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Abstract: By combining strong tracking filter theory with state fusion estimation
algorithm, we put forward a new algorithm of state fusion estimation for a class of
nonlinear dynamic systems with all sensors having different sampling rates on the basis
of distributed information. The algorithm is also extended to the joint state and
parameter estimation of a class of nonlinear systems having time-varying parameters
with unknown changing law. The effectiveness of the proposed algorithm is illustrated
by computer simulations, which show that the new algorithm has strong robustness
against model/plant mismatches. Copyright ©2002 IFAC
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1. INTRODUCTION

Information fusion techniques are of very
importance for processing multi-source information,
these techniques can be used to obtain more precise
and complete estimates as well as judgments than
those agorithms using only single source
information, therefore, many scholars have pad
much attention to this problem in the last decade.
There are various information fusion techniques;
the multi-sensor data fusion based on Kaman filter
is one of the most significant methods. Kalman-
filter-based data fusion agorithms, including state
fusion and measurement fusion, have been widely
studied over the last decade (Cheng, et al., 1997,
Smith, et al., 1998). State fusion methods usually
have lower computation and communication cost
and have the advantages of parallel implementation
and fault-tolerance than measurement fusion. It has
also been pointed out that state fusion methods are
only effective when Kalman filters are consistent,

which restricts the practical application of state fusion
methods (Mazor, et al., 1998). In many redlistic
applications the rea processes are often nonlinear, and
the consequent Kalman filters based on linearized
process models are usualy inconsistent due to the
modelling errors (Gan and Harris, 2001).

It is well known that the state estimates can be
obtained by use of Kaman filter (KF) or extended
Kaman filter (EKF) whenthe dynamic model matches
accurately with the actual gstem. However, KF or
EKF has the disadvantage of poor robustness against
model uncertainties, therefore, one can obtain only
inaccurate state estimates in practice by use of the KF
or EKF (Bonivento and Tonielli, 1984). In order to
overcome this limitation, we have proposed a strong
tracking filter (STF) theory, which can be effectively
used for the state and parameter estimation of a class
of nonlinear systems (Bai, et al ., 1998; zhou and Frank,
1996).



On the other hand, in nature and engineering
practice, there are many processes having
multiscale phenomena. Simultaneously, people
often observe and measure these processes at
different scales (or resolutions), thus it's natura for
us to use multiscale idea to describe and analyse
these processes. Therefore, combining the fusion
algorithm with wavelet transform based multiscale
analysis has been paid much attention recently.

In this paper, by combining the STF theory with
multiscale estimation theory and state fusion
approaches, we put forward a new state fusion
edtimation agorithm for a class of nonlinear
systems with multi-sensors  having  different
sampling rates. The proposed algorithm is optimal
on the basis of global information by use of strong
tracking filter. The proposed agorithm is then
extended to the joint state and parameter estimation
of a class of nonlinear systems. Computer
simulation results show that the proposed fusion
algorithm is more effective than those of EKF-
based fusion algorithms (Mazor, et a, 1998; Bai, et
al., 1998; zhou and Frank, 1996). In that

1) Having strong robustness against model
uncertainties, i.e, having higher estimation
accuracy when there are model/plant mismatches,

2) Having the ability to estimate time-varying
parameters, in contrary, EKF-based fusion
algorithms can be used to estimate constant
parameters only. In the agorithm the wavelet
transform is the bridge between different sampling
information.

The paper is organized as follows. In the next
section we present a class of nonlinear dynamic
systems with multirate sensors and single model.

Section 3 is the outline of discrete wavelet
transform. In section 4 we propose a new multiscale
state fusion estimation algorithm on the basis of
STF for nonlinear dynamic systems described in
section 2. In section 5 we extend our algorithm to
joint state and parameter estimation of nonlinear
systems. In section 6 we illustrate the effectiveness
of the proposed agorithm by two numerica
examples. Section 7 concludesthis paper.

