

JAVA FOR REAL-TIME PROCESS CONTROL SYSTEMS

Michael J. Baxter and Sian Hope

School of Informatics
University of Wales, Bangor,

United Kingdom
Email: mjbaxter@informatics.bangor.ac.uk

Abstract: This paper investigates the temporal behaviour of the Java run-time
environment for real-time control system applications. A representative process controller
is used as a case-study, and has been implemented in Java according to a number of
proposed generic software architectures. These are assessed upon several general purpose
run-time platforms, before extending the investigation to a claimed real-time Java
environment. The investigation is then furthered, by compiling the Java into native code,
in an attempt to improve execution time. The results prove surprising and indicate further
directions in which to progress this technology. Copyright © 2002 IFAC

Keywords: Process control; Distributed systems; Real-time systems.

1. INTRODUCTION

This paper describes work that forms part of the
PiCSI (Process Control Systems Integration)
research programme that collaborates with
companies involved in the process control industries,
including: OAC, Eurotherm and Wind River
Systems. It has been found that the process control
industries are moving away from proprietary control
solutions, and are interested in exploring fully
decentralised distributed control systems (FDDCS),
exploiting emerging SMART remote I/O technology.
Industry estimates material cost savings to be in the
range of 30-80% using this scheme. However, the
scheme is not easily realised due to the increased
design complexity, and requires the support of design
tools and modern software technologies, possibly
including Java (Bass, et al., 2000).

Java has often been mistaken as a language for web
technologies only; of course it is much more. A
general purpose programming language, object-
oriented, heavily typed, distributed, robust,
multithreaded, reusable code and with great strengths
in portability (Horstmann, et al., 1997). Real-time
systems engineers have regarded Java as an attractive
language for all these features, but have been
fundamentally unable to embrace the technology, as
it cannot capture the temporal determinism required
by these systems. A number of impacting issues have
been raised in the real-time community in this
regard, such as memory management, scheduling,
inter-process communications and synchronisation.

Java has been selected as the real-time target
language for the PiCSI programme.

This paper will continue with a discussion of
background material and industrial developments
followed by an examination of the experimental
approach, software architectures and the
development environment used. Results are
presented next and the paper will ends with
conclusions and a discussion on future work.

2. BACKGROUND

The typical run-time environment for Java is unlike
that for most other languages. To understand this,
consider Fig. 1, it outlines the usual layers in the Java
environment. The Java application sits at the top
level of the architecture. Here, the application code
does not usually run natively, it runs on a virtual
machine, the Java virtual machine (JVM). The output
of compiled Java source code are byte-codes which
can be considered analogous to machine instructions.
It is these byte-codes that are executed, or more
accurately, interpreted by the JVM. Simply stated, a
JVM can be seen as a software abstraction of a
computer.

The JVM provides the portability of Java, as any
hardware platform can execute Java providing it has
a conforming JVM. The JVM includes mechanisms
such memory management and scheduling. The JVM
in turn calls on the services provided by the operating
system, which sits upon the computing hardware.

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain

Fig. 1: Layers of a typical Java environment

Obviously, this is a more complex run-time
architecture than that which is usually associated
with a programming language like ‘C’.
Unfortunately, this also detracts from the execution
performance and predictability of Java.

Within the execution environment of Java, there are
undesirable activities. Threads have come under
scrutiny, as their temporal requirements cannot be
easily expressed and certainly not guaranteed
(Miyoshi, et al., 1997). More advanced features
permit compilation during run-time, through the
availability of just-in-time (JIT) compilers, such as
those available from Symantec and Inprise. These
compilers are automatically engaged during run-
time, compiling code on-the-fly. Claiming, this
provides speed-up of 10-20 times for some
applications (Horstmann, et al., 1997). However, this
is undesirable for real-time systems, as it is difficult
to predict when a JIT compilation will occur. There
is also another technique, called ahead-of-time
(AOT) compilation, which permits compilation to
native code prior to run-time. However, it has been
found that for some AOT compilers only the
methods of an application are compiled, and the
application is still run via the services of a JVM.

