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Abstract: The standard approach to deal with uncertainty in dynamic optimization
is to tak e a conservativ e stand. Measurement-based optimization schemes allow re-
ducing this conservatism by using measurements to compensate for the uncertainty.
On the example of productivity optimization of a batch distillation column with a
terminal quality constraint, various measurement-based optimization schemes are
compared. They all use measurements to update the input either from batch-to-
batc h or within the batch. A novel mid-course correction scheme for satisfying the
terminal constraint is proposed. Copyright c
2002 IFA C
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1. INTRODUCTION

The optimization of batch processes has received
increasing attention since it is a natural choice for
maximizing productivity. T ypically, the quantity
of desired product is maximized at �nal time while
respecting operational path constraints and ter-
minal quality constraints. The classical approach
is to apply open-loop input pro�les that have
been determined o�-line. In practical applications,
model mismatch and perturbations are present,
which may lead to constraint violation or non-
optimal operation. To satisfy the constraints de-
spite uncertainty, conservativ e input trajectories
that guarantee feasibility are sought (Terwiesch et

al., 1994). How ev er, suc h a conservativ e strategy
is, in most cases, non-optimal.

When suitable measurements are available, they
can be used in the optimization scheme to reduce
conservatism (Bonvin et al., 2001). Depending
on the availabilit yof measurements, the inputs
are updated during the batc h (intra-batch) or
in a batc h-to-batch manner (in ter-batc h).The

in tra-batch optimization is capable of coping with
perturbations that occur during a batch run. The
objective of inter-batc h optimization is to exploit
the repetitive nature of batch processes to �nd the
optimal operating conditions iteratively.

Two approaches can be distinguished depending
on whether or not the model is used at the imple-
mentation level (Srinivasan et al., 2002). When
a model is used for implementation (indirect ap-
proach), updated optimal trajectories are com-
puted using the estimates of the states and/or
parameters. When the model is not used in a
run-to-run scheme (direct approach), the input
parameters are updated by a feedback controller
to meet the terminal constraints (Srinivasan et

al., 2001). With on-line measurements, the direct
approach requires a mid-course correction strat-
egy to satisfy the terminal constraints (Yabuki
and MacGregor, 1997). This paper proposes a
no velscheme that tracks an o�-line determined
trajectory .

As an example, the optimal operation of a batch
binary distillation column is studied. Numerous
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publications deal with the optimization of batch
distillation columns for the case of no uncer-
tainty (Hansen and J�rgensen, 1986; Diwekar et

al., 1987; Farhat et al., 1991). The objective is to
maximize the quantity of distillate at �nal time,
or to minimize the time of operation for a given
productivity. Typically, a terminal constraint on
the average distillate quality is imposed. Fewer
articles deal with the optimal operation of batch
distillation columns under uncertainties. To com-
pensate for uncertainties in the feed composition,
it was proposed to choose o�-line computed op-
timal trajectories based on temperature measure-
ments in the initial startup phase (Barolo and Dal
Cengio, 2001). The tracking of optimal tempera-
ture pro�les was applied to a reactive batch dis-
tillation in order to prevent the breakthrough of
the light component into the distillate (S�rensen
et al., 1994).

In this paper, the problem of maximizing pro-
ductivity with a terminal constraint on quality
will be studied with the re
ux ratio being the
sole manipulated variable. Various measurement-
based optimization schemes will be evaluated in
the presence of uncertainty in the relative volatil-
ity and boilup rate, with the measurement of the
average distillate composition used to compensate
for the uncertainty.

This paper is organized as follows. In the next
section, a classi�cation of optimization schemes
to deal with uncertainty is undertaken. Section
3 describes the on-line tracking scheme that can
be used for tracking terminal constraints. The
problem of optimizing a distillation column is
presented in Section 4, and various optimization
schemes are evaluated on this example in Section
5. Finally, conclusions are drawn in Section 6.