2. SYSTEM DESCRIPTION

A class of single model, nonlinear dynamic
systems with multi-rate sensors can be described by

X(N,k +1) = f (N; k,u(k), x(N, K)) + GINK)w(N, k)~ (1)
2(, k) =h(i: k x(i,K) +v(,k),i=12,,N ()

Where integer k is the discrete time
variable, x R"! is the state, 1 ( =12,---,N )
denotes scale, nonlinear function f has one order
continuous partial derivative with respect to the

stateinaregion R, 1 R", systemnoise Wi R" ' is
a Gaussan white sequence and  hes
wW(N,K) ~ N(0,Q(N,Kk)) , Q(N,k) is a semi-postive
definite matrix. G isaknown matrix.

The state variables are observed by N different sensors
a scae i, the measurements are z(i, k)1 R"*, the
nonlinear function h(i;k, x(i,k)) has one order
continuous partial derivative also. Measurement noise
v(i,k)T RP™ is a Gaussian white sequence with
v(i,k)~ N(O,R(i,k) , ad R(i,k) is pogtive definite
matrices.

Initial state x(N,0) is arandom vector with the mean

X, and covariance P, . It is assumed that x(N,) ,
w(N, k), v(i,k) areindependent of each other.

3. OUTLINE OF WAVELET TRANSFORM

Now consider afinite sequence at scalei with alength
of adatablock X (i) tobem, =2

XoO)=[X (M +3) X" (@, mM + M) 3

The vector forms of wavelet transformation can be
derived in terms of wavelet operators (Smith, et al.,
1998)

Xy (i- )= LT diag{H, ,,---,H, L X_() (4)

Xom (i - 1) = L, diag{G;.;,--,Gi 1} L X (i) (5)

For details, see Gan and Harris (2001).

4. OPTIMAL MULTISCALE FUSION
ESTIMATION ALGORITHM

First, assume that we have obtained the optima
esimate X, (N) for x (N) based on global
information and corresponding estimation error
covariance matrix B, (N) a thefinest scale N .

Theorem 1: When we get the actual measurement for
X1 (1) @ every scale, we can obtain the optimal
mame(N) fOr X (N) on the basis
of global information and corresponding estimation
error covariance matrix Py, (N) asfollows:

fusion estimate X

Kpeamea(N) = PMM(N)gé (Phmea(N)) XLy (N) - (6)

- (N- DR (N) KN
P1:r+11|m+1(N) =3 /Pli"ﬂl"le(N)\ -(N- ])F}':Hlllm(N))Zm“Jm(N)

(7)



Proof: At scale N, by use of the STF with initia
condition X(N,mM |mM) and P(N,mM |mM) ,

we can obtain prediction X w(N)» predicted error
m+1|m(N) , estimation
mﬂlmﬂ(N) and estimation error covariance matrix

covariance  matrix

P +]lm+1(N) on the basis of sensors at the finest

scale N
k=mM +1,---,

For integer k ,
mM + M , wehave

NNk +1]k+1) = X(N, k+1]k) + K(N, k +Dg(N, k +1)

(8)
X(N, k +1] k) = f(N; k,u(k), X(N, k |k)) 9
P(N,k +1|k) =1 (k+21)F(N;k,u(k),X(N,k [ K))P(N,k]|k)
T (N;k,u(k), XN, k| k) + G(N,k)Q(N,K)G" (N, k)

10
K(N,k+])=P(N,k+1|k)HT(N,k+],>‘<(N,k+1|k))( )
AH(N K +2, X(N,k+1|K)P(N,k +1| K)
XHT(N,K+LR(N,k+1|K))+ RN,k +DT*
g(N,k+1) =z(N,k+D- h(N,k +1 X(N,k +1| k) (12)

(11)

PY(N,k+1|k+1)
=1 - K(N,k +DH(N;k +1 X(N,k + 1| k))]P(N,k +1|K)

(13)
In Eq. (10)
F NIk (N, k| ) = TR0 (V. )

