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Abstract: In this paper, a new adaptive fuzzy controller with CMAC-based adaptive 
scaling factors is proposed. By using the proposed method, scaling factors can be tuned 
on-line, and control performance can be improved. In addition, CMAC is used only for 
tuning scaling factors, so that it is easy to implement and other fuzzy parameters can be 
designed by conventional method. Furthermore, robustness for modeling error can be 
improved as compared to conventional method. Finally, simulation results are shown to 
demonstrate that the proposed method has better dynamic and static property and has 
better robustness than conventional method. Copyright © 2002 IFAC 
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1. INTRODUCTION 
  
Since the fuzzy control technique was first 
introduced in the early 1970’s, it has been paid more 
and more attention and has been used to control a 
wide range of poorly understood plants. Their 
success was attributed to the fact that inherently 
nonlinear control strategies, expressed in a (restricted) 
natural language framework, could be obtained from 
human operator and then implemented as a fuzzy 
controller. One of its main merits is that it is very 
useful when the process models are nonlinear or too 
complex for analysis and synthesis by conventional 
control techniques (Knadelb and Langholz, 1994). 
However, it is also worth noting problem that it is 
impossible to design a fuzzy controller that need not 
assume anything about its environment. One can only 
strive to lessen its dependence and sensitivit y to the 
parameters of its environment. The main weakness of 
conventional fuzzy systems is that the fuzzy 
algorithms and parameters are provided by experts, 
and they cannot be tuned in the process. Thus, many 
new types of fuzzy controllers have been developed 
by researchers. Adaptive fuzzy controller is a type of 
the new fuzzy controllers. 
  
The first adaptive fuzzy controller was developed by 
Procyk and Mamdani at Queen Mary College 
(Procyk and Mamdani, 1979). Now, many types of 
adaptive fuzzy controllers have been developed to 

satisfy the difference process requirements. Adaptive 
fuzzy controller can be categorized into two kinds: 
the one has adaptive fuzzy rules; the other has 
adaptive fuzzy parameters. In the fuzzy rule adaptive 
controllers, the number of control rules is increased, 
decreased or their shapes are modified according to 
change of plant parameters. In the fuzzy parameter 
adaptive controller, fuzzy parameter, for example 
scaling factor, are modified according to change of 
plant parameters. In general, the fuzzy parameters 
adaptive controllers are simpler than the fuzzy rule 
adaptive controllers are both in the application and 
the design (Brown and Harris, 1994). 
  
In this paper, a new fuzzy controller with 
adaptive-scaling factors is proposed. This fuzzy 
controller can tune scaling factors on-line by 
Cerebellar Model Articulation Controller (CMAC). 
Although tuning scaling factor is simplest in all fuzzy 
parameters, it has similar effects as the change of 
mapping relationship to the control input and output 
variables, and the change of shape and size for 
membership function (Brown and Harris, 1994). 
Furthermore, CMAC can tune scaling parameters 
quickly and control performance can be improved, 
because of its learning capabilit y of non-linear 
functions, small computational complexities of the 
learning algorithm and generalization capability.  
Therefore, the proposed method is also effective for 
plants existing modeling errors. 
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This paper is organized as follows. In section 2, 
scaling factors in fuzzy controller that effect to 
system performance are introduced briefly. In section 
3, a new scheme of adaptive fuzzy controller is 
proposed. CMAC network, its learning algorithm and 
the principle of adaptive fuzzy control with 
CMAC-based scaling factor are given. In section 4, 
two-order plant is considered as including varying 
parameters, and computer simulations are conducted 
to show effectiveness of the proposed method. In 
section 5, properties of the proposed method are 
summarized. 

  
2. THE RELATION TO SCALING FACTORS AND 

SYSTEM PERFORMANCE 
  
The characteristics of fuzzy controller depend on 
fuzzy rule base, membership function, scaling factors. 
After rule base are determined by the experience of 
experts or operators, in fuzzy controller, parameters 
that can be tuned mainly are membership functions, 
scaling factors and scaling gains. 
  
Scaling factors are used to map the real input to the 
normalized input space. In general, scaling factor is 
defined as (Brown and Harris 1994) 
  

Ke=ne/emax ,                 (1) 
Kec=nec/ecmax ,               (2) 

  
where Ke is the scaling factor of the error, Kec is the 
scaling factor of the error change rate, ne nec are the 
numbers of scaling grades of error and error change 
rate respectively, emax, ecmax are the maximum range 
of the real error and error change rate respectively. 
Ke , Kec are multiplied by the corresponding input 
variable, thus altering the domain of interest for the 
respective variable. After fuzzy rule base is fixed, we 
can alter the scaling factors to modify effectively the 
distribution (the shape and size) of all of the 
membership functions defined on the appropriate 
domain, that is, changing the performance of the 
overall system. 
  

