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Abstract: An adaptive con trol sheme to achiev e stabiliy and output tracking is
presented for the output-feedback nonlinear plant with unknown actuator failures.
A state observer is designed for estimating the unavailable plant states, based on a
chosen control strategy, in the presence of actuator failures with unknown failure
values, time instants and pattern. An adaptive controller is developed by employing
the backstepping technique, for which parameter update laws are derived to ensure
asymptotic output tracking and signal boundedness of the closed-loop system, as

sho wn ly detailed stability analysis.
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1. INTRODUCTION

Actuator failures may lead to performandete-
rioration or dysfunction of control systems. For
some critical systems such as flight control sys-
tems, actuator failures, if not compensated, may
result in disasters. Some accidents caused by ac-
tuator failures could have been avoided, if it was
successful to make use of the remaining working
actuators which were actually enough for ensur-
ing some desired system performance. T o this
end, effective con trollersare needed to take ac-
tion automatically, once actuator failures occur.
However actuator failures are often unknown in
terms of failure patterns, failure times and failure
values, which not only introduce uncertainties into
systems but also change the system structural
properties. Hence, compensation schemes are ex-
pected to guarantee a specified control objective
for any possible actuator failures. In order to han-
dle failure uncertainties, an adaptive approach is
a desirable one for designing control sc hemes with
actuator failure compensation capacity.

Progresses have been made in the adaptive con-
trol of systems with actuator failures, includ-
ing indirect adaptive LQ design (Ahmed-Zaid
et al., 1991), indirect adaptive multiple model
switching design (Boskovic and Mehra, 1999),
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adaptive observer-based design (Wang and Da-
ley, 1996), direct adaptive actuator failure com-
pensation con trolof systems with known plant
dynamics (Boskovic et al., 1998).

Our research for the actuator failure compensa-
tion problem with direct adaptive designs w as
conducted in (Tao et al., 2001¢) and (T ao et
al., 2000) for linear systems, and some new results
have also been presented in (Tao et al., 2001d),
(T aoet al., 2001b) and (Tao et al., 2001 a) recen tly.
In (T anget al., 2001) an adaptive state feed-
back control scheme for nonlinear systems in the
parametric strict-fe edlnck form is proposed. Now
a more complex case is investigated in this pa-
per, that is, designing an adaptive control scheme
with output feedback for nonlinear systems in
the presence of unknown actuator failures. The
nonlinear systems considered in the paper are in
the output-feedback form, and the actuator failures
are characterized by the pattern that some of
the system inputs are stuck at some fixed values
not influenced by control action. In Section 2, we
formulate the control problem w eare in westigat-
ing. In Section 3, an state observer for output
feedback con troldesign is proposed. With that
state observer, an adaptive scheme based on the
bac kstepping method is deeloped for asymptotic
output trackingin spite of the actuator failures.
The stability analysis for the closed-loop system
is completed in Section 4.



2. PROBLEM STA TEMENT
Consider a output-feedback form nonlinear plant
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where u; € R, j = 1,2,...,m, are the inputs
whose actuators may fail during operation, z =
[€1,T2,...,7,)0 € R™ is the unmeasured state
vector, y € R is the output, ¢;(y), i=1,2,...,n,
and B;(y), j = 1,2,...,m, are kno wnsmooth
nonlinear functions, and b, ;, r=0,1,...,7y=n—p,
j=1,2,...,m, are unknown constant parameters.

The actuator failures of interest are modeled as
(2.2)

where the failure value u; and failure time instant
t; are unknown, and so is the failure index j.

uj(t) =aj, t > t;, j €{1,2,...,m}

The basic assumption for the actuator failure
compensation problem is that

(A1) the plant (2.1) is so designed that for any up
to m — 1 actuator failures, the remaining actua-
tors can still achiew a desired control objective,
implemented with the knowledge of the plant pa-
rameters and failure parameters.

