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Abstract: This paper reports the experimental results in the application of feedback control of
acoustic noise in a 2D duct. It is shown that the feedback control of 2D ducts poses peculiar
problems compared to simple 1D ducts. The chief amongst them are the need for explicit
budgeting of uncertainties and dealing with high model orders. This paper demostrates a
practical way to design controllers for such systems using minimax LQG methods. It is shown
that an important step in the controller design is the proper choice of a weighting function.
The results presented in this paper are impressive and they can be further improved by proper
choice of actuator and sensor placements.
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1. INTRODUCTION

Active reduction or control of acoustic noise has significant
practical applications (Elliott, 1999). Successful active noise
control schemes mostly use adaptive feedforward control
(Elliott, 1999; Hu et al., 1998; Omoto and Elliott, 1999).
Feedforward control is ideal in the situations where a signal
strongly correlated with the noise can be directly measured.
There are many practical applications, e.g., structure in-
duced vibrations, where it’s difficult to obtain an acoustic
noise correlated signal which can be used to effect a feed-
forward control scheme. In these situations it’s fruitful to
apply feedback control for active noise reduction.

The essentials of modelling and control of a 1D duct have
been discussed in (Pota and Kelkar, 2001; Kelkar and
Pota, 2000). Experimental results using feedback have been
obtained for 1D ducts; see (Hong et al., 1996; Clark and
Cole, 1995) for results without robust control approach
whilst the work in (Kelkar and Pota, 2000; Erwin and
Bernstein, 1997; Petersen and Pota, 2000; Petersen, 2001)
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uses robust control theory to design controllers. It is well-
known (Pota and Kelkar, 2000) that for feedforward control
a perfect model matching is essential to provide satisfac-
tory noise cancellation. In feedback control, a mismatch
in model can lead to an unstable system. This is the main
reason for the reluctance to use feedback control for acous-
tic noise reduction. This means that the proper use of ro-
bust control theory is essential to obtain results which have
practical applications. For example, the significant improve-
ment of feedback controller performance in (Petersen and
Pota, 2000) over the other reported feedback controllers is
due to its explicit accounting of modelling uncertainties.

All the results in the literature using feedback control (Hong
et al., 1996; Clark and Cole, 1995; Kelkar and Pota, 2000;
Petersen and Pota, 2000) are reported for 1D ducts only. In
principle, conrol of 1D ducts is no different from 2D ducts.
But in practice there is much difference. Firstly it’s a lot
easier to get excellent match between identified models and
experimental data for 1D ducts. Secondly the model order
of 1D ducts is significantly lower. In this paper the practical
aspects of noise reduction in 2D ducts are highlighted based
on experimental results. The minimax LQG feedback con-
trol (Petersen et al., 2000; Ugrinovskii and Petersen, 1998)
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Fig. 1. The Experimental 2D Duct

is used to design practical controllers for a 2D acoustic duct
at the Iowa State University (ISU) shown in Figure 1.

2. EXPERIMENTAL SETUP AND MODELING

2.1 Experimental Setup

The experimental acoustic duct to be considered in this
paper is shown in Figure 1. The duct is constructed from
almumium sheets. One side of the duct (with the largest
cross-section) has two doors on hinges which provide access
to the inside of the duct to position the microphones. The
experiment is so set that there are two speakers and one mi-
crophone. One speaker is used as a disturbance and the other
speaker is the control speaker. There is one microphone
to sense the acoustic disturbance and provide the feedback
to the controller. The feedback control system is a SISO
system with the disturbance coming from an independent
speaker located on one end of the duct.

The 2D duct is 1850 mm � 1240 mm � 250 mm. Let the
origin

�
0 � 0 � 0 � be at the bottom left corner when one is

facing the door side of the duct; z-axis is up, y-axis is into
the duct, and the x-axis is along the length of the duct. The
disturbance speaker is located at one end of the duct with
the centre at

�
0 � 127 � 406 � mm; the control speaker is located

at
�
600 � 430 � 320 � mm; and the microphone is located at�

588 � 20 � 42 � mm.

2.2 System Identification and Nominal Modeling

To identify the system model, two separate frequency re-
sponses are recorded using Stanford Research’s SR785
spectrum analyser. One response from the disturbance
speaker to the microphone and the other from the control
speaker to the same microphone. The subspace identifica-
tion technique (McKelvey et al., 1996) is then used to get a
state-space representation of this two-input-one-output sys-
tem.

