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Abstrad: This paper applies the block control method to design a decomposed finite
spectrum assignment control law suitable for multivariable linear time-delay systems. A
block controllable form is introduced and a non-singular transformation that reduces the
system to this form is proposed. Conditions of stability of the dosed-loop system are

derived. Copyright © 2002 IFAC
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1. INTRODUCTION

It is well known that delays often presented in
various engineaing systems may dramaticdly limit
the performance and sometimes degtabilize the
closed-loop system dynamics. Therefore, the
feadback stabilizaion problem has been extensively
studied, and several controllers based on optimal
control method (Zavarei, and Jamshidi, 1987, Feron,
et al., 1992) including H,, and LMI approaches (see
Li, et al., 1997; Leyva-Ramos, and Pearson, 2000),
have been propcsed. The common fedure of the
mentioned papers is that their derivations are based
on analysis of complete order system.

In this paper, in order to assign finite spedrum in
linear systems with delay, the block control principle
is applied. In order to achieve this, a spedd date
representation must be used which will be referred as
the Block Controllable Form with Delay (or BCD-
form), consisting of a set of blocks that can be of
different dimension. This approach has siccesdully
been employed for decomposition control of linea
(Doddsand Loukianov, 1997), and pasibility of
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applying this approach to design controller for
delayed systems, isinvestigated.

2. BLOCK DECOMPOSITION

Consider alinear time-delay system described by the
following state eguation

X(t) = AX(t) +Cx(t—1) +Bu(t) +Du(t—-1) (1)
where
xOR", uOR™, x(t)=¢(t), OtO[ty -1, tp], and
¢(t) iscontinuous vedor-valued initial function.

The essential feaure of the propased method is the
conversation of the system (1) into following BCD-
form consigting d r blocks:

)‘(r 1) =A% () +C,x, (t-1)

- (29)
+ Br,l[xr—l(t) +I X, (t=T1)]

%i(t) = A (1) +Cx; (t—T) + B; X4 (®) + x4 (t - 1))

i=2..r-1 (2b)
%1(t) = A Xy (1) + CyXg (t—7) + Byg[u(t) + Myu(t—7)]
(20)

where X = (X, ,....%)", X; = (X, X) ", X; OR™M,



n =n. 3
1=1
Theintegers ny,n,, -+, n, define the structure of the
system and satisfy the foll owing condition:

N <N <---<nE<m.
The case, when (n, =n,_;), was considered by
Loukianov and Escoto, (2000). Here, the case when
Np <Np_g <--<Mm <M (4)

will be investigated.

rankB;, =n;, i =1---,r,

Theinitial system (1) isbrought to the form (2a)-(2c)
through the following iterative transformation
procedure consisting o (r —1) steps:

Step 1. The following assumptions will be crried
out for each step of the procedure.
All rankB =n, <m.

This means that some @ntrol comporents are
linearly dependent. Then we can find a matrix

'; OR™™ such that
B =BT, (5)
with BOR™™ , and rankB =n,. Using (5), a new
control vedor v, vOR™ of reduced dimension is
defined as
u(t) =Ty v(t). ©)
So, the components of the new vector v are linearly

independent. Using (5) and (6), the system (1) can be
represented of the form

X(t) = AX(t) +Cx(t —T) +Bv(t) + Dv(t-1)  (7)
with D = Dr;, and rankB = n.

A12 Thereexist amatrix I, OR™ ™ such that

D =BH,.
This condtion is commonly cdled the matching
condition  (Drgjenovic, 1969). Using these

asumptions, vedor x, and matricesB, B, D and D
can be partitioned as

X_D<12D _ B0 , Ezé@lzg
%(1 %nlil @11@
= é.;lzgand D= %
10 118
with

X;, OR™™ x; OR™  rankB,, = rankB,; =n, .
Now, the following arthoganal transformation:

4., -B,B™ 0
X"()=Mx(t), M,=0"" 125 Mg (g
g0 l'm B
_ 0 0o
MB =M, B EBl2 00 O
11@ %llm

is introduwced. Then, from the condition A12, it
follows

0
MD M %125

Ty
@11@ @ 18 %llnl%

With the &ove transformation the system (7) is
represented of the form

X5(t) = Aax5 (1) + Clpxy (t—T) (93)
+B X (1) + DXy (t 1)

X1 (1) = AppXo () + Aggxy (1) +Cpx5(t-1)  (9b)
+CyqXy (t=1) + By [V() + T, v(t - 7))

where X" = (x5,x;)", x, OR"™, x, OR™, and
A B, O 4 [T D, 0O
lAMll %22 2E MlCMll:%ZZ 2E|
12 Aud 12 Cuf

Note that from (5) it follows
a B
B %12 0= BF = %12 N and Bll = BllFl
B8 1l

This relation will be used in the development of the
control designin the following sedion.