Many researchers have performed an extensive series 
of the experiments that show how the process 
dynamic and static characteristics change when 
scaling factors of fuzzy controller are altered (Procyk 
and Mamdani, 1979; Brown and Harris, 1994; Albus 
1975). These experiences are summarized in Table 1. 
  
Besides, many results show that the type, shape and 
size of fuzzy membership function determine 
mapping relation between input and output 
parameters, and system characters (Brown and Harris, 
1994). The shape of error membership function 
affects sensibility of system directly. When the curve 
shape of the system error membership function is 
flatter, system sensibility becomes inferior, and when 
the shape of the membership function for the rate of 
system error change is the flatter, system has better 
stability. Hence, in order to improve system 
performance, uneven distribution of membership 
function can be effective, that is, when system error 
is smaller, the sharper shape of error membership 
function should be use and when system error is 
larger, the flatter shape of the curve should be use. As 
for the membership function of system error change 
rate, when system error change rate is smaller, the 
shape of membership function should be flatter and 
when system error is larger, the curve shape should 
be sharper. To realize similar effects, CMAC-based 
adaptive scaling factor is proposed in the followings. 

  
3. CONTROL SYSTEM STRUCTURE AND 

LEARNING ALGORITHMS 
  
The structure and learning algorithm for adaptive 
fuzzy controller with CMAC-scaling factors are now 
given.  
  
3.1 Control system structure 
  
The final form of the fuzzy controller to be defined is 
shown in Fig.1. In the figure, the differences with 
basic fuzzy controller are only scaling factors and 
additional learning part, which are implemented by 
CMAC network and corresponding update rule. 

   
Table 1 Fuzzy controller parameter and system property change from small to big with constant scaling grade 

  
 Definition Relationship of mapping Static error Overshoot Transient time 

Ke Ke=ne/emax emax region reduce Reduce Increase Reduce 
Kec Kec=nec/ecmax ecmax region reduce Increase Reduce Increase 
Ku Ku= umax /nu umax region increase Reduce Reduce Reduce 

   
  
  
  
  
  
  
  
  
  
  

  
  
  
  
 
  
  
  
  
  

Fig.1 Block diagram of the proposed CMAC-Fuzzy control 
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3.2 Fuzzy controller 
  
In Fig.1, the structure of fuzzy controller is a basic 
fuzzy controller with two-term input and single 
output. This fuzzy controller is constructed based on 
the following assumptions: 
  
  1) The fuzzy rule base is chosen as a linear one 
and shown in Fig.5 (Li, et al., 1997); 
  2) The membership functions are chosen as the 
triangular or Gauss shape with even distribution; 
  3) Mamdani’s max-min inference method is used 
in inference part (Procyk and Mamdani, 1979); 
  4) Defuzzification chose a center of gravity 
method (Brown and Harris, 1994), that is, 

  
u= uµΣ U/ uµΣ                (3) 

  
where uµ  is membership function of U, and U is 
linguistic value of u. 
  
3.3 CMAC Neural network  
  
CMAC neural network was proposed by Albus in 
(Albus, 1975). The block diagram of CMAC is shown 
in Fig.2. From Fig.2, we can see that CMAC 
algorithm can be decomposed into three separate 
mapping, that is, 
    S—M—A—u , 
where 
    S = { input vectors} ; 
    M = { intermediate variables} , 

A = { association variables} , 
u = { output of CMAC} , 

    f1 (S---M mapping) is an input coding, 
    f2 (M---S mapping) an address computing, 

f3 (A---u mapping) an output computing. 
  
In this system, since CMACs are only used in tuning 
scaling factors, the number of memory locations in A 
is not so large in practice. Therefore, in this paper, 
the basic CMACs are used, which does not use any 
randomly mapping. 

Fig.3 shows the CMAC without random mapping for 
the two-dimensional input and one-dimensional 
output consisting of 3 overlays and 12 basis 
functions.  
  
The lattice cells are numbered from 1 to 16. Assume 
the input to the CMAC as s = (s1, s2) and the input 
space as:  

  
     S = { (s1, s2) | x1 < s1< x2, y1 < s2< y2}. 
  
Then s1 and s2 are quantized with quantization 
intervals L1 and L2, respectively. In the first overlay, 
s1 is quantized into A or B, and s2 is quantized into a 
or b, respectively. The pairs of aA, aB, bA, bB 
express basis functions, and aA(wj) implies that the 
basis function aA has the weight wj. When the input s 
is given to the 11th lattice cell, it specifies aA, dA and 
fF, and the CMAC output w1+w8+w12. 
  
