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Abstract: This paper is concerned with state-space realizations of the adjoints of the vari-
ationals of Hamiltonian control systems. It will be shown that the variational systems of a
class of Hamiltonian systems have self-adjoint state-space realizations, that is, the variational
system and its adjoint have the same state-space realizations. This implies that the input-
output mapping of the adjoint of the variational system of a given Hamiltonian system can be
calculated by only using the input-output mapping of the original system. Furthermore, this
property is applied to adjoint based iterative learning control with optimal control type cost
functions.
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1. INTRODUCTION

Hamiltonian control systems are the systems de-
scribed by well known Hamilton’s canonical equa-
tions with controlled Hamiltonians (Crouch and van
der Schaft, 1987). They are introduced mainly to char-
acterize variational properties of dynamical systems
and is used for optimal control, see also (Young,
1969). Those systems were also utilized to describe
physical systems, and the related geometric methods
of controlling this class of systems supplied fruitful
results in control engineering (van der Schaft, 2000;
Marsden and Ratiu, 1999). Furthermore, this control
framework was generalized in order to handle electro-
mechanical systems as well as conventional mechan-
ical ones (Maschke and van der Schaft, 1992), and
several control methods are proposed for them, e.g.
(Maschke and van der Schaft, 1992; Fujimoto and
Sugie, 2001; van der Schaft, 2000). Therefore a scope
of this paper contains control of a class of physical
systems such as mechanical and electrical systems.

On the other hand, adjoint operators play important
roles in linear control systems theory. They provide
duality between inputs and outputs which is useful
in a variety of control problems, see e.g. (Zhou et
al., 1996). Furthermore its nonlinear extension (Batt,
1970) and related works, e.g. (Gray and Scherpen,
1999; Fujimoto et al., 2000), provide useful analysis
tools for nonlinear systems. In particular, in (Fujimoto
and Scherpen, 2000), the adjoint of the variational
systems were utilized in order to characterize the crit-

ical points of the Hankel operators and this charac-
terization gives a new balancing and model reduction
method. Similar ideas are often used in optimal con-
trol (Crouch and van der Schaft, 1987; Young, 1969)
and optimization (Walsh, 1975).

In this paper, we discuss state-space realizations of
the adjoints of the variational systems of Hamiltonian
systems based on the framework developed in (Crouch
and van der Schaft, 1987; Fujimoto et al., 2000; Fuji-
moto and Scherpen, 2000). It will be shown that the
variational systems of a class of Hamiltonian systems
have self-adjoint state-space realizations, that is, the
variational system and its adjoint have the same state-
space realizations. This implies that the input-output
mapping of the adjoint of the variational system of a
given Hamiltonian system can be calculated by only
using the input-output mapping of the original system.
Furthermore, this property can be utilized for adjoint
based iterative learning control (with optimal con-
trol type criterion), e.g. (Yamakita and Furuta, 1991),
without using the plant model, because we can obtain
the adjoint mapping by the input-output data of the
original system. This will provide a basis of a new
iterative learning control scheme.

2. SELF-ADJOINT STATE-SPACE
REALIZATIONS OF HAMILTONIAN SYSTEMS

This section derives the main results, self-adjoint
state-space realizations of Hamiltonian systems.
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2.1 Variational systems

Consider an operator Σ : X ×U → X ×Y with Hilbert
spaces X , U and Y with a state-space realization

(x1
,y) = Σ(x0

,u) :







ẋ = f (x,u, t), x(t0) = x0

y = h(x,u, t)
x1 = x(t1)

(1)

defined on a time interval t ∈ [t0, t1]. Typically, X =
Rn, U = Lm

2 [t0, t1] and Y = Lr
2[t

0, t1]. A simpler nota-

tion Σx0
: U → Y with

y = Σx0
(u) :

{

ẋ = f (x,u, t) x(t0) = x0

y = h(x,u,t)

is also employed.

Here let us recall Fréchet derivative of nonlinear oper-
ators.

Definition 1. Consider an operator Σ : X → Y with
Banach spaces X and Y . Σ is said to be Fréchet
differentiable at x ∈ X if there exists an operator dΣ :
X ×X →Y such that dΣ(x,ξ ) is linear in ξ and that

lim
‖ξ‖X →0

‖Σ(x+ ξ )−Σ(x)−dΣ(x,ξ )‖Y

‖ξ‖X
= 0.