Step 2. Now, the assumptions A1l and A12 for
subsystem (9a) can be repeated as

A2l rankB, =n, <n,.
Similar to step 1, there exists a matrix I,
I, OR™" gych that
X (t) =T wy (1) (10)
and
rankB, =n,, B, =B,I,
where w; DR™ is a new input vedor for (9a).

Then the subsystem (9a) with the transformation
(10) can be presented of the form
X5 (t) = A5 (1) + Cipxy (- T) (1)
+Bowy (1) + Dow, (t-T1)
where 52 =B,I,.

A22. There exists matrix I, 0 R"2*"2 such that
D, =B,II,. (12)

Then threediff erent cases are possible depending of
the value of ny:

(i) n,=0. This means that system (9a) is
uncortrollable, and hence the initia system (1) is
uncontroll able & well.

(i) ny =n-n. Inthis case, defining
Xo(t) =x5(t), Ay =A%, Cp=Ch, By =B,
the transformed system (11), (9b) with (12):

X2 (1) = A X, (1) + C X, (t—T)

+Boy[wy (1) + Tw, (t 1))
X1(t) = AgpX, (1) + Aggxy (1) +CppX o (t—T)
+Cypxy (t=1) + Bya[v(t) + Myv(t - 1))

with rankB;, =n;, i =12, n,+n, =n, is of the
BCD-form.



(iii) n, <n-nq. In this case, subsequent step is
necessary, and the system (11) with state x', (t) and
input x4 (t) isfurther decomposed and transformed.

Step k. The system obtained at (k -1)" step hasthe
following form:

Xic (1) = AjgXic (1) + Claex (t 1) (132)
+By X1 () + Dy Xy (t-7)

i (t) =AiX; (1) +Cx; (t-1) (130)

+Bia Wi () + Wi (t-1)], i=2..k-1

X1 (t) = Agxy (1) + C Xy (t 1) + By [V(®) + Iv(t - 7)]

(13c)

where x; OR™ , and X} is a vedor of dimension

(n—ng—--—niy), w; OR"  i=1..k-1,and

rankgi'l =n;, i=1..k-1.

For this gep we generalize asaumptions A11, A12,
A21and A22 asfollows:

Akl rankB} =n, <n.;.
Then, it is necessary to find a transformation
Xga(®) =T w1 (1), By =By (19

such that the matrix Ek has full rank, i.e.
rankB, = n,
where x,, OR™%1 T, OR% T and
w, OR™ isa new inpu vedor for (13a). Using
(14), the subsystem (13a) is represented as
Xi (1) = Al X () +Clye X (t—T

k() 7kk k() ﬁ k( ) (15)

+BWy 1 (t) + Dyewy 4 (t-T)

where Bk =D, Iy.

Ak2. There existsamatrix II, 0R™ " such that
D, =B,II,. (16)
k-1
If n, =n- Z,nj , then after defining x (t) = X} (t)
J:

Akk :Ai(k' Ckk :C'kk’ Ek,l :§k the dgorlthm

terminates giving the equations (15), (13b)-(13c)
k-1

with (16) as the BCD-form. But if n, <n- an ,
J:

then the subsystem (15) can be divided as

X, ,0 — [, C
X\ =0.°G By =0.?0and D, =0-*?C
Xk O k10 HPriE

where, x, and x, , arevedors n, x1 and

k-1 —
%7_ Z nj —n %-1 respectively, rankB, ; =n,.
171

Note that from Ek =BI'y (14), it follows

— B0 B, C
B, =[“?[=B,T k_%kZFKE
B8 kil C
or
Bii =Bl

Procealing as in the first step, under the previous
asaumptions, the similar to (8) transformation:

G -B,,Bi0
Xk (1) =M X (1), Mk:Dn_rU.""‘nk K25kl
0 |nk A

= B,,0 00 L

M By =M [L*? 0= C,

Br1B kil

M Dk_MkEBkzg- EB g ° =
P @klnkﬂ % lI[kEI
isused. Then, the system (13a)-(13c) is governed by
Xica1 (1) = AliaXiar (1) + ClanXiean (€ T)
+ By Xy (1) + Dyyg Xy (t=T7)
Xic (1) = A X (1) + Cyo Xy (- T)
+ E|<,1[W k() + w4 (E=T7)]
Xi () = Aix; (1) +Cix; (t-1)
+Bi Wi () +Mw (t-1)], i=2...k-1
X1(t) = Ay () + C1Xy (t=1) + By [V(®) + Iyv(t - 17)]

x, )" and
n, i=1..k.

where Xy = (Xi41,

rankB; ; =

From the previous algorithm, the following result is
stated:

THEOREM 1. Asamethat

A) Thesystem (1) iscontrollable.

B) At each step o the BCD-form algorithm,
asumptions Ak1 and Ak2 hold.

Then, there exsts an integer r <n such that the

system (1) takes the form (2a)-(2c).

Remark: The asaumptions Akl, k=1,...,r-1 mean

that the system (1) has the structure (4).

3. FEEDBACK CONTROLLER DESIGN

In this section a state feedback control law is
developed for transformed system (2a)-(2c). It is
more convenient to renumber the state variables of
(28)-(2c) as

X1(t) = Apx; (1) +Cpyx (t—7) + E1V1('f)

(A7)
va(t) =[wo(t) + W, (t-7)]
X0 = Aix; (0 +Cix; (=1) +B,v; () a7
Vi(®) =W @)+ W, (t-7)), =207 -1
O =AXO+CX DBV O g7

v, (t) =[v(t) +II, v(t -71)]
where x = (Xg,...X, )", X; = (XgreoXi) ',

x; ORY | w; OR" I; OR"™ , and



u=T,v, T, OR™™ (17d)
X; =Tiqw;, T, ORVM1 i=2.r (17¢)

Ei =B;I;, By ORYML i=1...r (17)

;
rankB; =rankB;, =n;, i=1---,r, Zni =n.
1=1

The control strategy for system (17a)-(17f) can be
designed considering v; as a fictitious control vector

in the i block. This procedure is outlined in the
foll owing.

Step 1. Let the fictitious control v, in the first block
(178) be chosen of the form
—-1
Vi(t) =i () +B1 [A2, (1) +Epyz, ()] (189)
where z,=x;, and z,0R"™ ae new variable
vectors, A; OR™™ is a Hurtwitz matrix with
desired eigenvalues, E;;, E;;0OR™™ will be
defined during the procedure, and v, (t) is
cdculated from equation z,(t)=0 aong the
trajectories of the 1% block (17a) as
—-1
Vi () =-B1 [A;x, () +Copxy (t-1)] . (18b)
The transformed 1% block in new coordinates 7 (t)
and z,(t) with input (18a) y (18b) has the foll owing
desired form without delay:
2, (t) = A1z, (1) +E112,(t) - 19
Substituting (18b) in (18a) and multiplying by the
matrix B, from theright, gives
Byv; (1) = (A (1) +Cyx (- 1)] (20
+[Ayz,(0) +Epyz, (0]
Now from the relationship (178)-(17f), namely
By =By, vi(t) =w,(t) + W, (t-1),
X5 (1) =W (t) and W, (t) =T7 X, (t)
with Ty =(r{r,)™r; , it follows that
Byvy (t) = B4l'yvy (1) =
By[lywo () +MIwo(t-1)] = (21)
B1[X2(t) + T1M T X5 (t—T)].
Set
E11=B,
then from (20) and (21), it follows
Bll_xz(t) +T I X (t ‘T)] ==(Ap-A1)xy(t)
—Cix1(t—T1)+B1z5(1). (22
In order to define the transformation for z,, it is
asumed that the dements of the matrixB; can be
rearanged such that the square matrix

é _B. 0
2= a
%lZD
with Ejp =[0 1], Egp ORM™™*™2 has rank

N, . Then set the following equality:

EplXo () + T T X, (-] =Epz,. (29
From equations (22) and (23) the following
nonsinguar transformation for z,:

2,(t) = §£1 %Al = A)X () +Cyxy (t _T)E
0 0 C (29
+ho®+rr e -0
isderived. Now using (17€), namely
Xo(t) =Two(t) and w,(t) =X, (t)
the second term of (24) can be represented as
Xp () + T4 X, (t—T) =
LW, (1) + I w, (t-T) =
Ly[w, (1) + W, (t-T)] =TV, (1).

