,PDD" Pz(t) + Z' (t)e;'K ' Ej EgKz(t),
(18)
t—1(t)
27" (t)PA, J.(A+ AA(S))X(S)ds <
t-1/2
T OPAX,AT P

t—1(t)
+ ij (S)(A+AA(S))T X H(A+ AA(S))x(s)ds,
t-%/2
(19)



t—1(t)

22" (OPA, [ (A +AA(S)X(s—T(S)ds<
t-7/2
22T OPAXATPZ)
t(t)
+ [} (s=u9)A +AAE) X (A + M-t
t—=7/2
(20)
t—1(t)
27" (t)PA I(B 1+ AB(9))Kz(s)ds <
t-7/2
> 2T OPAXGATP2()

t—1(t)
+ j 2" (KT (B+AB(s)" X31(B+ AB(S))Kz(s)ds.
t-T/2
(21)
Defining
3, =(A+A) P+P(A+A)+
PBK + KTBTP+(81+%£2 +&;5+€,)PDD'P
+e'E[ E, +£,°KTE] E;K
+% PA (X, + X, + X3)A'P
and combining (14)-(21), we obtain
Vi(%) < 2" (0)Z;2()
t
jx(s)ds
t-T/2
+ X' (t—1(t)e5 Eq Eox(t —1(t))
t
+ j X (9e5* A ET E,Ax(s)ds
t-T/2

22" )P(A+ A)A

t—1(t)
+ j X" (8)(A+AA(S))" X, H(A+ AA(s))x(s)ds
t-T/2
t—1(t)
+ I X (s=2())(AL + AAL(S)T X3" (A +AA () X(5—T($))ds
t-1/2
t—(t)
+ jo (9K T (B+AB(9)" X3*(B+ AB(s))Kz(s)ds.
t-t/2
(22)

Itiseasy to verify that as 1(t) <%,

V, (%) < X (0TX(t) — (1= d)x (t — () TX(t — 7(t))
t t—1(t)
- I X' (S)Qx(s)ds— ij ()Gx(s)ds
t-x/2 t-%/2
t—1(t)
- j X" (= T()Wx(s— 7(5))ds
t-7/2
_ t—1(t)
+ % 7' ()R(t) - j Z (9Rz(s)ds, (23)
t-t/2

where T, =T +£Q+IG+ T w
2" 2 21-d)

In addition, using (8), we can prove that
t

I x(s)ds

t—/2

X" (OTyx(t) <z (O)Tyz(t) - 22" (OT, A

ot
+% I X" (A T,AX(s)ds. (24)

t-7/2
Combining (22), (23) and (24), we obtain

V(%) = V(%) +V,(%)
<7 (t)():1+T1+%R)z(t)

t
~ 27T O[P(A+ A)A +T,A] jx(s)ds
t-1/2
= X" (t—T(t))[(1-d)T —e5'E; E,]X(t — (t))

t —
- X OQ-eATE EA -2 AT AIX(S S
t-t/2
t—1(t)

- I X7 (S)[G - (A+AA(9)) T XA+ AA(S))] x(s)ds
t—-1/2
t—1(t)

- IXT (S—HS)W— (A +AA(S)T X5 (A +AA (9)IX(S-T(S)ds
t—t/2
t—(t)

- | " (S)[R-KT(B+AB(s))T X31(B + AB(s))K]z(s)ds .
t-1/2

(25)
At this point, we have obtained (25) when 1(t) <%.
On the other hand, using a similar analysis method,

we can obtain that when t(t) > % ,

V(%) =Vi(%) +V,(%)
<7 (t)(}:1+T1+%R)z(t)

t

I x(s)ds
t-7/2
=X (t=T(t)[(L- d)T - 5'E; E]x(t — (1)

—22" ()[P(A+ A)A +T/A]

t —
- X OQ-ATE EA -2 ATTAI(S)ds
t-t/2
t-t/2
- ij (9)[G — (A+ AA®S))T X7 (A+AA(S))Ix(s)ds
t—1(t)
t-1/2
- ij (s—2(S)W—(A +AA(S)" X5 (A +AA(9)IX(s—7(S)ds
t—1(t)
t-T/2
- J-zT (9[R-KT(B+AB())" X31(B+ AB(s))K]z(s)ds.
t—1(t)
(26)
From (25) and (26), it is easy to see that if

—G+(A+AA(9)" X[ (A+AA(S) <0, 27)



—W -+ (A +AA(9)T X5 (A +AA()X(s—T(3)) <O,
(28)
—R+KT(B+AB(9)" X3'(B+AB(s))K <0
(29)
T=¢e;'(1-d)"EJE, (30)
then

t
\/(xt)S% j [ ) xT(s)]H{Z(t)}ds, (31)

X
t-7/2 (S)

where

5+T+ R —SP(A+A)A—TA

H=| _ _ _ < _ .
T T T.T 7
—EAI(A+A,)TP—EA1TT1 —§Q+§€21'°1TEIEA+7A1TT1

Obvioudly, if H<O holds, then there exists a constant
A >0 such that

V(t, %) <Az (t)z(t) . (32)
Next, we will prove that (4), (5), (6) and (7) implies
H<0, (27), (28) and (29).
Using Schur complements, it can be shown that
H <O if and only if

>:1+§R —%P(A+A1)A1 Hy
SIA AP - lor A ElBA H] (<o
Hy H» -M,
(33)
where
T T, T
Hi=|E, =I =1 —I
! [2 2 2 2}
= =2 =2 =2
TATET T AT T AT T 4T
Hj =|-—AE] -——A -——A -—
2 { 2'°1 2 4A1 4A1 4/31}

M, = diag (1 d)e,| %Q‘l %G‘l g(l—d)W‘lj.