Experimental frequency response data was collected from
20–500 Hz. It is not practical to fit a model over the
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Fig. 2. Experimental and Identified Disturbance Speaker
Response
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Fig. 3. Experimental and Identified Control Speaker Re-
sponse

entire frequency range. A 40th order model was fitted in
the 20–100 Hz frequency range. Figures 2 and 3 show the
experimental response and the identified response for the
disturbance and control speakers, respectively. From the
figures it can be seen that even a 40th order model is unable
to match the data exactly.

After the identification process, we end up with a nominal
transfer function matrix of the form

P
�
s ����� P1

�
s � P2

�
s �	�

where P1

�
s � represents the transfer function from the dis-

turbance speaker input to the microphone output and P2

�
s �

represents the transfer function from the control speaker
input to the microphone output.

2.3 Uncertainty Modeling

The system representation which forms the starting point in
the minimax LQG controller design is shown in Figure 4.
In the figure y is the microphone output, u is the control
speaker input, w̃ represents the noise input and it is assumed
that the effects of the uncertainty show up at the sensor



output through the disturbance channel. This is one particu-
lar uncertainty model but the minimax LQG method is not
restricted to this model alone and alternative representations
are possible.
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Fig. 4. Uncertain system representation.

The block ∆
�
s � in Figure 4 is chosen such that�

∆
�
jω � ��� 1 � ω � (1)

and W
�
s � is a stable frequency weighting transfer function.

The controller design section will discuss the importance of
choosing this weighting function properly.

Let the true transfer function from the control speaker to the
microphone be given by P̃2

�
s � . From the block diagram in

Figure 4 it can be seen that
�
P̃2

�
s ��� P2

�
s � ��� P1

�
s ��� ∆

�
s � W �

s �	�
To restrict

�
∆
�
jω � �
� 1 � ω , the weighting function needs

to be chosen such that���� P̃2

�
jω ��� P2

�
jω �

P1

�
jω �

���� ��
W
�
jω � � � ω � (2)

The bound (2) is an inequality bound on the magnitude
of W

�
s � and there are several functions which will satisfy

this bound. In this paper the function on the left-hand-side
of the bound (2) is computed in the frequency range of
interest from the experimental measurements and the in-
dentified system models. From these functions a magnitude
envelope is constructed and finally that magnitude envelope
is matched by a transfer function obtained using the Yule-
Walker method (Friedlander and Porat, 1984; Petersen et
al., 2002). The envelope and the magnitude of the 40th

order transfer function, for the identified models in Figures 2
and 3, derived using Yule-Walker method is shown in Fig-
ure 5.

3. MINIMAX LQG CONTROL

This section presents a brief description of the minimax
LQG robust controller synthesis method. A more complete
and rigorous description of this method can be found in
the references (Ugrinovskii and Petersen, 1998; Petersen
et al., 2000). The minimax LQG method is applied to
uncertain systems of the form shown in Figure 6. In this
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figure, the nominal system is described by the following
stochastic state equations:

ẋ � � Ax � B1u � B2φ ��� B2w̃ �
z � C1x � D1u �
y � C2x � D2φ � D2w̃ � y

�
0 � � 0 � (3)

In the above equations, x
�
t ��� Rn is the state, u

�
t ��� Rm

is the control input, w̃
�
t � is a unity covariance white noise

input, z
�
t ��� Rq is the uncertainty output, φ

�
t ��� Rp is the

uncertainty input and y
�
t ��� Rl is the measured output.

φ (t) z(t)

Nominal

System

y(t)
~ ψ(t)

u(t)

Uncertainty

∆

w(t)

Fig. 6. Stochastic uncertain system.

The uncertainty block can be any dynamical system sat-
isfying a general uncertainty constraint; see (Petersen et
al., 2000; Ugrinovskii and Petersen, 1998). In particular, this
uncertainty constraint is satisfied by the uncertainty block
∆
�
s � in equation (1).