Interestingly, there is no reason why Java cannot be
executed on conforming hardware directly, which
simplifies the run-time architecture and improves the
ability to perform real-time analysis. J. Kreuzinger et
al, have made progress in this direction, with the
development of the Komodo microcontroller, which
executes a variant of standard Java natively
(Kreuzinger, et al., 1999). Other examples of Java
hardware come from aJile Systems and Systronix
who have developed single board Java computers
based on the Rockwell Collins JEM2 core.

Industry speculates that Java is desirable for real-
time systems and as a result of the shortcomings, a
number of consortia have been assembled in an
attempt to formulate specifications of a real-time
Java. Encompassing many blue-chip companies in
their membership, the two most significant groups
are the Real-time for Java Experts Group (RTJEG)
(www.rtj.com), and the other is the J-Consortium
(www.j-consortium.com) (Bollela, et al., 2000; The J
Consortium, 1999; Baxter, et al., 2000).
Furthermore, there are a great variety of claimed
real-time Java environments that have been released
by a plethora of companies, including: Sun

Microsystems, Inc. (java.sun.com); Newmonics, Inc.
(www.newmonics.com); Insignia Solutions
(www.insignia.com); Esmertec, Inc.
(www.esmertec.com); aJile Systems
(www.ajile.com) and Systronix, Inc
(www.systronix.com).

3. THE INVESTIGATION

Considering, all the previous criticisms, it can be
suggested that Java does not have a place in real-time
systems. However, this paper makes a practical
investigation through the simple benchmarking of a
number of Java environments running a challenging
process control case-study application. Initially, the
authors propose several candidate software
architectures suitable for representing control
algorithms. The case-study is subsequently coded
according to these architectures, and evaluated for
execution cycle-time. The application is cyclic,
where data is pumped into the inputs of the system,
which percolates through the various software
objects. The completion of a cycle occurs when all
the data has been processed and data arrives at the
output. It is this cycle-time that is of interest to this
investigation. The implementation was prepared for
timing analysis by developing a timing harness that
would iterate the implementation many times.

4. CASE-STUDY APPLICATION

The case-study has been drawn from the process
control industries, and is illustrated in Fig. 2. It is a
component of a controller for an extruder process,
which is known to be a challenging control problem.
The application was specified and simulated using
the Mathworks Simulink environment (Mathworks,
2000), at the Control Systems Centre (CSC) at
UMIST, Manchester. A portion of the complete
application was then hand coded in Java using the
proposed software architectures. This controller is
cyclic, and has a time period requirement of 34mS.
Failure for the application to be computed within this
time will affect the dynamics of the system, which is
considered unacceptable. The first objective of this
investigation is to assess whether the algorithm can
be computed within this stringent time constraint.

Fig. 2 Simulink view of case-study application

Java Application
Java Virtual Machine

Operating System
Computing Hardware

5. SOFTWARE ARCHITECTURES

The researchers propose a number of generic
software architectures that could be used to represent
a typical controller; they are based on the results of a
previous benchmarking experiment (Baxter, et al.,
2000). These were:

a) An elegant and multi-threaded architecture,

based on the communicating sequential
processes (CSP) parallel processing paradigm
(Hoare, 1985; Kreuzinger et al., 1999).

b) A simple serialised architecture, proposed for
efficient run-time performance.

c) A multithreaded architecture with increased
granularity and fewer threads, to overcome the
performance inefficiencies of (a) and the lack of
object-orientation in (b).

d) A multi-threaded architecture, that exploits
method call communications, based on (a) but
with potential execution performance benefits.

5.1. Multi-Threaded Architecture

This novel, yet elegant, software architecture is
based on CSP, proposed by Hoare (Hoare, 1985).
Consider the case-study in Fig. 2; it illustrates the
Simulink block diagram for an advanced PID
controller. It was noted that the controller data-flow
diagram is constructed from transfer-function blocks
and interconnecting signals. As can be seen, the
diagram is essentially a data-flow diagram. This
structure can be elegantly represented by the CSP
paradigm, which is rooted in mathematical
formalism and is analysable.