Suppose that there are p; actuators failing at a
time instant tx, k =1,2,...,q, and tg <t; <ts <
-+ < } <o0. Obviously, it follo ws from Assumption
(A1) that) 7, pr <m—1.In another word, at time
t€ (t,te+1), =0,1,...,q, where t,4 =00, there
are p:Zlepi failed actuators, i.e., u;(t)=a;,j=
Jiy- - -7jp70Sp§m_]-7 and uj(t):Ujaj#jla v 7jp7
where v;(t), j = 1,2,...,m, are applied con trol
inputs from some feedback control design. The
output-feedback plant (2.1) can be rewritten as

i’i:miJrl +<Pi(y); i:]_, 2, ey P -1
o= 10 (1) 49 by, B3 (1) +D 01385 ()0

J=1s000p JFEJ1se0p

=Tt Qna(Y)+_b1iBi (W)a;+Y_biBi(y)v;

j:j17~~~7jp j#jly--w]’p
En=pn(y)+Y_boBi (W) +Y_bo iB;(y)v;
J=J1se-0p JFJ1sewundp

Y=z1. (2.3)

The control objective is to design an output feed-
back control scheme for the plant (2.4) with p

failed actuators, while p is changing at time in-
stants tg, k=1, 2,...,q, such that the plant output

y(t) asymptotically tracks a prescribed reference

signal y,.(t) (the pth derivative of y,(t), y” (¢), is

piecewise continuous) and the closed-loop signals
are all bounded, despite the presence of unknown
actuator failures and unknown plant parameters.
It is clear that the key task is to design adaptive
feedback control laws for v;(t), j = 1,2,...,m,
without knowing which of these v;(t) will have ac-
tion on the plant dynamics, as there are arbitrary
p failed actuators for V{j1,...,j,} C{1,2,...,m}.

3. ADAPTIVE COMPENSATION CONTROL

Forthe plant (2.4) in the output-feedback form
with p failed actuators at each time interval
(tk,tk+1), £ = 0,1,...,q, an adaptive con trol
scheme will be developed in this section, which
will be provedto achieve the control objective
proposed above for V¢ >ty in the next section.

Since the failure pattern w;(t) =a;, j=41,...,Jp,
0<p<m-—1, is assumed to be unknown in
this problem, a desirable adaptive control design
is expected to achiev ethe con trolobjective for
an y possible failure pattern. For a fixed failure
pattern, there is a set of failed actuators, while
there is another set of w orking actuators. For
this set of working actuators, there is a resulting
zero dynamics pattern for the plant (2.4). For
closed-loop stabilization and tracking, the zero
dynamic system of the plant (2.4) needs to be
stable. As such zero dynamics depend on the
pattern of working actuators whose number may
range from 1 to m, which leads to many possible
characterizations of required stable zero dynamics
conditions related to different possible con trol
designs, w echoose to specify the following one
with which a stableadaptiv e control scheme can
be developed to achieve the control objective.

For the plant (2.1), we assume that

(A2) the polynomials 3. . sign[by;]B;(s)
are all stable ones, V{j1,...,J4p} C {1,2,...,m},
Vp € {0,1,...,m — 1}, where

Bj(s)=by,j8" +by—1,38" "+
+b1js+boj, j=1,2,...,m. (3.1)
R emark 3.1. Assumption (A2) implies that the
plant (2.1) is minimum phase for all possible
actuator failure cases under a special con trol
strategy (see (3.2) below). The plant (2.4) has
relativ e degree p, and under the con trol strat-
egy (3.2), it has a linear zero dynamics sys-
tem 7 = A.n+ ¢(y), where the eigen valuesof
A, € RY*7 are the roots of the polynomial
2 itinrr, Sign[by j]Bj(s), which is stable from
Assumption (A2). Note that while the zero dy-
namics depend on the actuator failures, that is, 4,



is determined by the failure pattern, ¢(y) depends
on both the failure pattern and failure values. O

For an adaptiwe control design, another assump-
tion is required:

(A3) the sign of b, ; is kno wn,j =1,2,...,m.

To develop a solution to the stated control prob-
lem, we choose the control strategy:

. 1 .
vj = s1gn[b%j]mvg, i=12,...,m,(3.2)

Bi
where vy is a control signal derived from a back-

stepping design to be given in Section 3.2.