2. CLASSIFICATION OF OPTIMIZATION
SCHEMES

The terminal-cost optimization problem with un-
certain parameters �, perturbations dk(t) and
measurement noise vk in the kth batch can be
stated formally as follows:

max
uk(t)

Jk = �(xk(tf ); �) (1)

s:t: _xk = F (xk ; uk; �) + dk(t); xk(0) = xk0

S(xk ; uk; �) � 0; T (xk(tf ); �) � 0

yk = h(xk; �) + vk(t)

given zj ; 8 j = f1 : : : k�1g

or yk(ti); 8 i = f1 : : : lg

where Jk is the cost function, uk the inputs, xk the
states with initial conditions xk0 , S(x

k; uk; �) the
path constraints, and T (xk(tf ); �) the terminal
constraints. The measurements at the end of the

jth batch are represented by zj , j = f1 : : : k�1g;
and yk(ti) represents the on-line measurements at
time instant ti in batch k.

In the presence of uncertainty, the introduction of
a security margin (backo�) for active constraints
is necessary. Backo�s (bS � 0, bT � 0) can
be added to the path and terminal constraints:
S(xk; uk; �) + bS � 0; T (xk(tf ); �) + bT � 0.
The backo�s are so chosen that the probability
of constraint satisfaction is larger than a pre-
speci�ed con�dence level. Since the backo�s a�ect
the optimal solution, which in turn a�ects the
backo�s, the backo�s have to be calculated using
an iterative scheme (Srinivasan et al., 2002).

Di�erent dynamic optimization schemes are clas-
si�ed in Figure 1 (Bonvin et al., 2001). Possible
combinations of the schemes are not considered,
whereby certain parameters are adapted on-line
and others on a batch-to-batch basis.
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Fig. 1. Classi�cation of dynamic optimization
schemes in the presence of uncertainty (the
numbers correspond to the schemes tested in
this work)

2.1 Nominal optimization

When uncertainty is neglected, the nominal or ex-
pected values of the uncertain parameters are used
in the optimization. Thus, the nominal solution
may not even be feasible, let alone optimal, in the
presence of uncertainty.

2.2 Robust optimization

By taking the uncertainty into account explicitly,
a robust solution is obtained, for example by con-
sidering the worst-case scenario for the constraints
and optimizing the cost in an expected sense.
Such a conservative solution guarantees feasibility,
however the cost is inferior due to the introduction
of backo�s.

2.3 Batch-to-batch optimization, re�ned model

When measurements are available at the end of
the batch, they can be incorporated into an opti-
mization scheme that updates the input trajecto-
ries in a batch-to-batch manner. The optimization



scheme consists of two steps:
(i) estimation of the uncertain parameters at the
end of each batch, and
(ii) computation of the optimal input trajectories
using the re�ned model.
Both steps use the model explicitly and can be-
come computationally expensive with large mod-
els. Additionally, a con
ict between identi�ca-
tion and optimality objectives may be observed
(Srinivasan et al., 2002): If the input it not suf-
�ciently excited, it may not be rich enough to
uncover the uncertain parameters. On the other
hand, if the input is suÆciently excited, the oper-
ation may no longer be optimal.

2.4 On-line optimization, �xed model

When measurements are available during the
batch, reoptimization can be executed with the
advent of every measurement. It is supposed that
reoptimization can be completed in-between the
measurements, so that the inputs are updated
after each measurement. When a �xed model is
used, only the states are estimated and the opti-
mal trajectory is calculated for the remaining of
the batch. However, due to model inaccuracies,
the computed optimal solution can become infea-
sible, especially towards the end of the batch.

2.5 On-line optimization, re�ned model

To compensate for the model inaccuracies, the
uncertain parameters can also be estimated on-
line using the available measurements. The es-
timated parameters are then used in a re�ned
model for the calculation of the optimal trajectory
from current time until terminal time. When such
an approach is used, the system might not be
suÆciently excited.

2.6 Batch-to-batch optimization, model-free

In model-free implementation schemes, the mea-
surements are used directly to adapt the optimal
input. They use the fact that the optimal inputs
of (1) consist of various arcs and the inputs can be
parameterized as a function of the states and so-
called input parameters �, u = U(x; �). The input
parameterization also includes the switching time
between di�erent arcs.

Without loss of generality, assume that all ter-
minal constraints are active. Then, the necessary
condition of optimality with parameterization �
can be stated as follows (Srinivasan et al., 2002):

T = 0;  =
@�

@�
+ �T

@T

@�
= 0 (2)

where � is the vector of Lagrange multipliers for
the terminal constraints. The idea of model-free
optimization is to satisfy the necessary conditions

of optimality (2) despite uncertainty by adjusting
the values of � using measurements. The necessary
conditions consist of two parts: (i) the constraint
part T = 0, and (ii) the sensitivity part  = 0.
Since there is usually considerably more to gain
by meeting the constraints than from reducing the
sensitivities to zero, only the satisfaction of termi-
nal constraints will be discussed in this paper.