To understand the transition to code consider Fig. 3,
it illustrates a simple controller in Simulink. The
resulting multithreaded architecture can be seen in
Fig. 4, which is structurally similar. Here, each block
of the Simulink diagram is translated into a Java
thread. The corresponding interconnecting signals in
Simulink are constructed with streams.

An elegance of this multi-threaded approach is that it
takes advantage of the regularity of control system
diagrams. Control algorithms are typically
constructed from a small library of block types, for
example: transfer functions, adders and multipliers.
A library of Java classes, each representing a block
type has been built. From here, the implementation
of a controller only requires code to instantiate the
relevant blocks and signals with an appropriate
harness that ‘wires’ the components together, see
Listings 1 for the generic pseudocode. Initially, the
constructor method instantiates all the signals and
blocks, and connects the streams. The blocks are
subsequently named, for debugging purposes.
Finally, the threads are set to run. The run method
forms the body of the code, and is an endless loop
that wraps around the system input and output.

Fig. 3 An example controller in Simulink

Fig. 4 Example multi-threaded software architecture

class CONTROLLER extends Thread
{
 private DECLARE SYSTEM INPUTS
 private DECLARE SYSTEM OUTPUTS

 public CONTROLLER (I/O PARAMETERS)
 {

 INSTANTIATE INPUT SIGNALS
 INSTANTIATE OUTPUT SIGNALS

 Line DECLARE SIGNALS = new Line();

 TEMPLATE BLOCK = new TEMPLATE
 (
 BLOCK INSTANCE PARAMETER VALUES,
 BLOCK_INPUTS,
 BLOCK_OUTPUTS
);

 SET HIERARCHIAL NAMES OF ALL BLOCKS
 START ALL CREATED THREADS
 }

 public void run()
 {
 while(TRUE)
 {
 READ SYSTEM INPUT
 SEND INPUTS TO CONTROLLER
 READ OUTPUTS FROM CONTROLLER
 WRITE SYSTEM OUTPUT
 }
 }
}

Listings 1: Multi-threaded harness pseudocode

An advantage of this simple architecture is that the
precedence of blocks in the data-flow diagram does
not need to be considered in the implementation.
Threads will only be run if they have input data, if
they don’t, they will block and are not scheduled. In
addition, to minimise the effects of garbage

collection the application has a static memory
requirement. After initialisation of the application at
run-time, no further memory space is requested.

class BLOCKNAME extends Thread
{
 private double I/O VARIABLE DECLARATIONS
 private double OTHER VARIABLE DECLARATIONS
 private PIPE VARIABLE DECLARATIONS

 public void BLOCKNAME(PARAMETERS)
 {
 INITIALISE I/O VARIABLE DECLARATIONS
 INITIALISE PIPE VARIABLE DECLARATIONS
 }

 public run()
 {
 while(TRUE)
 {
 READ INPUTS
 EXECUTE ALGORITHM
 WRITE OUTPUTS
 }
 }
}

Listings 2: Generic class pseudocode

The classes within the library are all constructed
around a common structure, see Listings 2. The class
contains a constructor and a run method. The
constructor initialises parameters for this instance of
the block type, and is also responsible for attaching
the ends of the streams that will be used for inter-
thread communications. The main body of the code
appears in the run method, this is the code that is
executed once the thread has been prepared for
execution. Here, a non-terminating loop wraps
around the mathematical equations representing the
block, with appropriate input and output operations.
There are a number of other software architectures
that could be used here, but this was initially chosen
for simplicity.

It is important to note that this simple relationship
between the Simulink diagram and Java code lends
itself very well to automatic code-generation. A
code-generator could draw on this class library of
controller components, and by building the
communication harness based on the generic
pseudocode described, a complete controller is easily
produced. The case-study here was handcoded,
which when considering more complex examples
was not considered a scalable approach. For
automatic code-generation, this increased complexity
is not expected to be an issue.