Then, the transformation (24) is represented of the
foll owing form:

-1 [(Al _Al)xl(t) +CyXxq (t _T)B"'

Z,(t) =B vy ()
0 0

(25a)

Vi) =w, (1) +Tw, (t-1) (250)

Xo(t) =T wy(t). (25¢c)

It isclea that the transformation (25a)-(25¢) is stable
if al the eigenvalues of the matrix IT, are located

inside the unit circle. From this, the equation (19) is
represented as

z,(t) = A1z, (t) +BZ, (1)
Step 2. Taking the derivative of (24) along the

trajectories of the 15tand 2" blocks of (17a)-(17c),
gives

2 X 1w (t-1)0
2,(0) = %Z,JZXJ 1) +C3x;(t T)mgzvé(t)
4 %Czijj(t—ZT) H

(26a)
with
Vi (t) = v, (t) + BT IL T B,v,(t-1) (26b)
Vo (t) =w(t) +Mwa(t-1) (26¢)
X3(t) =T wg(t) . (26d)

Ason the first step the fictiti ous control input vé(t)
in (262) is chosen simil ar to (18a) of the form

V(1) = Vi (1) + B A 2, () +Epza ()] (279)
where z; OR™ isthe new vector, A, DR ™ isa
Hurtwitz matrix, E,, OR"™™, and v (t) is
cdculated from equation z,(t) =0 of theform
2

A, X (t)+CS . x (t—-1)C

DZ,JZJ() 2,] ]( )E(27b)

Thus, equation (26a) with (27a) and (27b) takes a
form similar to equation (19)

Z,(t) = Apz,(t) +Epyz5(t) . (28

Vao(t) = -By'

Combining the equations (27a) and (27b), gives



B,V (t) = (29
Z[Azlx (t)+C3 X-(t—T)+C§'ij(t—2T)]

+[A 2, (1) +E yz5 ().
From the other hand, taking into accourt the
relationships (17f) and (26b)-(26c), namely
B, =B,I,,
V3 (1) =V, (1) + BT LTy BV, (t-1),
Vo (t) =wg(t) + LW (t-T1)
it can be obtained first
B,Vj =B, I,V =
B,I',|v 2(t)+leF1H1F1 oVa(t- T]
Blws (1) + 1w (t=1)]

5|
? E*lerlnlrl 2[Ws(t—1) + Twy(t- 2T)]g

and then, using X5 (t) =T ,w5(t)
and I'; =(',L,)7'I}, gives

, Wi(t) =T5x5(t),

B,V = (30)
Oka(® + P11, T x50 -1)] :
B,G+I',B, T, I BT O
0 ¥ 0
g[x3(t—r) +F2H2F2x3(t—2r)]a
Now, set E,; in(28) and (29)
E; =B,
then, from (29) and (30), it follows
E[X3(t) + LML Xs(t — T)]"’ I,B; T4 ILTy B,I; E
§< X5(t = 1) + TLIL TS X4(t - 27) Q

IE

+A,Z,(1)+B,z;3(1). (31

It is clear that this transformation between x,; and
z5 is sngdar since the matrix B, has dimension
n, xng, and n, <n,. Therefore, assuming that, the
elements of the matrix B, can be rearranged such
that the square matrix

_B,0O
= % 0
22
hasrank ng, the following transformation is added
Ofka@+ T, rxye-n] O
E o0+ T',B; Tl Ty B, x 0= E 2,25 (31D)
X 5 (t —r)+F2H2F§x3(t—2r)]E

where E, =[0I ,_,] and Ej, O RM3M2Mxns

Combining (31a) with (31b) gives the nonsinguar
transformation along z5 and x5 as

02 v 1 v (t—m\[ O

AN dre O Catong,

25 =B3 D %—C (X (t=-21) H B
E 0 H

+xg(t) + T, Myt - 1) (32

+T,B, LTy B, ) [Xa(t = T) + DMLl 3Xo(t — 27)
Using (17e), namely
X3(t) =Towa(t) and wy(t) =Tyx5(t),
r;= (FEFZ)_ll“T, r;r, =1 no

the second term of the transformation (32), can be
represented as

lxs(t) + T, X5(t — T)J + Fzgz_ 'Tmry ngZ
X [X5(t = 1) + LI, TS X4(t — 21)
= [T W) + ToIw(t - 1)] +
I,B; T Iy B, [Towiy(t — 1) + T, Tt - 21)]
E[W3(t) +Tw,(t - 1))+ B Ty IIY B, XE
W (t =T) + TWa(t —27)] :
= Fz[Vz(t) +B; Tyl T; Byv,(t - T))]
=T,V3(t)