Let (i) the batch-end measurements correspond
to the terminal constraints, zj = T (xj(tf )), (ii)
a subset of �, �� of dimension � , have a large
in
uence on T , and (iii) the � � � gain matrix,
G : �� ! z, relate the input parameters �� to
the measurements z. Then, G�1 can be used for
decoupling, with the following update law for ��:

��j+1 = ��j +G�1Kjzj (3)

This represents an integral control law, where Kj

is a diagonal gain matrix of dimension � � � . The
other elements of � are kept constant.

2.7 On-line optimization, model-free

In the previous subsection, a batch-to-batch adap-
tation methodology that uses batch-end measure-
ments for pushing the system closer to terminal
constraints was presented. However, when on-line
measurements are available, a mid-course correc-
tion methodology to satisfy terminal constraints
is necessary. One such scheme will be discussed in
the next section.

3. ON-LINE TRACKING TO MEET
TERMINAL CONSTRAINTS

With batch-end measurements, only variations
that occur the same way in every batch can be
compensated. On-line measurements, on the other
hand, can be used to handle a larger class of
uncertainties within the batch, so that the backo�
can be reduced.

Since the goal is to be as close to the terminal
constraints as possible, the needed batch-end mea-
surements correspond to the terminal constraints.
Since on-line measurements do not directly pro-
vide this information, some sort of prediction or
extrapolation is needed. Such a prediction is not
always accurate due to model mismatch and dis-
turbances. Though model mismatch can be han-
dled by re�ning the model using measurements,
the approach typically su�ers from lack of persis-
tent excitation.

Suppose the on-line measurements y(ti) = T (x(ti))
are available, i.e., the quantities corresponding to
the terminal constraints T (x(tf )) are not only
measured at the end of the batch but also during
the batch. The idea proposed in this paper is



to track a conservative reference trajectory yr(t)
whose main purpose is to guarantee the satisfac-
tion of the terminal constraints at �nal time, i.e.,
yr(tf ) = 0. Then, the adaptation law is given by:

u(ti) = ur(ti) +Kp(yr(ti)� y(ti)) (4)

where ur and yr are the reference input and out-
put trajectories. The inputs are constant between
sampling instants. Optionally, an integral term
can be added to the adaptation law (4). Also,
reference trajectories with yr + bT � 0 can be
chosen to provide a safety margin in the presence
of measurement noise.

Though this scheme does not use the model for
implementation, a model is needed to generate the
reference trajectories. If there is no uncertainty
(modeling errors and disturbances), then y(ti) =
yr(ti), and the proposed feedback controller has
no e�ect, u(ti) = ur(ti). In comparison to tracking
a state variable (S�rensen et al., 1994), the role of
the feedback controller is not to steer the system
towards a desired state, but towards the terminal
constraints yr(tf ) = 0, thereby rejecting the e�ect
of model uncertainty and disturbances.

It is interesting to note the twist in concept { the
model is not adapted to provide a good predic-
tion of the system behavior, instead, the inputs
are adjusted for the system to follow the model
prediction. Since the model prediction renders
the terminal constraints active, following it close
enough will push the system towards the terminal
constraints.

Note that no optimization nor estimation has to
be executed on-line, which makes this method
computationally attractive and numerically ro-
bust. So, in comparison to the model-based on-
line optimization scheme, the sampling frequency
can be higher, the backo� reduced, and the cost
improved.

4. OPTIMIZATION OF A BATCH BINARY
DISTILLATION COLUMN

4.1 Modeling

The model is based on previous work reported
in the literature, see e.g. (Hansen and J�rgensen,
1986), (Diwekar et al., 1987) and (Farhat et al.,
1991). The following assumptions are made: (1)
Equimolar over
ow, (2) Constant relative volatil-
ity and ideal vapor-liquid equilibrium, (3) Equilib-
rium stages, (4) Negligible vapor holdup, (5) Con-
stant liquid holdup on stages and in condenser, (6)
Total condenser, (7) Constant boilup rate.