5.2. Serialised Architecture

Multi-threaded applications incur run-time overheads
due to scheduling and context switching overheads
(Baxter, et al., 2000). Although, here, the virtual
machine will be kept busy whilst there are runnable
tasks. To investigate the burden of multi-threading,
an alternative software architecture was proposed,
based on a serialised structure. Consider Listings 3, it
represents the pseudocode for a generic serialised
architecture. Here, a single thread represents the
complete controller. The blocks are implemented as

in-lined code and the signals as local variables. An
endless loop, wraps around the controller maths,
firstly external inputs are read. Subsequently, the
individual blocks are computed with the outputs
being written at the end. The result is an architecture
that does not introduce the threading overheads
previously described. However, this architecture does
require analysis of block precedence, the developer
must order the code to match the diagram. In
addition, it does not take advantage of the power of
object orientation, as only one object is in the system,
the complete controller. As with the multi-threaded
architecture, the application has a static memory
requirement.

public class CONTROLLER_NAME
{
 public void CONTROLLER_NAME()
 {
 double COMM VARIABLE DECLARATIONS
 double BLOCK PARAM VARIABLE DECLARATIONS
 double SYSTEM VARIABLE DECLARATIONS

 while(TRUE)
 {
 READ INPUTS
 PROCESS BLOCK 1
 PROCESS BLOCK 2
 . . .
 . . .
 PROCESS BLOCK N
 WRITE OUTPUTS
 }
 }
}

Listings 3: Serialised architecture pseudocode

5.3. Large-grained Multi-threaded Architecture

The multi-threaded approach can be criticised for the
overheads that are introduced due to thread
management, such as, context switching and
scheduling. In addition, the code representing the
simulink blocks does not have a high computational
demand, but requires significant communication
across pipes. This indicates fine-grained tasks, which
are known to be inefficient. However, the serialised
approach eliminated these issues, but does not exploit
object-orientation and results in unmanageable code
size for real-world controllers.

These arguments led the authors to propose a multi-
threaded architecture with increased task granularity.
This is performed by creating small groups of
neighbouring simulink blocks to form larger-grained
blocks, essentially a process of serialisation.
Subsequently, these are implemented as threads in
accordance with the multi-thread architecture.

5.4. Multi-threaded architecture with method call
communications

Existing benchmarks (Baxter et al, 2000) indicate
that a single communication over a pipe incurs a
fixed overheads for messages sizes upto 512bytes,
for the virtual machines investigated. This
communication overhead becomes comparatively
significant for the small message sizes used here.
This led the authors to consider an architecture that

uses method calls for communications, believed to
have comparative performance benefits for small
message sizes. Here, the multi-threaded architecture
is retained, but streams are substituted for method
calls.

6. EXPERIMENTAL ENVIRONMENT

The Borland JBuilder3 integrated development
environment was used for the initial application
development, and then compiled to byte-codes by the
Sun Microsystems Java compiler from version 1.3 of
the standard development kit. At this stage, the byte-
code application can be run on the chosen JVMs.
Two different JVMs are used, the standard Sun JVM
and another commercial offering, which will be
designated as Brand X. However, the Brand X
toolset suite also has provisions for compiling byte-
codes into native code. This requires the use of the
accompanying tool and a 'C' compiler, from which a
standalone executable is built. Finally, the GNU ‘gcj’
is also used, that compiles Java source code directly
to native code (gcc.gnu.org). The underlying
operating systems are Windows 98 and Redhat Linux
7.x. The list below summarises the experimental
configurations, which were used in the investigation:

• Sun JVM on Windows 98

• Sun JVM on Linux

• Brand X JVM on Linux

• Brand X compiled native executable on Linux

• GNU ‘gcj’ compiled native executable on Linux

The hardware used for all these investigations was an
Intel Pentium II 400MHz on an Intel SE440BX-2
motherboard with 128MByte of system memory.