Under these circumstances, dΣ(x, ·) is called the
Fréchet derivative of Σ at x.

The following lemma proves that the Fréchet deriva-
tive of an operator with the state-space realization as
in (1) is given by its variational system (Crouch and
van der Schaft, 1987).

Lemma 2. (Fujimoto and Scherpen, 2000) The state-
space realization of the Fréchet derivative of an op-
erator Σ with a state space realization (1) is given
by the variational system of Σ defined by (x1

v ,yv) =
dΣ((x0,u), (x0

v ,uv)) :


















ẋ = f (x,u, t), x(0) = x0

(

ẋv

yv

)

=
∂

∂ (x,u)

(

f (x,u, t)
h(x,u, t)

)(

xv

uv

)

, xv(0) = x0
v

x1
v = xv(x

1)

.

By its construction in Definition 1, the Fréchet deriva-
tive dΣ(x,dx) is a locally linear approximation to Σ(x),
that is

dΣ(x,dx) ≈ Σ(x+dx)−Σ(x)

holds when dx is small.

2.2 Adjoints of the variational of Hamiltonian systems

Here we consider a Hamiltonian system ΣH with a
controlled Hamiltonian H(x,u, t) as (x1,y) = ΣH(x0,u) :



























ẋ = J
∂H(x,u,t)

∂x

T

, x(t0) = x0

y = −
∂H(x,u, t)

∂u

T

x1 = x(t1)

(2)

with a skew-symmetric matrix J ∈ Rn×n . In classical
mechanics, we treat the class of those systems satisfy-
ing

x = (q, p)∈ R2m
, J =

(

0 I
−I 0

)

∈ R2m×2m
.

The variational system and its adjoint of ΣH is given
by the following theorem.

Theorem 3. Consider the Hamiltonian system with
the controlled Hamiltonian ΣH in (2). Suppose that
J is constant. Then the Fréchet derivative of ΣH is
described by another Hamiltonian system (x1

v ,yv) =
dΣH((x0,u),(x0

v ,uv)) :










































ẋ = J
∂H(x,u, t)

∂x

T

, x(t0) = x0

ẋv = J
∂Hv(x,u,xv,uv, t)

∂xv

T

, xv(t
0) = x0

v

yv = −
∂Hv(x,u,xv,uv, t)

∂uv

T

x1
v = xv(t

1)

(3)

with a controlled Hamiltonian

Hv(x,u,xv,uv, t) =
1
2

(

xv

uv

)T ∂ 2H(x,u, t)
∂ (x,u)2

(

xv

uv

)

. (4)

Furthermore, the adjoint of the variational system with
zero initial state ua 7→ ya = (dΣx0

(u))∗(ua) is given by
ya = (dΣx0

H (u))∗(ua) :






























ẋ = J
∂H(x,u, t)

∂x

T

, x(t0) = x0

ẋv = J
∂Hv(x,u,xv,ua, t)

∂xv

T

, xv(t
1) = 0

ya = −
∂Hv(x,u,xv,ua, t)

∂ua

T

(5)

which has the same state-space realization as dΣx0

H (u).
Suppose moreover that J is nonsingular. Then the ad-
joint (x1

a,ua) 7→ (x0
a,ya) = (dΣ(x0,u))∗(x1

a,ua) is given
by the state-space realization (5) with the initial and
final states

xv(t
1) = J x1

a, x0
a = J−1xv(t

0).

Proof. First of all, let us calculate the variational
system of ΣH according to Lemma 2.







































ẋ = J
∂H(x,u, t)

∂x

T

(

ẋv

yv

)

=
∂

∂ (x,u)









J
∂H(x,u, t)

∂x

T

−
∂H(x,u, t)

∂u

T









(

xv

uv

)

x1
v = xv(t

1)

.



We obtain

(

ẋv

yv

)

=

(

J 0
0 −I

)

∂ 2H(x,u, t)
∂ (x,u)2

T (

xv

uv

)

=

(

J 0
0 −I

)

∂Hv(x,u,xv,uv, t)
∂ (xv,uv)

T

=









J
∂Hv(x,u,xv,uv, t)

∂xv

T

−
∂Hv(x,u,xv,uv, t)

∂uv

T









which equals to (3). Next we calculate its adjoint


























ẋ = J
∂H(x,u,t)

∂x

T

(

ẋa

ya

)

=

(

−I 0
0 I

)((

J 0
0 −I

)

∂ 2H(x,u, t)
∂ (x,u)2

)T(
xa

ua

)

x0
a = xa(t

0)

.