It is assumed that the cost function under consideration is of
the form (E(.) is the expected value)

J � lim
T � ∞

1
2T

E � T

0

�
x
�
t ��� Rx

�
t ��� u

�
t ���Gu

�
t � � dt � (4)

where R � 0 and G � 0 � The minimax LQG control prob-
lem involves finding a controller which minimises the maxi-
mum of this cost function where the maximum is taken over
all uncertainties satisfying the uncertainty constraint (1). If
we define a variable

ζ ��� R
1
2 x

G
1
2 u � � (5)



then the minimax LQG control problem can be solved by
solving the scaled H∞ control problem represented in Figure
7; see (Petersen et al., 2000; Ugrinovskii and Petersen,
1998).

H(s)

u(t) y(t)

ζ

z(t)
τ

(t)
τ
-1 w(t)~w(t)

(t)
ξ

Controller

Nominal

System

Fig. 7. The scaled H∞ control problem.

In this H∞ control problem, the nominal system is described
by equations (3) and (5) and the controller is to be con-
structed such that the closed loop system is stable and the
transfer function from w̃

�
t � to ξ

�
t � satisfies the H∞ norm

bound �
Tw̃ξ

�
jω � � � 1 � ω �

It is well known that the solution to this H∞ control problem
can be obtained in terms of the following pair algebraic
Riccati equations (e.g., see (Zhou et al., 1996)):

�
A � B2D �2 � D2D �2 ��� 1C2 � Y∞� Y∞

�
A � B2D �2 � D2D �2 � � 1C2 � �� Y∞
�
C �2 � D2D �2 ��� 1C2 � 1

τ
Rτ � Y∞� B2

�
I � D �2 � D2D �2 ��� 1D2 � B �2 � 0 (6)

and

X∞
�
A � B1G � 1

τ ϒ �τ ��� � A � B1G � 1
τ ϒ �τ � � X∞� � Rτ � ϒτ G � 1

τ ϒ �τ �� X∞
�
B1G � 1

τ B �1 � 1
τ

B2B �2 � X∞ � 0 � (7)

where the solutions are required to satisfy the conditions
Y∞ � 0, X∞ � 0, I � 1

τ Y∞X∞ � 0 and Rτ � ϒ �τ G � 1
τ ϒτ � 0 �

Here Rτ
∆� R � τC �1C1, Gτ

∆� G � τD �1D1 and ϒτ
∆� τC �1D1.

In order to solve the minimax LQG control problem, the
parameter τ � 0 is chosen to minimize the cost bound Wτ
(the upperbound on J in (4)) defined by

Wτ
∆� tr

�� �
τYCT

2 � B2DT
2 � � D2DT

2 � � 1

� � τC2Y � D2BT
2 � X � I � YX � � 1� τY Rτ

�� �
(8)

Then, the minimax LQG controller is defined by the state
equations

˙̂x � � A � B1G � 1
τ ϒ �τ � x̂� � B1G � 1

τ B �1 � 1
τ

B2B �2 � X∞ � x̂� � I � 1
τ

Y∞X∞ ��� 1 � Y∞C �2 � B2D �2 �
� � D2D �2 ��� 1 � y � � C2 � 1

τ
D2B �2X∞ � x̂ 	

uτ � � G � 1
τ
�
B �1X∞ � ϒ �τ � x̂ � (9)

4. CONTROLLER DESIGN

The appropriate state-space representaton in equation (3)
are arrived at from P1

�
s � , P2

�
s � , and W

�
s � as discussed

previously. Note that the theory of (Ugrinovskii and Pe-
tersen, 1998; Petersen et al., 2000) requires that D2D �2 � 0 in
(3). This is achieved by adding a small measurement noise to
the system in addition to the process noise w̃

�
t � . We choose

the matrix R in the cost function (4) as R � C �2C2 � That is, the
term x

�
t � � Rx

�
t � in the cost function (4) corresponds to the

norm squared value of the nominal system output. The term
u � Gu in the cost function (4) is treated as a design parameter
affecting controller gain. However, in all cases it was found
that setting G to the small value of G � 10 � 8 did not lead to
excessive controller gains.

Note that with the above choice of plant model (3) and
cost function (4), the nominal LQG problem essentially
amounts to the problem of minimizing the noise energy
at the microphone position when the system is subject to
a white noise disturbance entering the system through the
control input channel.