Pre, post-multiplying the both sides of (33) with
matrix diag(P™,Q%,1,1,1,1)and denoting X =Pt
Y=KX , ,=Q' , Y,=G* |, Y;=w™? and
Y, = PRP™, wehave

T
% —SATAAY  XH]
T T T _
*EY1A1T(A+ ISE *EYl +§€21Y1'A1T E BAY, YHj |<0
H, X H,oY, M,

(36)
where
=, = X(A+A) +(A+A)X+BY+YTBT

+(el+%ez+23+e4)DDT +e7IXE] By X
+%A1(X1+X2+X3)A&T +eYTET By +%Y4,

; T T T
M, =di 1-d)esl =Y, =Y, —(@A-d)Y;]|.
2 aé{( )Es o1 5" 2( ) 3]

Using Lemma 1, it can be shown that (27), (28) and
(29) hold if the following matrix inequalities hold

~G+AT(X, —esDD") *A+¢:'Ef E; <0, (35)
~W+A"(X,-e;DD") A +€5'EJE, <0, (36)
—R+KTB" (X;—&,DD" ) 'BK+&;'K"E] E;K <0, (37)

where & (i=5,6,7) are positive scalars, such that
X,-eDD' >0 X,-gDD'>0  and
X3;-€;DD" >0.

Using transformations Y =KX , Y, =G Y, =W™
and Y, = P'RP, (35), (36) and (37) can be written
as

-Y, +Y,A" (X, —esDD")*AY, + e Y,E[ E)Y, <0,

(38)

T Ty\-1 Iy T
~Y;+Y5A (X, —ecDD") P AY, +e5V,ET E,Y, <0,
(39)
-Y, +YBT (X;-¢,DD")'BY +¢;'YE; E;Y <0,
(40)

By Schur complements, we can show that (36), (38),
(39) and (40) are equivaent to (4), (5), (6) and (7),
respectively. In other words, (4), (5), (6) and (7) are
sufficient conditions that guarantee H<O , (27), (28)
and (29).

On the other hand, by Schur complements, H<0 also
means

2
—Q+%AIQA1<O. (41)

By Schur complements and matrix theory, we can
further prove that apositive scalar 0< o <1 exists
such that

~aQ —AQ

z 2 <0.

EQAa -Q
Using Lemma 2, we know that under the condition

(41), z(t) isastable operator. Then, combining (32)

and using Theorem 9.8.1 of (Hale,J,, et al., 1993), we
can complete our proof.

(42)

Q.ED
Remark : For a given d, the largest 7 , which
ensures the robust stabilization, can be determined by
solving a convex optimization problem (Boyd.S., et
al., 1994). Moreover, it can be found from (3) that
only upper bound of the time delay is needed to
implement the controller (3) although the controller
has feedback of the current state and the past state
information.

3. EXAMPLE

Example 1: Consider the following system (Carlos E.
De Souza,, et al., 1999)

X(t) = [A+ AAR) IX(t) +[A +AA (1) Ix(t - 2(t)) + Bu(t),
43)

) Alo ool ool

1]’ 0 -09|° 1]’

[AA®)| <02 and [[AA()|<0.2 . T(t) sdtisfies

0<t(t)<T and 1(t)<d <1.

Choose DlzDzz{o'2 0},E1:E2:{1 O}.In
0 02 01

(Carlos E. De Souza., et al., 1999), it was shown that
the maximum allowable value of 7 that guarantees

where A= {0
0



the system (43) with d =0 is stable via a
memoryless controller is 0.3346. However, by
applying Theorem 1, we found that the upper bound
of 7 which guarantees (43) with d =0 is stable
via the controller (3) is 0.5492. In other words, we

can design acontroller as
t
-1 -1
J- { 0 _o'g}x(s)ds} ,

u(t) =—[0.2132 311.0461{x(t) +
t-0.2746
which guarantees that the closed-loop system is

asymptotically stable for any te [0 0.5492] . If

d =05, the upper bound of T which guarantees
(43) is stable via the controller (3) is 0.3927. If
d =0.9, the upper bound of T i50.1298.

Example 2: Consider the following system (Li Xi., et
al., 1997)

X(t) = [A+ AA() Ix(t) + [A + AA (1) Ix(t - 1) + Bu(t),
(44)

{0 0} {—2 —0.5} H
where A= , A= , B= ,
01 0 -1 1

JaAA®)] <02 and [AA()|<02 . (t) satisfies
0< () <7 and (t)<d <1.

02 O 10
Choose D, =D, = o o2l E =E= 0 1l

In, it was shown that the maximum allowable value
of 7 that guarantees the system (44) with d = Qis
stable via a memoryless controller is 0.3015.
However, by applying Theorem 1, we found that the
upper bound of 7 which guarantees (44) is stable
via the controller (3) is 0.5084. In other words, we

can design acontroller as
t
-2 -05
I [ 0 -1 }x(s)ds},

u(t) =—[0.2521 101.7509{x(t) +
t-0.2542
which guarantees the closed-loop system is

asymptotically stable for any te [0 0.5084].

If d=0.5, the upper bound of 7 which guarantees
(44) is stable via the controller (3) is 0.3858. If
d =0.9, the upper bound of 7 is0.1538.

4. CONCLUSIONS

In this paper, a robust controller with delay
compensation was proposed for uncertain systems
with time varying delay based on the Lyapunov
function method. Like the memoryless controller
case, it is not required to know the exact value of the
time delay athough the designed controller in this
paper depends on the current state and past state
information. Since more information on the state is
used, the given controller can achieve a better
performance than memoryless controllers in the
existing references.
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