Here let us define a (possibly singular) coordinate
transformation x̄a = Jxa and use the fact JT =−J, then
we obtain

(

˙̄xa

ya

)

=

(

J 0
0 I

)(

ẋa

ya

)

=

(

−J 0
0 I

)((

J 0
0 −I

)

∂ 2H(x,u, t)
∂ (x,u)2

)T(
xa

ua

)

=

(

−J 0
0 I

)

∂ 2H(x,u, t)
∂ (x,u)2

(

J 0
0 −I

)T (

xa

ua

)

=

(

−J 0
0 I

)

∂ 2H(x,u, t)
∂ (x,u)2

(

−x̄a

−ua

)

=

(

J 0
0 −I

)

∂ 2H(x,u, t)
∂ (x,u)2

(

x̄a

ua

)

.

This proves (5). Furthermore, if J is nonsingular, then
the behavior of the state xa(t) can be recovered by
xa(t) = J−1 x̄a(t). This completes the proof. 2

This theorem proves the fact that the adjoint of the
variational system of the Hamiltonian system ΣH in
(2) has a self-adjoint state-space realization. Note that
the input-output mapping of the variational system is
given by

dΣ((x0
,u), (dx0

,du))≈ Σ(x0+dx0
,u+du)−Σ(x0

,u) (6)

for a small (dx0,du). This implies that the input-
output mapping of the adjoint (dΣH(x0,u))∗ can also
be produced by (6) under certain initial conditions.
This theorem will be utilized for iterative learning
control in the next section.

Remark 4. Strictly speaking, the operator dΣ is not
self-adjoint because dΣ and (dΣ)∗ have different
boundary conditions (initial and final states). To ob-
tain self-adjoint operators in a strict sense, we need
to assign both initial and final states of the original
system (2) as the state-space realizations in (Fujimoto
et al., 2000). Also it is noted that a class of port-

controlled Hamiltonian systems have a similar struc-
ture to that in Theorem 3, and it can be utilized to de-
rive self-adjoint nonlinear Hilbert adjoints (Scherpen
and Gray, 2001).

Example 5. Consider a mechanical system

(

q̇
ṗ

)

=

(

0 I
−I 0

)









∂H0(q, p)

∂q

T

∂H0(q, p)

∂ p

T









+

(

0
I

)

u

with

H0(q, p) =
1
2

pTM(q)−1 p+V (q).

This system can be described by the Hamiltonian
system (2) with a controlled Hamiltonian

H(q, p,u) = H0(q, p)−uTq.

For this system the output function defined in (2) is

y = −
∂H
∂u

T

= q.

Therefore the adjoint of the variational system with
respect to the above output can be calculated by using
the input-output mapping of the variational system
using (6).

2.3 Adjoints of the variational of Hamiltonian systems
with dissipation

Next we consider a Hamiltonian system ΣH with
a controlled Hamiltonian H(x,u, t) with dissipation
(x1,y) = ΣH(x0,u) :



























ẋ = (J −R)
∂H(x,u, t)

∂x

T

, x(t0) = x0

y = −
∂H(x,u, t)

∂u

T

x1 = x(t1)

(7)

with a skew-symmetric matrix J ∈ Rn×n and a semi-
positive definite one R ∈ Rn×n . The additional term
R represents dissipative elements such as friction of
mechanical systems and resistance of electric circuits.
For this system, the following theorem holds.

Theorem 6. Consider the Hamiltonian system with
dissipation and the controlled Hamiltonian ΣH in (7).
Suppose that J and R are constant and that there
exist nonsingular matrices Tx ∈ Rn×n and Tu ∈ Rm×m

satisfying

J = −TxJ T−1
x

R = TxR T−1
x

∂ 2H(x,u,t)
∂ (x,u)2 =

(

Tx 0
0 Tu

)

∂ 2H(x,u,t)
∂ (x,u)2

(

Tx 0
0 Tu

)−1

.