ﬂ X(N,K)=%(N,klk)

(14)
In Egs. (11) and (13)
H NGk L3Nk +1kg) = TR LX)

ix | X(N k+1)=R(N k+1]k)
(15)

The adaptive fading factor| (k +1) in Eq.(10) is
determined by( Bai, et al., 1998; zhou and Frank,
1996)

31

ilg, |
| (k+)=f @ ° (16)
il 1,<1
where
_ UWN(k+1)] a7
° M (k +1)]
In Eq.(17)
N(k+D) =V, (k+1- H(N;k+1 X(N, k+1|Kk)) (18)

SQ(N,K)HT (N; k+1, X(N, k+1]Kk))- R(N,k +1)

M(k +1) = H(N; k +1X(N, k +1|K)F(N; Kk, X(k | k)
*P(N, K[ K)FT (N, K, X(N,K[K))HT (N K +1, X(N, k +1] k)
(19)

k=0 (20)

Tg(Dg' (@),
VoKD =1 rvy () +9(k +Dg" (k +1)
| ,

1 1+r

k31

Wherein Eq.(20), r = 0.98 isaforgetting factor .

Thereby, a scde N we have obtained the state
predicted estimates X, ., (N) a well as the state

predicted error covariance matrix P (N) and aso
got the state eﬂlmat&cxN e (N) as well as the state
estimation error matrix PN1| L(N) on the basis of

sensor at scale N .

Then we decompose )2m+1|m(N) into every coarser
scaei(1£1 <N) by wavelet transform to generate
the smoothness Signd Xy (1) and the detail
signal X gy ()0 ( £ < N)

R
XVm—r]Jm(I) = L1 dlagio Hrr"'r

I r=i

D § N
Q %L Xm+1\m(N)

(21)
X‘Dmm(j):L?diag}Gj(%al G, OH %L WX (N (22)
T r=jn
Xymean(i)
=[% (MM, +1|mM,),-, & (i,mM + M, [mM, + M, - D]
(23)
X omegm (1)
=[%g (J,mM | +1[mM ), %5 (j,mM + M [+ M- D)7
(24
Note that
mv-]lm(l) mr]lm(l) XDmv—1|m(I +1) T Dmv—1|m(I +l)] (25)
- Bl o
T@)=¢O H/ ,OH (G, O Hi.GR2 Gl
Er=N-1 r=N-1 r=N-1 u
(26)

( ) eP\/Vm+1|m(i) P\/Dm+](m (I)l;l
vt Povnin ) Poomam ()8
=L diag{T (), -+ TOIyPrgn(N)

(27)
Ldiag{T™ @), - TTOL,

Where
i S
PWnﬂ|m(|) = Ldlw,:,\Q Hr

Nol

OH,gLNFevm.m(N) 28)

" L 0
Lydiag QH; - QH?gh
PVDrmum(') [ vommm(' i) VDrmum(' n- 1] (29)

F\)/Dm+l|m(i’ J) = Lidiéggo H

O Hru N m+1\m(N) (30)

e
xLydiage O H/ G/,
@=N-1

Povineaim (1) = (Ripmeam 1) (31)
PDDmr:um(i) _lPDDmf-]jm(l’J)J’ l,j=i,i+L---N- 1(32)

i
OH,TGjTng
u

r=N-1

N-1 N-1 (33)
Poomam(l, j) = lelagAGl G & Hr LNmem(N)
& €
L j+1
T e T
xLNdlagéﬁ HrGj r':“HrGi ﬂLj



Notice that X,.,.0: Yo+ + s Xoman(N - D
are detail signals at different scale spaces, the
relationship between themand x ) are

PVDm+1|m(i) end PDVmHum(i) '

Vm+1m (I

At scale i , we can update X

the basis of measurement of sensor | and obtain
thelocal estimates X,;,.ym (i) and estimation error

matriX PWm+]4m+1(i)