T o express the plat (2.4) with the control strat-
egy (3.2), we define

r= il,mg,...,mn]T,

P)=lp1 () p2¥), -, PaW)]” (3.3)
kl,r: Z Sign[b"/,j]br,j, r=0,1,... Vs

J#J1y 0
k2,7“]':b7“,jﬂj7 TZO, ]-7 e Y j:jh s vjpv
kyrj=0r=0,1,...,7, 5#j1,---,Jp (3.4)

and rewrite the plant (2.4) in a compact form as

¥ m Y
T=Az+(y) +Z€n_qnzk2,rj6j (y) +Zen—wklwv0
r=0  j=1

r=0
y=c"z, (3.5)

where e; is the ith coordinate vector in R™, and

010 ---00 1
001 ---00 0
A=| e ER™™ c=|: [eR™. (3.6)
00--- 001 0
00--- 000 0

It follo wsfrom Assumption (A2) that the poly-
nomial k1,87 + k1 y—187 "+ -+ k1S + ki is
stable, and, in addition, from (3.2), that &y, > 0.

3.1 Observer Design

Since the states of the plant (3.5) are not available
for feedback con trol, an observer is needed to
estimate the unavailable state variables.

Choose a vector I € R™ such that 4, = A —IcT is
stable, and define the filters

E=Aol+ly+o(y),

er:Aogrj“‘en—rﬂj(y)a 0<r<y, 1<5 < m,
,ur:Ao,ur_Fenfr'UO; OSTS'Y (37)

With the knowledge of k1, and k25,7 =1,2,...,m,
r=01,...,, the nominal state estimate vector is

y
:§+Z
r=0

m

y
k2,rj<rj + Z kl,rﬂrj' (38)
=1

r=0

8

J

With e=z—z, it follows from (3.5) and (3.7) that

¢ = Aye, lim €(t) = 0 exponentially. (3.9)
t—o0

T o construct an adaptie observer, we denote ki ,

and icm- as the adaptive estimates of k;, and
karj, 7 = 1,2,...,m, r = 0,1,...,7. Then, an
adaptive estimate of x is

7om Y
T = f + Z Z ];72,1-]'(1-]' + Z zf'l,hurjv (310)
r=0 j=1 r=0

for which the update laws for I%M and ]2;2’7-‘7‘ are de-
veloped next together with a failure compensation
con trol law for v (t) in (3.2) to ensure closed-loop
stability and output tracking.

3.2 Backstepping Design

The backstepping technique (Krstit et al., 1995)

is now applied to derive a stable adaptive con trol
scheme for the system (3.5), with a design proce-

dure of p steps.

Define vectors of unknown constants
klz '%1,07 kl,l; ) kl,’yfl]Ta
ko= '%2017- B kZOm; klll;- B k?,lm;- LS k?;‘/m];r(311)

and vectors of signals

T .
Wi= 0,05 M1,i- - -5 Py—1,4] 5 1 =1,2,...,m,
ei= Qo1,is- - - Comyi> Cliyis - - -
T .
Clm,i; .. ';C"/m,i] , 1= 1;27' <51, (312)

where p,; and (54, @ =1,2,...,n, are the ith
variable of i, (i, 7= 01,...,v=1, j=12,...,m.

Step 1: With the output tracking error
(3.13)

where ¥, is a referencesignal with the piecewise

continuous pth derivative ), it follows from

(3.5)-(3.8) that

a=Y=Yr

Z1=€y + T2 + p1(y) — Ur
=€+ k1’7M772+wgk1+Egk2+ & +<p1(y) — Y. (3.14)

Choose the auxiliary error signal

29 = fly2 — KYr — 1, (3.15)

1

where % is an estimate of kK = .
Y

, and
alzl%(—clzl — d1z1 — li’z — Y1 (y))
:/%(—clzl—dlzl—wgkl—egkz—fz—npl(y)). (316)
Substituting (3.15) into (3.14) results in
fr=—c121 —di121+k1 22+ T — Lo — k1 4 R(Yr+a1)
=—ciz1—di 21 +62+]2;1,722+];;1,7(,U7,2_’%yr_al)
+w2Tl::1 +8%1];?2—k1,71~<&(y,-+041), (317)

where kl,fy = k‘lﬂ—klﬂ, k‘l = kl—k‘l, kQ = kQ_kQ,
Kk = kK —k, and ¢1, d; are some positive constants.