(8)



Then the Fréchet derivative of ΣH is described by
another Hamiltonian system
(x1

v ,yv) = dΣH((x0,u), (x0
v ,uv)) :











































ẋ = (J −R)
∂H(x,u, t)

∂x

T

, x(t0) = x0

ẋv = (J −R)
∂Hv(x,u,xv,uv, t)

∂xv

T

, xv(t
0) = x0

v

yv = −
∂Hv(x,u,xv,uv, t)

∂uv

T

x1
v = xv(t

1)
(9)

with a controlled Hamiltonian Hv(x,u,xv,uv, t) in (4).
Furthermore, the adjoint of the variational system with
zero initial state ua 7→ ya = (dΣx0

(u))∗(ua) is given by
ya = (dΣx0

H (u))∗(ua) :






































ẋ = (J −R)
∂H(x,u, t)

∂x

T

, x(t0) = x0

ẋv = −(J−R)
∂Hv(x,u,xv,uv,t)

∂xv

T
∣

∣

∣

∣

∣

uv=Tuua

, xv(t
1) = 0

ya = −T−1
u

∂Hv(x,u,xv,uv, t)
∂uv

T
∣

∣

∣

∣

∣

uv=Tuua

.

(10)
Suppose moreover that J −R is nonsingular. Then the
adjoint (x1

a,ua) 7→ (x0
a,ya)(dΣ(x0,u))∗(x1

a ,ua) is given
by the state-space realization (10) with the initial and
final states

xv(t
1)=−(J−R)Txx1

a, x0
a =−((J−R)Tx)

−1xv(t
0).

Proof. First of all, let us calculate the variational
system of ΣH according to Lemma 2.






































ẋ = (J −R)
∂H(x,u, t)

∂x

T

(

ẋv

yv

)

=
∂

∂ (x,u)









(J −R)
∂H(x,u, t)

∂x

T

−
∂H(x,u, t)

∂u

T









(

xv

uv

)

x1
v = xv(t

1)

.

We obtain

(

ẋv

yv

)

=

(

J −R 0
0 −I

)

∂ 2H(x,u, t)
∂ (x,u)2

T (

xv

uv

)

=









(J −R)
∂Hv(x,u,xv,uv, t)

∂xv

T

−
∂Hv(x,u,xv,uv, t)

∂uv

T









which equals to (9). Next we calculate its adjoint


























ẋ = (J−R)
∂H(x,u, t)

∂x

T

(

ẋa

ya

)

=

(

−I 0
0 I

)((

J−R 0
0 −I

)

∂ 2H(x,u,t)
∂ (x,u)2

)T(
xa

ua

)

x0
a = xa(t

0)

.

Here let us define a (possibly singular) coordinate
transformation x̄a = −(J −R)Txxa and input and out-

put transformations ūa = Tuua and ȳa = Tuya , then we
obtain

(

˙̄xa

ȳa

)

=

(

−(J−R)Tx 0
0 Tu

)(

ẋa

ya

)

=

(

(J−R)Tx 0
0 Tu

)((

J−R 0
0 −I

)

∂ 2H(x,u,t)
∂ (x,u)2

)T(
xa

ua

)

=

(

(J−R)Tx 0
0 Tu

)

∂ 2H(x,u,t)
∂ (x,u)2

(

−J−R 0
0 −I

)(

xa

ua

)

=

(

J−R 0
0 I

)(

Tx 0
0 Tu

)

∂ 2H
∂ (x,u)2

(

Tx 0
0 Tu

)−1(
(J−R)Txxa

−Tuua

)

=−

(

J−R 0
0 I

)

∂ 2H(x,u, t)
∂ (x,u)2

(

x̄a

ūa

)

.