Considering a column with a total of p equilibrium
stages, the following model of order (p + 2) is
obtained:

_M1 =�fdV (5)

_x1 =
V

M1
(x1 � y1 + (1� fd)x2) (6)

_xi =
V

Mi

(yi�1 � yi + (1� fd) (xi+1 � xi)) (7)

_xc =
V

Mc

(yp � xc) (8)

i = 2; : : : ; p, where xi is the molar liquid fraction,
yi the molar vapor fraction andMi the holdup on
Stage i. Stage 1 refers to the reboiler and Stage
p to the top of the column. The composition of
the liquid 
ow entering the top stage corresponds
to the composition in the condenser, xc, i.e.,
xp+1 = xc.Mc is the holdup in the condenser. The
ratio fd of the distillate to boilup rate, fd = D

V
,

is considered as the manipulated variable. The
vapor-liquid equilibrium relationship is:

yi =
�xi

1 + (� � 1)xi
; i = 1; � � � ; p (9)

where � is the relative volatility. The model pa-
rameters and the initial conditions are given in
Table 1. The composition of the accumulated dis-
tillate, xd, is assumed to be measured with the
sampling time, ts, and is given by:

xd(t) =

Pp

i=1 xi(t)Mi(t)� xi(0)Mi(0)

M1(t)�M1(0)
(10)

Table 1. Model parameters and initial
conditions, i = 2; � � � ; p

p 10 V 15 kmol/h

tf 10 h xd;des 0:9 kmol/kmol

ts 30 min M1(0) 100 kmol

� 1:5 x1(0) 0:5 kmol/kmol

Mi 0:2 kmol xi(0) 0:5 kmol/kmol

Mc 2 kmol xc(0) 0:5 kmol/kmol

The objective is to maximize the quantity of accu-
mulated distillate for a given batch time tf with a
terminal constraint on xd(tf ). Additionally, there
are path constraints on the manipulated input
fd. The optimization problem is mathematically
stated as follows:

max
fd(t)

J =M1(t0)�M1(tf ) (11)

s:t: Di�. Alg. Equations (5)� (10)

0 � fd(t) � 1

xd(tf ) � xd;des

4.2 Characterization of the optimal solution

The optimal solution obtained numerically con-
sists of three intervals:

(1) Full re
ux (fd = 0). Startup phase to in-
crease the composition of the light compo-
nent in condenser,



(2) A nearly linear arc to represent the compro-
mise between quality and productivity,

(3) No re
ux (fd = 1) in order to empty con-
denser.

As a result, the input can be parameterized using
the following four parameters: the two switch-
ing times t1 and t2 and the parameters for the
linear pro�le, the initial level l and the slope
s. The parameterized optimal input trajectory
is illustrated in Figure 2. This parameterization
results in the optimal cost J = 22:73 kmol, and
the input parameters are � = [t1 t2 l s]T =
[1:02 9:88 0:1748 �0:0039]T .
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Fig. 2. Parameterization of the input fd.

5. EVALUATION OF VARIOUS SCHEMES

In order to provide a realistic test scenario, the
following uncertainty is considered:

� Parametric uncertainty: Constant but un-
known relative volatility in the range � =
[1:4 1:6]

� Perturbation: Boilup rate uniformly distributed
in the range V = [13 17] kmol=h, value
changed every 2:5h

� Measurement noise: Product composition xd
with 5% multiplicative gaussian noise

The value � = 1:5 is used in all simulations.
However, this value is not disclosed to the various
optimization schemes that start with the worst-
case value � = 1:4. The costs are calculated
on the basis of 50 realizations with respect to
perturbation and measurement noise. Backo�s are
introduced so that in every case the constraint
satisfaction is 99%.

The results of the various optimization schemes
are compared in Table 2. The loss in performance
is calculated as: Loss = (Jnom � J)=Jnom, where
J is the actual cost and Jnom the nominal cost
without parametric uncertainty, perturbation and
measurement noise. The input pro�les could be
updated either (i) on-line, (ii) batch-to-batch,
or (iii) both. This latter case is not considered
here. Thus, with on-line schemes, the improve-
ment shown in Table 2 is that obtained over a
single batch.

(1) Nominal case: When the nominal input tra-
jectory is applied open-loop in the presence of
uncertainty, the terminal constraint is satis�ed in
only 53% of the realizations.