7. RESULTS

Table 1 outlines the cycle-time results for a selection
of the specified configurations. For the application in
hand, the Java multi-threaded byte-code
implementation upon Windows 98 is not performing
well, when considering the requirements of the
algorithm. In fact, it takes nearly 200 times longer
than the required 34mS cycle-time. However,
transporting the application to the Linux OS provides
a modest reduction in execution time. Although the
Brand X JVM is claimed to provide improved
execution and context switching performance over
the Sun implementation, only a small cycle-time
advancement was shown. Subsequently, the
application was compiled into native-code utilising
the Brand X tools. The authors had a confident
expectation that the requirements would be satisfied
using this approach; there was a huge disappointment
when only a modest improvement was demonstrated.

However, the serialised architecture resulted in
massive performance benefits, when compared to the
multi-threaded architecture. Although the timing
requirement was not met, with this simple software
architecture the result is very close. The

improvements are in excess of 100 fold, when
compared to the multi-threaded variant, and are
clearly down to the reduction of scheduling
overheads and inter-thread communications.

Table 1: Application cycle-time results

Software
Architecture

App' Code
Format

Virtual
Machine OS

Cycle-
time
(S)

Multi-threaded Byte-code Sun Win98 6.59

Multi-threaded Byte-code Sun Linux 5.11

Multi-threaded Byte-code Brand X Linux 5.01

Multi-threaded Native-code Brand X Linux 4.95

Multi-threaded
time-slice

tuned
Native-code Brand X Linux 1.61

Serialised Byte-code Sun Win98 0.045

Serialised Byte-code Brand X Linux 0.043

Serialised Native-code GNU Linux 0.040

Additionally, the authors also tried tuning the
scheduler time-slice for the Brand X native-code
variant, performed on the command-line.
Improvements were in the order of 3 fold. The
default was 25mS, and the best setting tried was
8mS.

Finally, the GNU compiler was applied to the
serialised version. Again, a small improvement was
demonstrated over the other serialised
implementations, but still short of the temporal
demands.

8. CONCLUSION

Despite the plethora of configurations trialed, none of
implementations met the 34mS cycle-time
requirement. But before concluding that Java has no
place in real-time process control systems, reconsider
the table of results. Obviously, the choice of JVM
and OS has not had significant impact. Neither has
the compilation to native-code, which surprised the
authors, and questions were raised on why there was
little improvement. On further investigation it was
found that full AOT was not occurring, only the
compilation of methods, and the application was still
being run upon the services of the JVM. Here, the
term AOT is considered misleading.

The most significant improvement was a result of the
software architecture. It was expected that the multi-
threaded architecture would incur run-time overheads
due to scheduling and context switching. However,
the results of the serialised code imply that these
overheads are massive, when compared to the time
spent executing the control algorithm itself. Tuning

the scheduler time-slice also released some benefits.
This reduction was again surprising; possibly
indicating the threads may not be yielding to other
runnable threads when blocked on communications.
However, this must be confirmed through further
consultation, experimentation and extended to the
other configurations.

Clearly, the run-time architecture of the Java
platform is far more complex than running compiled
‘C’ directly on a microprocessor. This paper has
proposed a number of software architectures and
performed a pragmatic trial, with unexpected results.
In light of these, it is not obvious what constitutes a
good software architecture without a practical trial,
and efficient use of the multi-threading features of
Java is challenging, despite an elegant software
representation of the controller.

9. FUTURE WORK

Clearly, the interactions of software components and
run-time mechanisms are complex within a Java
environment. The software architectures investigated
in this paper were partially proposed on the basis of
some simple benchmarking of execution and
communication performance benchmarks. There may
be merit in extending these focused benchmarks, to
better characterise the alternative platforms. With
this information the architectures could be revised
and further execution performance improvements
may be released. In addition, there are two further
architectures that will be trialed, which address some
of the shortcomings of the multi-threaded and
serialised approaches.

