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Abstract: By combining strong tracking filter theory with state fusion estimation 
algorithm, we put forward a new algorithm of state fusion estimation for a class of 
nonlinear dynamic systems with all sensors having different sampling rates on the basis 
of distributed information. The algorithm is also extended to the joint state and 
parameter estimation of a class of nonlinear systems having time-varying parameters 
with unknown changing law. The effectiveness of the proposed algorithm is illustrated 
by computer simulations, which show that the new algorithm has strong robustness 
against model/plant mismatches.  Copyright © 2002 IFAC 
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1. INTRODUCTION 
 

Information fusion techniques are of very 
importance for processing multi-source information, 
these techniques can be used to obtain more precise 
and complete estimates as well as judgments than 
those algorithms using only single source 
information, therefore, many scholars have paid 
much attention to this problem in the last decade. 
There are various information fusion techniques; 
the multi-sensor data fusion based on Kalman filter 
is one of the most significant methods. Kalman-
filter-based data fusion algorithms, including state 
fusion and measurement fusion, have been widely 
studied over the last decade (Cheng, et al., 1997; 
Smith, et al., 1998). State fusion methods usually 
have lower computation and communication cost 
and have the advantages of parallel implementation 
and fault-tolerance than measurement fusion. It has 
also been pointed out that state fusion methods are 
only effective when Kalman filters are consistent, 

which restricts the practical application of state fusion 
methods (Mazor, et al., 1998). In many realistic 
applications the real processes are often nonlinear, and 
the consequent Kalman filters based on linearized 
process models are usually inconsistent due to the 
modelling errors (Gan and Harris, 2001). 
 

It is well known that the state estimates can be 
obtained by use of Kalman filter (KF) or extended 
Kalman filter (EKF) when the dynamic model matches 
accurately with the actual system. However, KF or 
EKF has the disadvantage of poor robustness against 
model uncertainties, therefore, one can obtain only 
inaccurate state estimates in practice by use of the KF 
or EKF (Bonivento and Tonielli, 1984). In order to 
overcome this limitation, we have proposed a strong 
tracking filter (STF) theory, which can be effectively 
used for the state and parameter estimation of a class 
of nonlinear systems (Bai, et al., 1998; zhou and Frank, 
1996). 
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On the other hand, in nature and engineering 
practice, there are many processes having 
multiscale phenomena. Simultaneously, people 
often observe and measure these processes at 
different scales (or resolutions), thus it's natural for 
us to use multiscale idea to describe and analyse 
these processes. Therefore, combining the fusion 
algorithm with wavelet transform based multiscale 
analysis has been paid much attention recently. 
 

In this paper, by combining the STF theory with 
multiscale estimation theory and state fusion 
approaches, we put forward a new state fusion 
estimation algorithm for a class of nonlinear 
systems with multi-sensors having different 
sampling rates. The proposed algorithm is optimal 
on the basis of global information by use of strong 
tracking filter. The proposed algorithm is then 
extended to the joint state and parameter estimation 
of a class of nonlinear systems. Computer 
simulation results show that the proposed fusion 
algorithm is more effective than those of EKF-
based fusion algorithms (Mazor, et al, 1998; Bai, et 
al., 1998; zhou and Frank, 1996). In that  
 

1) Having strong robustness against model 
uncertainties, i.e., having higher estimation 
accuracy when there are model/plant mismatches; 

 
2) Having the ability to estimate time-varying 

parameters, in contrary, EKF-based fusion 
algorithms can be used to estimate constant 
parameters only. In the algorithm the wavelet 
transform is the bridge between different sampling 
information.  
 

The paper is organized as follows: In the next 
section we present a class of nonlinear dynamic 
systems with multirate sensors and single model.  
Section 3 is the outline of discrete wavelet 
transform. In section 4 we propose a new multiscale 
state fusion estimation algorithm on the basis of 
STF for nonlinear dynamic systems described in 
section 2. In section 5 we extend our algorithm to 
joint state and parameter estimation of nonlinear 
systems. In section 6 we illustrate the effectiveness 
of the proposed algorithm by two numerical 
examples. Section 7 concludes this paper.    
 
 

2.  SYSTEM DESCRIPTION 
 
 A class of single model, nonlinear dynamic 
systems with multi-rate sensors can be described by 
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Where integer k  is the discrete time 
variable, 1×∈ nRx  is the state, i ( N,,2,1 L= ) 
denotes scale, nonlinear function f  has one order 

continuous partial derivative with respect to the 

state in a region nRR ⊂0
, system noise 1×∈ nRw  is 

a Gaussian white sequence and has 
)),(,0(~),( kNQNkNw , ),( kNQ  is a semi-positive 

definite matrix. Γ  is a known  matrix. 
  
The state variables are observed by N  different sensors 

at scale i , the measurements are 1),( ×∈ ipRkiz , the 
nonlinear function )),(,;( kixkih  has one order 

continuous partial derivative also. Measurement noise 
1),( ×∈ ipRkiv  is a Gaussian white sequence with 

)),(,0(~),( kiRNkiv , and ),( kiR  is positive definite 
matrices. 
 