The minimax LQG controller is synthesized by first choos-
ing the constant τ � 0 to minimize the quantity Wτ defined
in (8). With this value of the parameter τ , the controller is
constructed according to the formula (9). The order of this
controller will be the sum of the order of the nominal plant
model P

�
s � together with the order of the weighting filter

W
�
s � . For the case under discussion the controller order is

80. Such a high order controller may lead to problems of
numerical error and excessive computational load when im-
plemented. Hence, the balanced controller reduction method
described in Section 19.1.1 of (Zhou et al., 1996) was
applied in order to obtain a 40th order approximation to
the 80th order controller. It was found that with this level
approximation, there was very little degradation in the pre-
dicted closed loop performance. The designed controller is
shown in Figure 8.

5. EXPERIMENTAL RESULTS

The reduced dimension controller designed in Section 4 was
implemented on a dSPACE DS1103 system as shown in Fig-
ure 9. The spectrum analyser is used to measure the closed
loop frequency response from the disturbance speaker input
to the microphone output. In order to implement each con-
troller, it was first discretized using the FOH method with a
sample period of 0 � 5 � 10 � 3 seconds. The resulting discrete



20 40 60 80 100 120 140
20

25

30

35

40

45

M
ag

ni
tu

de
 (

dB
)

Frequency (Hz)

Controller Bode Plots

20 40 60 80 100 120 140
−400

−300

−200

−100

0

100

200

300

P
ha

se
 (

de
gr

ee
s)

Frequency (Hz)

Fig. 8. LQG minimax Controller

Amp

Disturbance
Speaker

Amp

microphone

Control
Speaker

pre-ampSpectrum
Analyser

dSpace

Fig. 9. Two dimensional duct feedback controller setup
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sponse

time controller was then implemented on the dSPACE sys-
tem with this sample period. Figure 10 shows the resulting
measured frequency response for the open loop and closed
loop system.

6. PROPER CHOICE OF THE UNCERTAINTY MODEL

In the closed loop response in Figure 10 it can be seen that
there is an increase in the gain near the deep null around

20 30 40 50 60 70 80 90 100
−60

−50

−40

−30

−20

−10

0

10

M
ag

ni
tu

de
 (

dB
)

Frequency (Hz)

Model Error, Uncertainty Bound and Identification Weighting

Fig. 11. Uncertainty Bound (dashed-20log10
�
W
�
jω � � ,

solid-20log10
�
P̃2

�
jω ��� P2

�
jω � � � ���P1

�
jω � � )

20 30 40 50 60 70 80 90 100
−55

−50

−45

−40

−35

−30

−25

−20

−15

Freq (Hz)

M
ag

 (
dB

)

Controlled and Uncontrolled Duct Frequency Response

controlled
uncontrolled

Fig. 12. Experimental Closed Loop and Open Loop Re-
sponse

70 Hz. This is due the extreme difficulty in finding a good
match between the identified model and the experimental
data. To shape the closed loop response at 70 Hz the choice
of frequency weighting function W

�
s � is slightly altered as

shown in Figure 11. The envelope is chosen very conser-
vatively at frequencies greater than 70 Hz. The experimen-
tal response of the controller designed with this method is
shown in Figure 12. From the figure it’s clear that a proper
selection of the weighting function helps in shaping the
closed loop response.

7. CONTROL OF HIGHER FREQUENCY MODES

The experimental results presented thus far were restricted
to the lower frequency range of 20–100 Hz. In this section
the minimax LQG control method is used to demonstrate
the controller performace between 250–450 Hz. The choice
of uncertainty envelope and the experimental closed loop
and open loop performace is shown in Figures 13 and 14,
respectively. There is a clear improvement in the damping
of the resonant peaks in the frequency range of interest.
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8. CONCLUSIONS

This paper successfully demonstrates that feedback control
can be applied to very high order acoustical systems. Due
to the practical difficulty in implementing very high order
controllers it is essential that a small frequency band be
selected for noise attenuation. The chosen minimax LQG
control method gives the flexibility to choose the frequency
weighting function W

�
s � such that the controller targets a

specified frequency band. Overall the experimental results
in this work are very impressive and further work in the
selection of actuator-sensor placement (to obtain a tighter
fit between the model and data) and a choice of frequency
weighting function can improve the results significantly.
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