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Abstract: This paper applies the block control method to design a decomposed finite 
spectrum assignment control law suitable for multivariable linear time-delay systems. A 
block controllable form is introduced and a non-singular transformation that reduces the 
system to this form is proposed. Conditions of stabili ty of the closed-loop system are 
derived. Copyright © 2002 IFAC 
Keywords: multivariable linear control systems, decomposition method, delay 
compensation. 

 
 
 
 

 
1. INTRODUCTION 

 
It is well known that delays often presented in 
various engineering systems may dramatically limit 
the performance and sometimes destabilize the 
closed-loop system dynamics. Therefore, the 
feedback stabilization problem has been extensively 
studied, and several controllers based on optimal 
control method (Zavarei, and Jamshidi, 1987; Feron, 
et al., 1992) including H∞ and LMI approaches (see, 
Li, et al., 1997; Leyva-Ramos, and Pearson, 2000), 
have been proposed. The common feature of the 
mentioned papers is that their derivations are based 
on analysis of complete order system. 
 
In this paper, in order to assign finite spectrum in 
linear systems with delay, the block control principle 
is applied. In order to achieve this, a special state 
representation must be used which will be referred as 
the Block Controllable Form with Delay (or BCD-
form), consisting of a set of blocks that can be of 
different dimension. This approach has successfully 
been employed for decomposition control of linear 
(Dodds and  Loukianov,  1997),  and  possibility  of  
_________________ 
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applying this approach to design controller for 
delayed systems, is investigated.  
 

2. BLOCK DECOMPOSITION 
 
Consider a linear time-delay system described by the 
following state equation 
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where  
mn RR ∈∈ ux , , )()( tt ϕ=x , ],[ 00 ttt τ−∈∀ , and  

)(tϕ  is continuous vector-valued initial function. 
 
The essential feature of the proposed method is the 
conversation of the system (1) into following BCD-
form consisting of r blocks: 
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The integers rnnn ,,, 21 	  define the structure of the 

system and satisfy the following condition: 
mnnn rr ≤≤≤≤ − 11 	 . 

The case, when ( 1−= ii nn ), was considered by 

Loukianov and Escoto, (2000). Here, the case when  
mnnn rr <<<< − 11 	             (4) 

will be investigated. 
 
The initial system (1) is brought to the form (2a)-(2c) 
through the following iterative transformation 
procedure consisting of ( )1−r  steps: 
 

Step 1. The following assumptions will be carried 
out for each step of the procedure. 
 

A11. mnrank <= 1B . 

This means that some control components are 
linearly dependent. Then we can find a matrix 

1
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 such that 

1B �B =                              (5) 

with 1nnR ×∈B , and 1nrank =B . Using (5), a new 

control vector 1nR∈v,v  of reduced dimension is 

defined as 
    )()( 1 tt v�u = .                        (6) 

So, the components of the new vector v are linearly 
independent. Using (5) and (6), the system (1) can be 
represented of the form 
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D = ,  and  1nrank =B . 
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This condition is commonly called the matching 
condition (Drajenovic, 1969). Using these 

assumptions, vector x, and matrices B, B , D and D  
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Now, the following orthogonal transformation:  
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is introduced. Then, from the condition A12, it 
follows 
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With the above transformation the system (7) is 
represented of the form 
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Note that from (5) it follows 
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This relation will be used in the development of the 
control design in the following section. 

 

Step 2. Now, the assumptions A11 and A12 for 
subsystem (9a) can be repeated as 
 

A21. 122 nnrank <=B . 
 

Similar to step 1, there exists a matrix 2� , 
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2

nnR ×∈
  such that  

)()( 121 tt w�x =                          (10) 

and  

22 nrank =B ,  222 �BB =  

where 2
1

nRw ∈  is a new input vector for (9a). 

Then the subsystem (9a) with the transformation 
(10) can be presented of the form  
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where 222 �BD = . 
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Then three different cases are possible depending of 
the value of 2n : 

(i)  02 =n . This means that system (9a) is 

uncontrollable, and hence the initial system (1) is 
uncontrollable as well. 
 

(ii)  12 nnn −= . In this case, defining  
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the transformed system (11), (9b) with (12):  
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with ii nrank =1,B , 2,1=i , nnn =+ 21 , is of the 

BCD-form. 



 

     

(iii ) 12 nnn −< . In this case, subsequent step is 

necessary, and the system (11) with state )('2 tx  and 

input )(1 tx  is further decomposed and transformed. 
 