The investigation has focused on one case-study
only. It is considered a good representation of a
challenging control algorithm, but has limited
investigative scope. This will be furthered by
identifying other general algorithms, in order to
demonstrate the approaches outlined in this paper.

As described, full AOT compilation did not occur
with the Brand X tools. Others are available, such as
the GNU Java compiler and there maybe merit in
trialing these also. Full compilation is expected to
release massive improvements, but this must be
confirmed.

Obviously, the run-time environments in this study
are not hard real-time. The virtual machines make
use of some of the underlying services of the
operating system, such as the scheduler. However,
there maybe potential rewards through the
exploitation of the awarding winning Wind River
Systems' VxWorks real-time operating system, in
conjunction with a compatible virtual machine, such
as a recent Sun Microsystems release.

For some time, Java processing in hardware has been
considered an attractive proposition. Recent
developments from aJile Systems are exciting, and
there may be some merit in investigating the
suitability for real-time systems. Initially, applying

the previous benchmarks and case-study application
may demonstrate that a hardware approach is more
viable. Moreover, for hard real-time systems this
approach maybe far simpler to analyse. For example,
the determination of worst-case execution times
(WCETs) for software components is not straight
forward in the usual multi-tier Java architecture. This
would be greatly simplified when using Java
hardware, as the core is micro-coded and byte-codes
would be expected to have a fixed worst-case
execution time. For example, traditional instruction
counting techniques could be applied to determine
WCETs.

ACKNOWLEDGEMENTS

This paper acknowledges the support of the EPSRC,
grant number GR/M55282. The paper also
acknowledges the technical contributions made by
the Process Control Systems Integration Industrial
Consortia, of which the authors are members.

REFERENCES

Bakkers, A., Hilderink, G. and Broenink, J., (1999).

'A Distributed Real-time Java Systems Based
on CSP', Proceedings of WoTUG 22:
Architectures, Languages and Techniques for
Concurrent Computing, pp.229-241

Bass, J.M., Schooling, S. and Turnbull, G. (2000).
‘Process Control Systems Integration’,
Proceedings of IFAC CACSD 2000.

Baxter, M.J. and Bass, J.M., (2000). ‘Achieving Hard
Real-time Java’, Proceedings of the 25th IFAC
Workshop on Real-time Programming,
pp.161-166

Baxter, M.J., Hope, S., and Bass, J.M., (2001). ‘Java
for Distributed Real-time Systems: Practical
or Intractable?’,……….

Bollella, G., Gosling, J., Brosgol, B.M., Dibble, P.,
Furr, S., Hardin, D. and Turnbull, M. (2000),
The Real-Time Specification for Java,
Addison-Wesley, ISBN 0-201-70323-8.

Hoare, C.A.R., (1985). 'Communicating Sequential
Processes', Prentice Hall International Series
in Computer Science.

Horstmann, C.S. and Cornell, G., (1997). 'Core
Java', Vol 1 - Fundamentals.

Kreuzinger, J., Marston, R., Ungerer, Th.,
Brinkschulte, U. and Krakowski, C., (1999).
'The Komodo Project: Thread-based Event
Handling Supported by a Multithreaded Java
Microcontroller', Proceedings of the 25th
EUROMICRO Conference, Vol2, pp.122-128.

Miyoshi, A., Kitayama, T. and Tokuda, H., (1997).
'Implementation and Evaluation of Real-time
Java Threads', Proceedings of the 18th IEEE
Real-time Systems Symposium, Vol 31,
pp.166-175.

The J Consortium, (1999). 'Real-time Core
Extensions for the Java Platform', Draft,
Version 1.0.2

The Mathworks, Inc. (2000) Using MATLAB

	School of Informatics
	
	2. BACKGROUND
	3. THE INVESTIGATION
	Considering, all the previous criticisms, it can be suggested that Java does not have a place in real-time systems. However, this paper makes a practical investigation through the simple benchmarking of a number of Java environments running a challenging
	4. CASE-STUDY APPLICATION

	7. RESULTS
	8. CONCLUSION

	REFERENCES