Table 2. Comparison of cost and re-
quired backo�. The numbering refers to

subsections of Section 2

Method Cost Backo� Loss

J [kmol] bT [%]

1 Open loop, - infeasible -

nominal input

2 Open loop, 14.98 0.042 34.1

robust input

3 Batch-to-batch, 20.32 0.015 10.6

re�ned model

4 On-line, 20.20 0.015 11.1

�xed model

5 On-line, 20.41 0.013 10.2

re�ned model

6 Batch-to-batch, 20.83 0.012 8.4

model-free

7 On-line, 20.64 0.010 9.2

model-free

(2) Robust case: If measurements are not avail-
able, constraint satisfaction is guaranteed by using
the worst-case parameters in the optimization,
� = 1:4 and V = 17 kmol=h.

(3) Batch-to-batch, re�ned model: In the batch-
to-batch optimization scheme, the uncertain pa-
rameters are estimated by least-squares estima-
tion using the batch-end measurements of average
distillate composition. The re�ned model is then
used to update the input parameters. The optimal
cost is reached in about 5 batches (Figure 3), but
the cost changes signi�cantly from batch to batch
due to the perturbation and measurement noise.
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Fig. 3. Evolution of the cost function for the
batch-to-batch, re�ned model scheme.

(4) On-line case, �xed model: If the measurement
of xd is available on-line, the current state of the
system can be estimated and used for reoptimiza-
tion. However, such a procedure is slightly inferior
to batch-to-batch schemes due to inaccurate pa-
rameters. Also, the computed optimal input can
become infeasible towards the end of the batch
and the no re
ux interval has to be eliminated to
circumvent the problem.

(5) On-line, re�ned model: Here, the uncertain pa-
rameters are also estimated. The forgetting factor
� = 0:94 is used in the least-squares estimation.
It was observed that the parameter estimates do
not actually coincide with the true values. This
can be attributed to bias in estimation, a lack
of excitation, and infrequent measurements. Also,
since the measurements are only available after



the switching time t1, this input parameter cannot
be adapted in any on-line optimization method.

(6) Batch-to-batch, model-free: Among the input
parameters � = [t1; t2; l; s], the switching time t2
changes only marginally with the uncertainty con-
sidered and need not be adapted. The parameter
with the strongest in
uence on the terminal qual-
ity constraint is the level l. So, a simple integral
control law as in (3): lj+1 = lj+G�1 Kj T j , with
G�1 = 1:5, is used for batch-to-batch optimiza-
tion. In addition, the controller gain is reduced
with the batch number j: Kj = j�0:9. With such
a scheme, the optimal cost is reached in about
5 batches (see Figure 4). Note that the varia-
tions in cost due to perturbation and noise are
less than with the batch-to-batch, re�ned-model
scheme (Figure 3).
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Fig. 4. Evolution of the cost for the model-free
batch-to-batch scheme.

(7) On-line case, model-free: Assuming that y(ti) =
xd(ti) can be measured without any delay, a tra-
jectory xdr (t) is tracked. In this case, the conser-
vative trajectory computed o�-line using robust
optimization techniques. Here, trajectory tracking
closely resembles the constant distillate purity
method of operation. The backo� bT = 0:01 is
added to the reference trajectory, and tracking is
done using an empirically tuned PI-controller with
k = 1:2, Ti = 1:6. Figure 5 shows that though the
reference trajectory is not perfectly tracked, the
terminal constraint is attained at the end of the
batch.

The performance could still be improved in two
ways: (i) If the measurements are available more
frequently, it is possible to decrease the sampling
time, since on-line computation is minimal. With
the sampling time ts = 3 min, the backo� can be
reduced to bT = 0:009 and the performance loss
is only 7%. (ii) Performance improvement can be
achieved with a combination of on-line tracking
and batch-to-batch adaptation of the reference
trajectory xdr (t).

6. CONCLUSION

Several optimization schemes that use measure-
ments to reduce conservatism (necessary in the
presence of uncertainty) have been presented. The
methods were applied to a simulated batch bi-
nary distillation column with terminal cost and
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Fig. 5. Reference trajectory and measurements for
the on-line model-free scheme.

path and terminal constraints. A novel scheme
was proposed to track a reference trajectory on-
line, the purpose of which is to bring the system
to the terminal constraints. This method is nu-
merically robust since no parameter estimation
nor trajectory reoptimization is required on-line.
Future work will investigate the application of the
method to non-ideal multi-input systems includ-
ing several terminal constraints.
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