The time-derivativ e of the partial Lyapunov can-
didate function Vi = 127 + ’;)\
is a chosen constant gain, and k1,7 is positive due
to Assumption (A2), is derived as

Vl——Cl,Zl dlZl + z1€5 +k‘1 AR122 +’U1k‘17

. ki
i ky 4+ vl ky — z1k1,(Ur + @1)R — %Kﬂ
1

:—812%— dlz%-l- 21€2+ ];1’72122+U1]21,7+T1TT€1+ I/lTl‘%g
with the choice of the adaptive law for &:

= —Xiz1(gr + 1), (3.18)

where vy, 71 and vy, which are the first tuning
functions for k; -, k1 and ks, are given as

vlzzl(uﬂ,,g—/%yr—al), T1=21W3, V1=21E2. (319)

Step i = 2,3,...,p — 1: According to (3.15),
define z;,i =2,3,...,p— 1, in a similar way:
Zi = fyyi — Fayfflfl) — 1. (3.20)

Differentiating (3.20), we obtain

Zi=fiy — Ry — Ryl Y — G

N i Baz i
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where ¢; and d;, ©=2,3,. .., p—1, are some positive
constants to be chosen, and v;, 7; and v;, i =
2,3,...,p—1, are the tuning functions given as

Oaj—q Oai—q
Vi=Uj 1 — ———— by 2%i, Ti=Ti] — ———W22;
k2 k2 ay Y )y 2 k2 ay 9
604’71
Vi=Vj_ 1 — ———€22;. (3.23)

Introducing the partial Lyapunov candidate func-
tion V; = V;_1 + 2 with the definition Zit1 =

My i1 — ny,(u) — ay, we deriv e the time-deriutive
of V; from (3.21) and (3.22) as
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+Z
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Design the control signal vy (t) for (3.2) as

vo = a, + iyl (3.25)

where «, is constructed as

BOL 1
cpzp—dp( 8; )2Zp+lpll7,1_:u%p+1

Oép:—Zﬁkl—



r (€2+ /Aflfyu%ﬁ- wgiﬂﬁ- ngﬂg-f- &t <p1(y))
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6a 1
Do R >
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Oa 1
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+2 P wlﬂ_l—lqwl){_z a;H
=1

q

L&y + Ly + 4 (y))

(eqr1—14e1)

6ap 1
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8ap_1 I
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in which ¢,>0 and d,>0 are designing constants.
Consider the Lyapunov candidate function

k1
L g2y —k

1~ 15
V = V__ - 31"—
=z 2\ 2\ le ! Fa

1"T —-17. T
+5k TS kg-l-;Qdie Pe, (3.27)

where P, which is positive definite and symmetric,
satisfies the Lyapunov equation PA,+ AP = —T,
and Ay > 0,T; =TT > 0,Ty =T > 0. The time-
derivative of V' is

—ZCz

2 Oayq L T 1= ~
_Zzia—yeg—ZTde €+ ()p— )\—lefy)klﬁ
=2 =1

6
d121 Zd Oéz ! 222+21€2

;T - ;T ~
+Hr) =k Ty Dk + (0] — by Ty ks
2. day
+Zz ()\gvp kw +ZZ, = FlTp_kl))
=2 Ly =2 8k1
+Z L (Dy, — kQ) (3.28)
With the choice of the update laws
];flfy:/\QUpa ;Cl :FlTp, ];2 :Fgllp, (329)

we have
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Oa 1
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_ch
_; 4d; 7
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1 8041 1 1 2
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SN
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In summary, we have dewloped an adaptive actu-
ator failure compensation scheme for the system
(3.5), which consists of the controller la w

1 .
i=sign[b, ;] (y)vo, ji=1,2,...,m,

vo=a, + /iyﬁ") (3.31)

and the adaptive laws for updating the controller
parameters,

H_—)\lzl (yr + 041)

kl fy—)\z’Up, kl—rlTp, kg—rgljp, (332)

where «,, v,, T, and v, are deriv ed from the
recursive backstepping procedure.

4. STABILITY ANALYSIS

Now we prove that with the adaptive control de-
sign proposed in Section 3, the closed-loop signal
boundedness and asymptotic output tracking are
guaranteed for Vi >tg, so that the stated actuator
failure compensation objective is achiev ed.