This proves (10). Furthermore, if J −R is nonsingular
then the behavior of the state xa(t) can be recovered
by xa(t) = −T−1

x (J −R)−1 x̄a(t). This completes the
proof. 2

Remark 7. Note that the dynamics of xa in (10) is the
reverse-time version of that of xv in (9). For example,
we can utilize Theorem 6 in the following two cases.
(i) Suppose the input u is given such that the time
history of the Hessian of the Hamiltonian with respect
to (x,u) is symmetrical with respect to the time t , i.e.,

∂ 2H(x,u, t)
∂ (x,u)2 (t − t0) =

∂ 2H(x,u, t)
∂ (x,u)2 (t1 − t)

for all t ∈ [t0, t1]. Then dΣH has a pseudo self-adjoint
state-space realization. This condition can occur in a
PTP control of robot manipulators.
(ii) Suppose H(x,u,t) is linear in u and consider a
round trip type trajectory, that is, consider two inputs
u1 and u2 such that

ϕ(t−t0
, t0

,x0
,u1) = ϕ(t1−t, t0

,ϕ(t1
, t0

,x0
,u1),u2)

for all t ∈ [t0, t1], where ϕ(t, t0,x0,u) denotes the
solution of the state x(t) of the system ΣH(x0,u).

Then the state-space realizations of (dΣx0
(u1))

∗ and

dΣϕ(t1 ,t0,x0,u1)(u2) coincide with each other, that is,

(dΣx0
(u1))

∗ can be calculated by the input-output data

of Σϕ(t1
,t0

,x0
,u1)(u2) and vice versa. This condition can

hold when we perform iterative learning control with
respect to a round trip type desired trajectory.

Example 8. Consider an LCR-circuit depicted in Fig-
ure 1. Let ϕ1 and ϕ2 denote the flux linkages, HL
denotes the inductance energy (a nonlinear function
of ϕ1 and ϕ2), R1 denotes the resistance, HC denotes
the stored energy of capacitance (a nonlinear function
of Q), Q denotes the charge, and V denote the input
voltage. Let us definite the input u = V and the state
x = (Q,ϕ1,ϕ2). Then we obtain the Hamiltonian sys-
tem (7) with



PSfrag replacements

ϕ1 ϕ2

R1

HC

HL
Q

V

Fig. 1. LCR-circuit

H(Q,ϕ1,ϕ2,u) = HC(Q)+HL(ϕ1,ϕ2)+Q u

J =





0 −1 −1
1 0 0
1 0 0



 , R =





0 0 0
0 0 0
0 0 R1



 .

This system reduces to a port-controlled Hamiltonian
system


















Q̇
ϕ̇1
ϕ̇2



 =





0 −1 −1
1 0 0
1 0 −R1





∂ (HC+HL)

∂ (Q,ϕ1,ϕ2)

T

+





0
1
1



u

y = −Q

.

This system satisfies the matching condition (8) with

Tx = diag(1,−1,−1), Tu = 1.

Therefore, we can calculate the adjoint of the varia-
tional system by using the input-output mapping of the
original system provided the assumptions in Remark 7
hold.

3. APPLICATION TO ITERATIVE LEARNING
CONTROL

This section briefly explains how to apply the results
in Section 2 to iterative learning control.

3.1 General framework

Let us consider the system Σ in (1) and a cost function
Γ : X2 ×U × Y → R. The objective is to find the
optimal input (x0

?,u?) minimizing the cost function Γ,
that is,

(x0
?,u?) := arg min

(x0,u)∈X1×U1

Γ(x0
,u,x1

,y) (11)

with X1 × U1 ⊂ X × U . In general, however, it is
difficult to obtain a global minimum since the cost
function Γ is not convex. Hence we try to obtain a local
minimum here, i.e., X1 ×U1 ( X ×U . Note that the
Fréchet derivative of Γ is

dΓ(x0
,u,x1

,y)(dx0
,du,dx1

,dy)

where

dΓ(x0
,u,x1

,y) ∈ (X2 ×U ×Y )∗.

It follows from well-known Riesz’s representation the-
orem and the linearity of Fréchet derivative that there

exists an operator Γ′ : X2 ×U ×Y → X2 ×U ×Y such
that

dΓ(x0
,u,x1

,y)(dx0
,du,dx1

,dy)

= 〈Γ′(x0
,u,x1

,y), (dx0
,du,dx1

,dy)〉
X2×U×Y

. (12)

Since (x1,y) = Σ(x0,u), the cost function Γ is de-
scribed by

Γ(x0
,u,x1

,y) = Γ((x0
,u),Σ(x0

,u)).