 Initial state )0,(Nx  is a random vector with the mean 

0x  and covariance 0P . It is assumed that )0,(Nx , 

),(),,( kivkNw  are independent of each other. 
 
 

3.  OUTLINE OF WAVELET TRANSFORM 
 

Now consider a finite sequence at scale i  with a length 
of a data-block )(iX m

 to be 12 −= i
iM  

          
T

ii
T

i
T

m MmMixmMixiX )],(,),1(,([)( ++= L          (3) 
 

The vector forms of wavelet transformation can be 
derived in terms of wavelet operators (Smith, et al., 
1998) 
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For details, see Gan and Harris (2001). 
 
 

4. OPTIMAL MULTISCALE FUSION 
ESTIMATION ALGORITHM 

 

First, assume that we have obtained the optimal 
estimate )(ˆ

| NX mm
 for )(NX m

 based on global 

information and corresponding estimation error 
covariance matrix )(| NP mm  at the finest scale N .  

 

Theorem 1:  When we get the actual measurement for 

)(1 iX m+  at every scale, we can obtain the optimal 

fusion estimate )(ˆ
1|1 NX mm ++  for )(1 NXm+  on the basis 

of global information and corresponding estimation 

error covariance matrix )(1|1 NP mm ++  as follows: 
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Proof: At scale N , by use of the STF with initial 
condition )|,(̂ mMmMNx  and )|,( mMmMNP , 

we can obtain prediction )(ˆ
|1 NX mm+

, predicted error 

covariance matrix )(|1 NP mm+ , estimation 

)(ˆ
1|1 NX N

mm ++
 and estimation error covariance matrix 

)(1|1 NPN
mm ++  on the basis of sensors at the finest 

scale N . For integer k , 
MmMmMk ++= ,,1 L , we have 
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In Eqs. (11) and (13) 
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The adaptive fading factor )1( +kλ  in Eq.(10) is 
determined by( Bai, et al., 1998; zhou and Frank, 
1996) 
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Where in Eq.(20), 98.0=ρ  is a forgetting factor . 

Thereby, at scale N  we have obtained the state 
predicted estimates )(ˆ

|1 NX mm+ as well as the state 

predicted error covariance matrix )(|1 NP mm+
, and also 

got the state estimates )(ˆ
1|1 NX N

mm ++
 as well as the state 

estimation error matrix )(1|1 NPN
mm ++

 on the basis of 

sensor at scale N . 
  

Then we decompose )(ˆ
|1 NX mm+  into every coarser 

scale )1( Nii <≤  by wavelet transform to generate 

the smoothness signal )(ˆ
|1 iX mVm+  and the detail 

signal )(ˆ
|1 jX mDm+ , )( Nji <≤   
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Notice that )(ˆ
|1 iX mDm+

, )1(ˆ
|1 ++ iX mDm

, )1(ˆ, |1 −+ NX mDmL  

are detail signals at different scale spaces, the 
relationship between   them and )(ˆ

|1 iX mVm+
 are  

)(|1 iP mVDm +  and )(|1 iP mDVm+
. 

  

At scale i , we can update )(ˆ
|1 iX mVm+  using EKF on 

the basis of measurement of sensor i  and obtain 

the local estimates )(ˆ
1|1 iX mVm ++  and estimation error 

matrix )(1|1 iP mVVm ++  
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At the same time , we note that the detail 
signals )(ˆ

|1 rX mDm+  ( iNr ,,1L−= ) are still not  

updated therefore we denote 
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 Now we use Eq.(6) to synthesize the updated 
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At scale N , we have obtained N estimates for 
)(1 NX m+  based on different sensors at different scale 

1,,1, L−NN , that is,  
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And also get N  corresponding estimation error 

covariance matrix )(1|1 NP i
mVVm ++ ( 1,LNi = ). By 

fusing them (Hong, 1991), one finally generates the 

full-scale optimal estimate )(ˆ
1|1 NX mm ++  for 

)(1 NX m+  based on global information and obtain the 

corresponding estimation error covariance 
matrix )(1|1 NP mm ++ , which are just the (6) and  (7).  