Theorem J4.1. The adaptive output feedback con-
trol scheme consisting of the cortroller (3.31) and
the filters (3.7) along with the parameter update
laws (3.32) applied to the system (3.5), based on
Assumptions (A2)—(A3), ensures global bounded-
ness of all closed-loop signals and global asymp-
totic output tracking: lim; o (y(t) — yr(t)) = 0.

Proof: For each time interval (tg,tx+1), k& =
0,1,...,q, a Lyapunov function V' suchas (3.27)
can be constructed. Starting from the first time
interval, it can be seen from (3.30) that V(¢) <
V (to) and V <0 for Vt € [to, t1). Hence we conclude
that z, &, k1 s kl, kz and € are bounded for
te [to,tl) F rom the boundedness of y, and =z,
y is bounded. It follows from (3.7) that & and (,;,
r=0,1,...,7, j = 1,2,...,m, are bounded. Also

from (3.7), we obtain that
e = el (s — A,) te, v (4.1)

for 0 < r <+,1 < i < n, where e; is the ith
coordinate vector in R". Express the plant (3.5)
in the differential equation form

0SS

=01

{k”v . (4.2)



As in (Krsti ¢et al., 1995), rewrite (4.2) in the
input-output form with transfer function G(s) =
1 “input” signal

k1,487 +-+ki,15+k1,0°
n Y m

o=y =Y "o T )-D Y ki By, (4.3)
i=1 r=0 j=1

and “output” signal vg:

vo=G(s)[w]. (4.4)
Substituting (4.4) into (4.1), we have
pri=el (sI — A,)te, ,G(s)[w], (4.5)

which results in the boundedness of p,;, r =
0,1,...,v, 2 = 1,2,...,n, because y is bounded,
i), 1=1,2,..,n, and B;(-), j=1,2,...,m, are
smooth, and the matrix A, and the polynomial
k187 + --- +ki15+kyo are stable. It is in turn
implied from (3.8) and the boundedness of € that
is bounded. According to (4.4), it can also be seen
that v is a bounded signal. Since §;(y) # 0 for
Vy € R, the boundedness of v; is guaranteed too,
j =1,2,...,m. Therefore, all closed-loop signals
are bounded for t € [tg, 7).

A ttime ¢ = t1, there occur p; actuator failures,
which result in the abrupt change of &, ki,
k1 and k. Since the change of values of these
parameters are finite and z is continuous, it can be
concluded from V' <0 that V() <V () =V (17 )+
Vi < Vi(tg)+ Vi for t € (t1,t2) with a positiv e
constant V;. By repeating the argument abo e,
the boundednesf all the signals are pro  ved for
the time interval (t1,%2). Continuing in the same
w ay, finally whave that V(t) <V (t)) =V (t,)+
Vg < V(to)+>4_, Vi for t € (ty,00) with some
positiv econstants Vi, k =1,2,...,q. Due to the
finite times of actuator failures, it can be obtained
that V'(t) is bounded for V¢ > ¢, and so are all the
closed-loop signals.

T o prove output tracking, considering the last
time interval (¢,,00) with a positive initial V (¢} ),
w e see that it follws from (3.30) that z € L? and
e € L?. On the other hand, we can conclude that
2 € L™ and é € L™ from the boundedness of the
closed-loop signals. In turn it follows that over
the time interval (4, 00), lim; o0 21 (t) =0, which
means that the output tracking error y(¢) —y,(t)
is such that lim_, o (y(¢) —y.(¢)) = 0. \Y

5. CONCLUDING REMARKS

An adaptive output feedback actuator failure
compensation control sc heme for a canonical class
of nonlinear systems: those in the output-feedback
form, is presented as a further dev elopment of
the backstepping technique. In order to estimate
the unmeasured states of the controlled plant, an
adaptive observer for the uncertain plant with an
equivalen tunknown disturbance due to actuator

failures is constructed and used for an adaptive
con trol design. Based on the state observer, a
bac kstepping method is applied to develop an
adaptive compensation scheme to ensure that the
plant output tracks a reference output asymptoti-
cally and that all closed-loop signals are bounded,
in spite of the unknown actuator failures in addi-
tion to unknown plant parameters.
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