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Abstract: This paper presents the design of a Power System Stabilizer synthesized  using
an Artificial Neural Network. The patterns used in the network training are sets of
controller parameters, previously calculated for several system operation points using  the
pole-placement method. The trained network presents, as its main characteristic, uniform
values for all the stabilizers parameters when the system synchronous machine is
generating reactive power, but these same parameters suffer great variations when
reactive power is being absorbed by the machine. Simulation tests show very good
performance for the proposed Neural PSS, when compared with a fixed-parameter
stabilizer. Copyright © 2002 IFAC
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1. INTRODUCTION

Large electric power systems operate furnishing high
level of power in a very interconnected way and
using long transmission lines. Although this is a
common characteristic of most modern power
systems, it has been noticed that the dynamic
stability margins, the ability to damp low-frequency
oscillations of these systems, are becoming reduced.
This problem is much more severe when there are
high-gain and fast-response Automatic Voltage
Regulators (AVRs) in the generators of the system,
which has become a reality in the last years to
improve the quality of the supplied energy.

An attempt to decrease these non-desirable low-
frequency oscillations is the use of Power System
Stabilizers (PSSs), that provide an auxiliary
stabilizing signal to the excitation system generators,
in order to improve power system dynamic
performance (Kundur, 1994). This can be done by
generating an extra electric torque component (in
phase with rotor speed variations), which help
damping system oscillations quickly. In order to
study this kind of problem, the electric power system

could be represented as an equivalent single-machine
infinite-bus system.

These conventional stabilizers, denominated from
now on as CPSSs, have fixed structure and
parameters. The design of these stabilizers is done
obtaining a linear model of the electric power system
and using classical linear control techniques.
Although the CPSSs are tuned for a specific
operation point, they could present a satisfactory
performance in a wide range of electric power system
conditions (Larsen and Swan, 1981). But, if other
CPSSs had been designed for each specific operation
point, the result would be even better.

In the last two decades, several methods have been
proposed to design a PSS that could get better
performance than a conventional one. These methods
use techniques such as Gain-scheduling, Adaptive
Control, Neural Networks and Fuzzy Logic Systems
(Pierre, 1987; Gu and Bollinger, 1989; Hsu and
Chen, 1991; Hiyama et al., 1996; Hunt and Johansen,
1997; Shamsollahi and Malik, 1999). In most cases,
PSSs designed using these alternative approaches
present a similar performance when compared to a
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CPSS in several operation points (usually near the
operation point used for the CPSS design). But, when
the system operation point is very different from that
used to tune the CPSS, these other stabilizers may
present a superior performance than a conventional
one.

One of the main reasons of this paper is to
investigate, in a qualitative way, in which system
operation regions the last situation happens. The set
of parameters of a Gain-scheduling PSS (Barreiros et
al., 1999) is used to train an Artificial Neural
Network (ANN), applying the error-backpropagation
algorithm. Using the network ability to map any non-
linear function to a desirable accuracy (Haykin,
1998), it is possible to observe the variations in the
controller parameters according with the system
operation points.

2. GAIN-SCHEDULING PSS

A gain-scheduling controller is basically a set of
linear controllers, each one of them designed for a
specific system operation condition. Thus, when the
system is in an arbitrary operation region, the control
signal to be applied is given by the controller
designed for that specific region.

In this work, one PSS based on a gain-scheduling
scheme is first designed only to give the controller
parameters that are used to train the stabilizer
synthesized by an artificial neural network.

For the gain-scheduling PSS (GSPSS) design, the
synchronous machine operation region, in terms of
active and reactive powers (P x Q plane),  has been
divided in about 100 regions, presumed to be
sufficient to properly represent the power system. In
each region of the P x Q plane, a discrete linear
system model has been obtained, assuming that the
system operation point is represented by the central
operation point for that specific region (Figure 1).

These regions, limited by the capability curves of the
generator (McPherson, 1981), have the form of circle
sectors and should be in sufficient number to avoid
causing disturbances when the operation point varies
in accordance with the system operating conditions
(Hunt and Johansen, 1997; Barreiros et al., 1999).

The discrete linear model of the plant system to be
used for the controller design has the form:
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where T is the sample period (in this paper,
T = 100ms was used), kT represents the current
discrete time, u is the system input and y is the
output.

The parameters ai and bi from equation (1) are
estimated using the recursive least square method
(RLS) (Landau, 1990). After that, a controller is
designed using a pole-placement technique, that
consists in shifting the bad damped poles in a radial
direction towards the origin of the complex z-plane
(Cheng et al., 1986). This can be done multiplying
these bad damped poles by a real constant α. The
well-damped poles are not changed and if there are
any unstable poles, they are replaced by their
reciprocals. Then, the controller parameters can be
represented by the discrete-time equation:
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The controller parameters gi and hi are determined by
solving the following linear system, obtained from
the diofantine equation of the pole-placement
technique (Aström and Wittenmark, 1997):
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The α  parameter should be chosen between 0 and 1
and, in this application, it was used α = 0.75. This
value allows a very good damping of the electric
power system dominant poles, without exciting
higher frequencies modes (Silva and Barreiros,
1992). This approach is repeated for all operation
points mentioned before, resulting in a set of
controllers parameters. If the GSPSS was active in
the system, it would receive the actual system
operation point and chose, among all the controllers,
which one should be used to generate the control
signal. In this work, the sets of controller parameters
obtained are just used as the training set for the
neural PSS, described as follow.

3. NEURAL PSS

Even though a large number of operation regions
have been used to compose the previous GSPSS, in
certain cases there are some differences, regarding to
the controller parameters, between an operation point
inside a region and the central point that has been

Fig.1 - Regions in the P x Q plane used to design the
           GSPSS



used to represent that same region. For that reason, a
PSS based on a perceptron multi-layer neural
network has been trained (using the error-
backpropagation method) to provide a set of
controller parameters, even for operation points that
were not used during training.