Step k. The system obtained at ( )thk 1−  step has the 

following form: 
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where in
i R∈x , and kx ′  is a vector of dimension 

( 11 −−−− knnn � ), 1+∈ in
i Rw , 1,...,1 −= ki , and 

1,...,1,1, −== kinrank iiB . 
 

For this step we generalize assumptions A11, A12, 
A21 and A22 as follows: 
 

Ak1. 1−<=′ kkk nnrankB .  
 

Then, it is necessary to find a transformation  
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Proceeding as in the first step, under the previous 
assumptions, the similar to (8) transformation: 
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is used. Then, the system (13a)-(13c) is governed by 
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From the previous algorithm, the following result is 
stated: 
 

THEOREM 1.   Assume that 
A) The system (1) is controllable. 
B) At each step of the BCD-form algorithm, 

assumptions Ak1 and Ak2 hold. 
Then, there exists an integer nr ≤  such that the 
system (1) takes the form (2a)-(2c). 
 
Remark: The assumptions Ak1, k=1,…,r-1 mean 
that the system (1) has the structure (4). 
 

3. FEEDBACK CONTROLLER DESIGN 
 
In this section a state feedback control law is 
developed for transformed system (2a)-(2c). It is 
more convenient to renumber the state variables of 
(2a)-(2c) as 
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The control strategy for system (17a)-(17f) can be 
designed considering iv  as a fictitious control vector 

in the thi  block. This procedure is outlined in the 
following. 
 

Step 1. Let the fictitious control 1v  in the first block 

(17a) be chosen of the form 
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In order to define the transformation for 2z , it is 

assumed that the elements of the matrix 1B  can be 

rearranged such that the square matrix 
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Then, the transformation (24) is represented of the 
following form: 
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form similar to equation (19) 
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Now, set 21E  in (28) and (29)  
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It is clear that this transformation between 3x  and 

3z  is singular since the matrix 2B  has dimension 

32 nn × , and 32 nn < .  Therefore, assuming that, the 

elements of the matrix 2B  can be rearranged such 

that the square matrix 
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where ][
2322 nn −= I0E  and  3)23(
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nnnR ×−∈E . 

 Combining  (31a) with (31b) gives the non-singular 
transformation along 3z  and 3x  as 
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Using (17e), namely 
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the second term of the transformation (32), can be 
represented as 
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Then the transformation  (32) can be presented in the 
compact form 
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Again this transformation is stable if all the 
eigenvalues of matrix 1

9
 and 2

9
 are located inside 

the unit circle. From this, equation (28) is 
represented of the form 
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This procedure can be performed iteratively, 

obtaining on the stk  step ( 1,3 −= rk ; ) the 
following recursive transformation: 
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and k
D

 is a Hurtwitz matrix. 
 
On the last step system (17a)-(17c) can be 
represented in the new coordinates defined by (24), 
(32) and (33,) of the following form: 
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A choice of the control )(1 trv  in the equation (35c) 

similar to (18a) of the form 
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provides the closed-loop dynamics of the states 

)(),...,(1 tt nzz  determined by the following system: 
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with Hurwitz matrices 1
D

,…, r
D

, and without 

delay. 
 

The stabil ity conditions of the closed loop system are 
presented in the following theorem. 

TEOREMA 2. Assume that 
1) The system (1) is transformable into BCD-form 

(17a)-(17(c). 
2) All the eigenvalues of the matrices i

B
, 

ri ,,1 F=  are located inside the unit circle. 

Then the system (1) or (17a)-(17c) with control 
strategy (37a)-(37b) is asymptotically stable. 
Proof: The stabil ity of closed-loop system (17a)-
(17c) and (37a)-(37b) is determined by the 
eigenvalues of systems (38a)-(38)c which may be 
chosen arbitrarily, and by the property of the internal 
dynamics presented by the state and control variables 
transformations (36a)-(36e). It is clear that the 
internal dynamics is asymptotically stable if the 
condition 2) of the Theorem 2 holds. 
 

4. CONCLUSIONS 
 

The decomposition block control method has been 
formulated for control of linear time-delay systems 
that can be transformed into BCD-form. The 
proposed transformation and control design 
procedures have recursive character that simplifies 
the solution of the problem. The stabil ity of the 
closed loop system is tested. The proposed method 
enables to solve an important problem of the 
classical control theory: pole placement by state 
feedback for linear systems with delay.  
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