Hence a necessary condition for the optimality (11) is
characterized via its Fréchet derivative as

d
(

Γ((x0
?,u?),Σ(x0

?,u?))
)

(dx0
,du) = 0

for all (dx0
,du). Here we can calculate

d
(

Γ((x0
,u),Σ(x0

,u))
)

(dx0
,du)

= dΓ((x0
,u),Σ(x0

,u))
(

(dx0
,du),dΣ(x0

,u)(dx0
,du)

)

= 〈Γ′((x0
,u),Σ(x0

,u)),

(

idX×U
dΣ(x0

,u)

)

(dx0
,du)〉

X2×U×Y

= 〈
(

idX×U ,(dΣ(x0
,u))∗

)

Γ′(x0
,u,x1

,y), (dx0
,du)〉X×U .

Therefore, if the adjoint (dΣ(x0,u))∗ is available, we
can reduce the cost function Γ down at least to a local
minimum by an iteration law

(x0
(i+1),u(i+1)) = (x0

(i),u(i))

−K(i)

(

idX×U , (dΣ(x0
(i),u(i))

∗
)

Γ′(x0
(i),u(i),x

1
(i),y(i))

(13)

or, in the case x0 is fixed, by another one

u(i+1) = u(i)

−K(i)

(

0UX , idU

)

(

idX×U , (dΣ(x0
(i),u(i)))

∗
)

×Γ′(x0
(i),u

(i),x1
(i),y

(i)) (14)

with a small K(i) > 0.

The results in Section 2 enable us to execute this
procedure without using the parameters of the original
operator Σ, provided Σ is a Hamiltonian system ΣH .
More precise discussion will be made in the following
subsection.

3.2 Iterative learning control

In this subsection, we consider the Hamiltonian sys-
tem Σ = ΣH in (2) and execute the iterative learning
procedure (13) with respect to two typical cost func-
tions.

Conventional iterative learning control
A typical problem of iterative learning control
(Yamakita and Furuta, 1991) is to produce an input



ud letting the output y track a given desired trajec-
tory yd , that is, to reduce the cost function:

Γ(y)=

∫ t1

t0
(y(t)−yd(t))TΓy(y(t)−yd(t))dt (15)

with a positive definite matrix Γy ∈ Rm×m. In this
case, Γ′ in (12) is given by

Γ′(y) = 2
(

0, 0, 0, Γy(y− yd )
)

.

Hence the iteration law (14) reduces to

u(i+1) = u(i)−K(i)(dΣx0

H (u(i)))
∗Γy(y(i) − yd).

The input-output mapping of the adjoint operator
(dΣx0

H (u(i)))
∗ can be obtained by that of the original

operator ΣH using (5) and (6).
Optimal control type criterion

A typical optimal control problem is to achieve a
given desired final state x1 while minimizing the
norm of u, that is, to reduce the cost function:

Γ(u,x1)=

∫ t1

t0
uTΓuu dt +(x1−x1 d

)TΓ
x1(x

1−x1 d
)

(16)
with positive definite matrices Γu ∈Rm×m and Γ

x1 ∈

Rn×n. In this case, Γ′ in (12) is given by

Γ′(u,x1) = 2
(

0, Γu u, Γ
x1(x

1 − x1d
), 0

)

.

Hence the iteration law (14) reduces to

u(i+1) = u(i)−K(i)×
(

Γuu+(0UX,idU )(dΣ(x0
(i),u(i))

∗(Γ
x1(x

1−x1 d
),0)

)

.

The input-output mapping of the adjoint operator
(dΣ(x0

(i),u
(i)))

∗ can be obtained by that of the origi-
nal operator ΣH using (5) and (6).

Thus iterative learning control with respect to the
cost functions (15) and (16) can be executed. Of
course this procedure can be performed with any cost
function Γ(x0,u,x1,y), provided Σ = ΣH as in (2) (or
(7) under the circumstances in Remark 7). This result
will provide a basis of a new iterative learning control
for a class of physical systems in the Hamiltonian
formulation.

4. CONCLUSION

This paper has discussed state-space realizations of
the adjoints of the variational systems of Hamiltonian
control systems. It has been shown that the varia-
tional systems of a class of Hamiltonian systems have
self-adjoint state-space realizations. Furthermore, this
property has been utilized for adjoint based optimal
control without using the model of the system, be-
cause we can obtain the adjoint mapping by the input-
output data of the original system. In the succeeding
research, we will investigate a new iterative learning
control scheme based on the results in this paper.
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