Suppose that the desired signal for the input s is d 
and learning rate is g, the CMAC is then learned by 
the following correction factor δ to all weights 
corresponding to s: 
     e = d-u 

δ = ge/k 

Defining the threshold as el, the learning is continued 
until the following inequali ty is satisfied: 

     |e| < el, 

Using such learning scheme, the CMAC can 
approximate a wide variety of nonlinear functions. 
  

  
3.4 Learning process in the proposed method 
  
In Fig.1 the input of CMAC is system error or error 
change rate signal, that is, 1-input 1-output CMACs 
are used as the scaling factors. Here CMACs are 
trained by initialization process and on-line learning 
process. The initialization learning process is 
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completed by off-line learning. The initialization and 
on-line learning processes are explained in the 
followings. 
  
3.4.1 Initialization process 
  
It is difficult to employ the controller constructed by 
an adaptive law or a learning law to the real plant 
without a suitable preparation. Therefore, the 
initialization learning process is very important for 
making controller work properly. The block diagram 
of the initialization learning process of the specified 
CMAC is shown in Fig4. 
  
In Fig 4, e(t), ec(t) are system error and error change 
rate signal separately, that is, the input signal of the 
CMAC, defined as: 

  
          e (t) = r (t) - y (t),              (4) 

        ec (t) = e (t) - e (t-1),           (5) 
  
where r(t) is system input signal, y(t) is system 
output signal, and Ke0(e), Kec0(ec) are initialization 
functions, that is, the training signals. In the proposed 
method, two kinds of training signal are used: 

( I )  conventional constant scaling factor 
K0 = [ Ke0  Kec0] = [ne/emax  nec/ecmax],    (6) 

(II) scaling factor function 
 K0 (e,ec) = [ Ke0 (e)  Kec0 (e) ] 

= [ aeexp ( -be|e| )  aecexp ( bec|ec| ) ],  (7) 
  
where 

ae = ne exp(1)/emax ,  
be=1/emax ,                  (8) 
aec= 1/Kec0,     
bec= 1/ecmax, 

  
Ke0, Kec0 , Ke0(e), Kec0(ec) are used in order to 
determine the initial weights in the on-line learning 
of the CMAC. 
  
The weights W are updated so that K0 (t)  approaches 
to K0, where the off-line learning is carried out based 
on the following algorithm: 

  
W(t) = W(t) + g1(K0- K0(t))/ ρ ,     (9) 

  
Where ρ  denotes the total number of the selected 
weights in the CMAC and the g1 is the learning rate. 
  
  
  
  
  
  
  
  
  
  
3.4.2 On-line learning process 
  
After the initialization process is carried out enough, 
the learning phase is changed from the off-line to the 
on-line. The weights obtained in the initialization 
process are used as initial weights in the on-line 

learning. Fig.1 gives out the block diagram of the 
on-line learning process of the CMAC. 
  
In on-line learning, the desired signal for tuning 
cannot be obtained. Therefore, the error e(t) and error 
change rate ec(t) of desired output signal r(t) and real 
output signal y(t) are introduced to on-line learning 
process, and the on-line learning is performed so that 
the system output y(t) approaches to r(t), that is, the 
following algorithm is employed: 
  
       W(t)         : e(t) = 0, ec (t) = 0, 
       W(t) + g2 sign(e(t)) / ρ   
                   : ec (t) = 0 ,e(t) ≠ 0, 
W(t)=  W(t) - g2 sign(ec(t)) / ρ           (10) 
                   : e (t) = 0, ec(t) ≠ 0, 
       W(t) - g2 sign(e(t)*ec(t)) / ρ   
                            : otherwise, 
  
where g2 is learning rate of the on-line learning. 
 
According to the above algorithm, the CMACs are 
trained on-line. 

 
4. SYSTEM PARAMETER DESIGN AND 

COMPUTER SIMULATION 
  
In this section, to show the applicability of the 
proposed adaptive fuzzy controller, computer 
simulations are carried out, the results are described 
and compared with a conventional fuzzy controller. 
  
4.1 Plant 
  
The nominal plant to be controlled is a second-order 
process described as 
  

G(s) = k / (T1s+1) (T2s+1) .       (11) 
  
where T1, T2, and k are 8,2 and 5, respectively. By 
selecting sample time as Ts=0.05, discrete 
representation of plant is obtained: 

  
y(k)= a1

*   y(k-1)+a2
* y(k-2)+b*u(k-1),   (12) 

  
where a1

*, a2
*, b* are nominal values of plant 

parameters, and their values are 1.9691, -0.9693,    
-0.0154, respectively. 
  