The proposed Neural PSS (NPSS) is a static ANN
and its inputs are the actual active and reactive power
furnished by the generator. The network also has 2
hidden layers composed by 10 neurons each, using a
sigmoid non-linear function. The output layer uses a
linear function and has 5 neurons, representing the
controller parameters (Figure 2).

After the training process, in order to evaluate how
the controllers parameters change with the operation
point, the NPSS inputs have received a set of values
of active and reactive powers covering a wide range
of operation points (the active and reactive power
have been changed from 0 to 1 pu and −1 to 1 pu,
respectively), resulting in a group of 2500
controllers. It is important to notice that some of the
operation points presented to the NPSS are not valid
operation points (situations that will never occur in a
real power system operation), but they have not been
dropped to show how the controllers parameters
evolve with the changes in P and Q (Figures 3 to 7).
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Fig.2 - NPSS structure

Fig.3 - Parameter g0

Fig.4 - Parameter g1

Fig.5 - Parameter g2

Fig.6 - Parameter h1

Fig.7 - Parameter h2



Analyzing the results supplied by the NPSS, it is
easy to notice that there is not much change in the
controller parameters when the reactive power is
positive. However, all parameters suffer large
variations when the reactive power assumes a
negative value, even for neighbor regions. This is the
main characteristic of the proposed NPSS.

As a CPSS is usually tuned in a region with Q
positive, this could explain the reason why it presents
an acceptable performance in all operation regions
with this characteristic. But, when the power system
is working in regions with Q negative, the
performance of a CPSS (compared with other
methods such as adaptive control, neural networks or
fuzzy logic systems) is usually unsatisfactory
because it could not damp the oscillations quickly,
what could carry the system even to an unstable
condition.

5. SIMULATION RESULTS

Simulation tests have been performed using a single-
machine connected to an infinite-bus by a double-
circuit tie-line. The machine fifth-order non-linear
model represents a salient-pole generator including
damping windings and its parameters are shown in
Table 1, with the reactances given in pu and other
parameters in seconds (Arrilaga, et al., 1983). The
excitation system is represented by a first-order
model with a gain Ka=200 and a time constant
Ta=0.03s (limits of the excitation are Vlim=±6pu).

Table 1 - Single-machine infinite-bus system data

xd = 1.445 Re = 0.02

xq = 0.959 X e =  0.415

′xd = 0.316 ′Tdo =  5.256

′′xd = 0.179 ′′Tdo =  0.0282

′′xq = 0.162 ′′Tqo =  0.157

Ra = 0.001 H = 4.27

One of the controllers of the GSPSS was chosen to
be the CPSSS to be compared with the performance
of the NPSS. The choice of the CPSS was made
considering the recommendations to be taken when
designing a PSS with fixed structure and parameters
(Larsen and Swan, 1981). Limits of  ±1pu were used
on the output of the stabilizers. Two cases have been
simulated and results for the synchronous generator
rotor angle are shown in Figures 8 and 9.

Case 1 - The machine has the following operation
condition: P = 0.750 pu and Q = 0.082 pu. A three-
phase to ground short-circuit in the machine terminal
is applied in t=5s, with a fault clearing time of 100ms
and the loss of one transmission line. After this fault,
the system change its operation point to P = 0.750 pu
and Q = 0.218 pu (a more critical operation point,
with the rotor angle changing from around 50

degrees to a value higher than 70 degrees). After that,
in t=25s a second three-phase to ground short-circuit
in the machine terminal happens, with a fault
clearing time of 25ms, without loss of line (Figure 8).

When the power system is operating without a PSS,
it looses its dynamic stability after the first fault.
Both the CPSS and NPSS show similar performance,
with the ability to damp quickly the system
oscillations. This can be explained because the initial
operation point of the system is near the operation
point used to tune the CPSS. Besides, as the reactive
power remains positive for this case, the NPSS
controller parameters do not suffer a great change,
when compared with the CPSS parameters.

Case 2 - The system has the same initial operation
point of Case 1 and a 20% reduction in the voltage
reference takes place in t=1s. After this fault, the new
operation is P = 0.750 pu and Q = −0.264 pu. A
three-phase to ground short-circuit in the machine
terminal happens in t=15s, with a fault clearing time
of  75ms, without loss of transmission line. The
system responses with CPSS and NPSS are shown in
Figure 9.

In this second test, it is clear the superiority of the
NPSS over the CPSS, although the system does not
loose its dynamic stability in both cases. This
happens because the system is operating in a region
very different from that used to design the CPSS and,
as demonstrated in Figures 3 through  7, the
controller parameters present a great variation in the
region of negative reactive power.

Fig.8 - Rotor angle (in degrees) for Case 1

Fig.9 - Rotor angle (in degrees) for Case 2



6. CONCLUSIONS

A power system stabilizer based on a neural network
was evaluated in this paper. The neural network was
trained using the parameters of stabilizers which
were obtained through a control design based on the
pole-placement method, for several operation points
given by the synchronous generator active and
reactive powers (P and Q) furnished to the power
system.

This neural network presented, as its main
characteristic, almost uniform values for the
parameters of the stabilizer when the generator is
operating in the region of positive Q. However, these
values present intense variation when the generator is
functioning in a negative Q condition.

This feature indicates that it would not be necessary
to use power system stabilizers endowed with
parameter variation ability in synchronous generators
while they were furnishing reactive power to the
system. Such stabilizers would be worth only when
the generators were absorbing reactive power from
the system. Tests realized in a single-machine
infinite-bus system have shown a very good
performance of the proposed neural PSS and
corroborated with the characteristic of the neural
network used in this stabilizer.
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