 
     

5. EXTENSION TO JOINT STATE AND 
PARAMETER ESTIMATION 
OF NONLINERAR SYSTEMS 

 
Now we consider the following nonlinear systems 
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Where 1)( ×∈ lRkθ  are unknown parameters with 

unknown changing law, we assume that )(kθ  are 
locally identifiable, other variables are the same as in 
Eqs. (1) and (2). The problem now is to estimate 

),( kNθ  and ),( kNx  simultaneously. To do this, we 
add the following equation  
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We obtain the following equivalent form of systems 
(44) and (45) 
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Obviously, the state fusion algorithms obtained in 
section 4 can be directly applied to systems (48) and 



 

 

(49) to get the fusion estimate )|(ˆ kkxe , i.e., 
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6. SIMULATION STUDY 
 

Example 1: The first example comes from a pulsive 
system model of a ship (Zhou and Frank, 1996) 
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Where parameter a  is the resistance of the hull, b  
is the efficiency of the ship engine, x  is the 
velocity of the ship. The nominal values of ba and  

are 2.0and58.0 00 =−= ba , respectively, 

]00001.0[=Q . There are two sensors observing the 

system at scale 2 and 1 with [ ]002.0)2( =R  and 

[ ]001.0)1( =R , respectively. We take 0)0( =x , 

100)0|0( =P . The following model/plant 

mismatch cases are tested: case 1: 00 ,75.0 bbaa == ; 

case 2: 00 2.1, bbaa == ; case 3: 
00 8.0,6.0 bbaa ==  

 
)(ku  is a squared wave with magnitude 0.9 and 1.1,  

respectively, the period is 200. One of the 
simulation results is shown in Fig.1, which presents 
the results in case 3. To test the tracking ability, in 
case 1 to case 3, we have added a state sudden 
change at 300=k .  
 
 

Table 1   The accumulated absolute errors by use of 
the multiscale estimation 

 

Case Parameter Filter Sensor 
1 

Multiscale 
fusion 
estimation 
with sensor 
1 and 2 

EKF 34.3529 30.0139 Normal 
case 

0aa =  
0bb =  STF 11.5339 6.1997 

EKF 28.1175 23.5369 
Case 1 

075.0 aa =
0bb =  STF 21.3445 5.9453 

EKF 34.1480 29.9969 
Case 2 

0aa =  
02.1 bb =  STF 22.1862 6.0255 

EKF 24.3217 19.7929 
Case 3 

06.0 aa =
08.0 bb =

 STF 20.6452 5.9901 

 
Table 1 gives the corresponding accumulated 

absolute errors in every case. All data in Table 1 
are the average value of 100 Monte Carlo runs. 

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0
0

0 . 2

0 . 4

0 . 6

0 . 8

                   t i m e  ( k )          ( a )

x

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0
0

0 . 2

0 . 4

0 . 6

0 . 8

                   t i m e  ( k )          ( b )

x

 
 
Fig.1.   Simulation results of example 1 in case 3.  In  
(a) “----” is the estimates by use of EKF based on 
sensor 1, “_ _” is the fusion estimates by use of 
multiscale EKF; In  (b) “----” is the estimates by use of 
STF based on sensor 1, “ _ _” is the fusion estimates 
by use of multiscale STF. 
 
From Table 1 and Fig.1 we find that: 1) In the normal 
case, the state estimation precision and tracking 
abilities by use of EKF and STF are equivalent, but the 
state fusion estimation precision of STF is higher. 2) 
When there are parameter mismatches the STF has 
stronger tracking ability and higher estimation 
precision than the EKF. The fusion estimation by use 
of STF has the highest estimation precision. 
 
Example 2:  Considering the following nonlinear 
systems 
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Where the parameter )(ka  is time varying with 

unknown changing law, which is to be estimated. 
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),2()1,2()1,2()1,2( 3 kvkxkakz +++=+ , 

),1()1,1()1,1()1,1( kvkxkakz +++=+ . 
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23.0)0|0( IP = , and we choose 

)(ka  arbitrarily as follows: 
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Fig.2.  Simulation results of example 2. In  (a)  “----
” is estimates by use of EKF based on sensor 1, “_ 
_ ” is fusion estimates by use of MEKF; In  (b) “----
” is estimates by use of STF based on sensor 1, “_ 
_ ” is fusion estimates by use of MSTF.     
 
With ]00001.0,0[~),2( Nkw . The simulation 
results are shown in Fig.2 and Table 2. 

 
 
Table 2   The accumulated absolute e rrors 
 

 Sensor 1 
Multiscale fusion 

Estimates with sensor 
1 and 2 

EKF 47.2140 27.6767 
STF 20.1746 12.8410 

 
 

Table 2 and Fig.2 show that, when the model 
parameters is time-varying with unknown changing 
law, no matter whether the system runs in steady-
state or not, changing abruptly or slowly, the state 
and parameter estimation precision of STF is much 
higher than that of EKF. The state fusion estimation 
precision on the basis of STF is the highest; the 
STF has strong robustness against model 
uncertainties and has strong tracking ability to the 
state and time-varying parameters  (see Figs.1-2). 
From Figs.1-2 and Tables 1-2, it is illustrated that 
STF can effectively solve  the problem pointed out 
in Mazor, et al.(1998)  and overcome the main 
limitation of KF or EKF.  
   
 

7. CONCLUSIONS 
 

In this paper, by combining the STF theory with 
multiscale state fusion approaches, we have 
proposed a new state fusion estimation algorithm 
for a class of nonlinear systems with multi-rate 
sensors having different sampling rates. Computer 
simulation results show that the proposed 

multiscale fusion algorithm is more effective than 
those of EKF-based fusion algorithms. 
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