Assuming there exists modeling error in plant 
parameters, computer simulations are carried out for 
following cases: 

  
y(k)= a1y(k-1)+a2y(k-2)+bu(k-1) ,    (13) 

  
case (a)  a1= a1

*  , a2= a2
*  , b= b*, 

case (b)  a1= a1
*  , a2= a2

*  +0.0386, b= b*, 
case (c)  a1= a1

*  , a2= a2
*  +0.0615, b= b*, 

case (d)  a1= a1
*  , a2= a2

*  -0.1403, b= b*, 
case (e)  a1= a1

*  , a2= a2
*  -0.2807, b= b*, 

case (f)  a1= a1
* +0.05901 , a2= a2

*  , b= b*, 
case (g)  a1= a1

*  +0.0299, a2= a2
*  +0.0386, b= b*, 

case (h)  a1= a1
*  +0.0691, a2= a2

*  +0.0386, b= b*. 
  
Also assuming the system input signal r(t) is step 
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signal that has magnitude of 10. 
  
4.2 The parameter design 
  
The numbers of scaling grades of error, error change 
rate and controller output are set as 6-grades. ku is 
selected as -16.234 according to conventional design 
method of scaling gain. The parameter regions are 
assumed as [-emax  emax] = [-10  10], [-ecmax  ecmax] 
= [-4  4]. 
  
4.2.1 Choosing of control rule base and membership 
function 
  
In order to show universality of the system, linear 
fuzzy rule base is selected as shown in Fig.5, which 
has seven linguistic terms for each input and output. 
The input and output membership functions are 
chosen even distribution triangle-shaped with 
trapezoid-shaped as shown in Fig.6.  
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4.2.2 Initialization training signal in the process 
  
As we have mentioned in 3.3.1 the training signal for 
the initialization process of CMAC is determined 
from (6), (7), (8). Then we compared control 
performances of the following two cases: 
  
(I) training signal is calculated based on the 

conventional scaling factor, that is:  
K0 = [Ke0 Kec0] = [6/10 6/4] = [0.6 1.5] 

  
(II) calculated by 

K0(e,ec) = [Ke0(e) Kec0(ec)] 
         = [ 1.62exp(-0.1|e|) 1.5 exp(0.25|ec|)] , 

where 
    be=1/ emax0  = 0.1, 
    ae= ne exp(1)/emax0 = 1.62, 
    bec= 1/ ecmax0 = 0.25, 

aec= Kec0 = 1.5. 
  
In addition, in order to show advantages of the 

proposed method, we conducted the third simulation, 
  
(III) using a non-adaptive conventional fuzzy 
controller. 

  
4.3 Simulation results 

  
The simulation results are shown in Fig.7. In the figures: 
  
(1) In Fig. 7 (a), rise times and maximum overshoots 
of methods (I), (II) are reduced as compared to 
method (III). 
  
(2) The robustness of the proposed method becomes   
better than that of the conventional method. In Figs. 7 
(c), (e), (f), with changing plant parameters, the 
results have become diverge in method (III), but the 
are kept stable in methods (I), (II). 
  
(3) In Figs. 7 (c), (e), (f), method (II) shows better 
performance than method (I).  
(4) Though steady state error are increased when 
plant parameters change, method (II) has smallest 
steady state error in the three methods in Figs.7 (b), 
(d), (g), (h). 

  
Conventional fuzzy control theory is proven 

very effective. However, when plant parameters 
change, the property of conventional fuzzy controller 
becomes unfavorable. By using the proposed method, 
better control results is obtained, as compared to 
conventional fuzzy control, especially, in cases there 
exist modeling errors. 

  
5. Conclusion 

  
In this paper, the scheme of adaptive fuzzy controller 
with CMAC-based adaptive scaling factor has been 
presented. Then, learning phase of CMAC consists of 
two steps: initialization process and on-line learning 
process. For initialization process, two kinds of 
training signal have been given, that is, constant 
scaling factors and non-linear scaling factor functions. 
Simulation results show that by using the proposed 
method, control performance can be improved as 
compared to conventional fuzzy control. It is also 
demonstrated that the proposed methods have 
robustness for modeling error. 
  
CMAC network is used only in tuning scaling factors, 
so that the design of fuzzy inference rule and 
membership function becomes more lenient. For 
example, in the simulations, we could select simple 
linear control rule and even distributing triangle 
membership function.  
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