Then the transformation (32) can be presented in the
compad form

B} glimzjx [0 +C5 (- T)%A ZZE
B> o= %CZJX (t—21) E D
0 =
+r2v2(t). (331)
with
Vz(t) Vz(t)+leF1H1F1 B,ov,(t-1) (33b)
Vo (t) =wa(t) + T w,(t-1) (33c)
Xg(t) =T wg(t) . (33d)

Again this transformation is gable if al the
eigenvalues of matrix II; and II, arelocated inside
the wunit circle. From this, eguation (28) is
represented of the form

Z,(t) = Ayz,(t) +B,z5(t)

This procedure can be performed iteratively,
obtaining on the k' sep (k=3---r-1) the
foll owing reaursive transformation:

Zyn (t) = (34a)

0 k
-1D gxkijj(mclk

H He+Cfx; (t=kr) H

+T Vi (1)
with

O
X (t-1)+0
=By X, H



Vi) =V (34b)
#Bi BT T T B, BV (1)
Vi =vie(®) (34c)
+ Bljl Bgirk_l TR O | ) RS

Vi) - Vi (®) BT LT By v, (t-1) (34d)
Vic(t) = Wiy (1) + I W4 (8- T) (34€)
Xiar (1) = T Wi (1) (346)

and A, isaHurtwitz matrix.

On the last step system (17a)-(17c) can be
represented in the new coordinates defined by (24),
(32) and (33,) of the following form:

2, (t) = Aqz,(t) + B4z, (1)
Z; (t) = Aiz; (1) + B; ;.4 (1),

(353)
i=2-.r-1 (35h)

r

s )= %k'jxj(t)+Clk’ij(t_T)+g+§rV}(t)
4 H.+c;jxj(t—rr) H

(35¢)

where z=(z,,---,2,)", z; OR", i=1---r,and

Vi) =vO+B BT, 32
...rll'[lr;...rrBZ...Brer(t—T)

Vi) =V +BL By T (360)

'“FZHZFE '“r:——1§3 “'Er—l\/?(t _T)

Vi) - v, (t)+ BT, 40T, 4T} 4B, v, (t-T) (360)
v, () = V() + T, v(t-T) (36d)
u(t) =T, v(t). (36€)

A choice of the control vi(t) in the equation (35c)
similar to (18a) of theform

Vi) =V () +B*A,Z, (1) (373)

with a Hurtwitz matrix A, OR™ | and

r gl‘k,jxj(t)+Clk,jxj(t_r)g(37b)

1 —_p-1

Vi (t) =-B, "
et CpiXi(t-rT

L HrCixt-ro

provides the closed-loop dynamics of the states
Z,(t),...,z,, (t) determined by the following system:

2, (t) = A1z4(t) + B4z, (1) (383)
i (t) = Aiz; () + Bz (t), i =2,---r =1 (38h)
z, () =Az (1) (38¢)

with Hurwitz matrices A,,...,A,, and withou
delay.

The gtability condtions of the dosed loop system are
presented in the foll owing theorem.

r;—lBS Bk—lvi (t _T)

TEOREMA 2. Assume that
1) The system (1) is transformable into BCD-form
(27a)-(17(c).
2) All the dgenvalues of the matrices II;,
i=1---,r arelocated inside the unit circle.

Then the system (1) or (17a)-(17c) with control
strategy (37a)-(37b) is asymptotically stable.

Proof: The gahility of closed-loop system (17a)-
(17c) and (37a)-(37b) is determined by the
eigenvalues of systems (38a)-(38)c which may be
chasen arbitrarily, and by the property of the internal
dynamics presented by the state and control variables
transformations (36a)-(36€). It is clear that the
internal dynamics is asymptoticdly stable if the
condition 2) of the Theorem 2 holds.

4. CONCLUSIONS

The decomposition Hock control method has been
formulated for control of linea time-delay systems
that can be transformed into BCD-form. The
proposed transformation and control design
procedures have recursive character that smplifies
the solution of the problem. The stability of the
closed loop system is tested. The proposed method
enables to solve an important problem of the
classcd control theory: pole placement by state
feedback for linea systems with delay.
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