(i) using EKF on

Vm+1m

Xy (i, k+1]k +D) =X, (i, k +1| k) + K(i, k +1)
{z(i,k +1) - hi;K+L %, G,k +1]K))]
(34)
K(i,k+1) = R, (i, k+1|K)HT (i, k+1.%, (i, k+1| K)
X0, k+1.%, i, k-+1| K))PGi, k+1]K) (35)
H ([, k+1%, (. k+1] K)+Ri,k+D]*

Py (i, k+1]k+1)

. (36)
=[ - K@i, k+DH @ k+1 %, (i, K+1|K)]P,, G,k +1|K)
H(,k+1,%, (i, k +1]k))
_ finis k +1, %G, k +2))| (37)

ix |x(i,k+1):;v (i k+1K)

At the same time , we note that the detall
Signals X, un(r) (r=N-1..i) ae sill not
updated, therefore, we denote

Xomama (1) = Xomam() +J = N-=1..,i  (38)

Because of the relativity between X, (j)

(j=N-2--i) ad >2Vm+um(i) , S0 the error
covariance matrices Ry, (1) and Py, . (i)

can be updated as
PVD(i,j;k+l|k+l) 39)
=[1- K@, k+DH G, k+D]R,o G, j; k+1]k)

Pov (i, ik +1lk+1) = (Ro (i, j;k+1]K))"  (40)

Now we use EQ.(6) to synthesize the updated
Xymegmer (1) with XDmm(j) (j=N-1--i)
and obtain the estimate X' (N) for X, ., (N)

at scale N based on the sensor at scale i and the
corresponding estimation error covariance matrix

I:)rin+]lm+1 ( N) &

Khema(N) = UdiagT7(0), -, TT(HLX  (41)

Py (N) = LT @) T OB a2
T dliagT(i), -, T(i)]Ly
with

= - _ ERymayma (1)
inllmﬂ('):ép i

&Povmama (1)

Romma ()0 (43
’ (43

~ U
DDrw-1|m+1(|)[]

At scale N , we have obtained N estimates for
X ,.1(N) based on different sensors at different scale

N,N-1---1, thatis,

Xr:HJmﬁ(N)! Xr:+im+l(N)! ’ Xiw]]mﬂ(N)

And aso get N corresponding estimation error
covariance matrix P\ij+ﬂW1(N) (i=N---1). By
fusing them (Hong, 1991), one finaly generates the
full-scale optima  estimate  X,ma(N)  for

X1 (N) based on global information and obtain the

corresponding estimation error covariance
matrix B,,m.q (N) , which arejust the (6) and (7).

5. EXTENSION TO JOINT STATE AND
PARAMETER ESTIMATION
OF NONLINERAR SYSTEMS

Now we consider the following nonlinear systems

X(N, k+1) = f (N; k,u(k), X(N, k), q(N, k)) (44)

+G(N, K)W(N, k)
2(, k) =h(i, k, X(i,k),q(i,K)) +V(i,K) i=1.-.N  (45)

Where q(k)T R are unknown parameters with
unknown changing law, we assume that q(k) are
localy identifiable, other variables are the same asin
Egs. (1) and (2). The problem now is to estimate
g(N,k) and x(N,k) simultaneously. To do this, we
add the following equation

q(i,k+1)=q(i,k),i:l2,-~-,N (46)
. (i, K)u

and let ik=a o (47)
R =804

We obtain the following equivaent form of systems
(44) and (45)

%, (N, K+1) = f.(N;K, u(k), X.(N, K))
+G(N,KWN,K)
2(,K) = (i:k, . (1, K)) +W(i,K) ,i=12:N  (49)

_ éf (Nsk,u(k). x(N.K).a(N.K))u  (50)
fL(N,u(k),x,(K)) = & v
(N, u(k), %, (k) ¢ AaN.K) g

(48)

he (i; K, X (i, K)) =h(i; k, x(i, K), (i, k)) ~ (52)

GN =5 o g (52)
é “ra 0

Obvioudly, the state fusion agorithms obtained in
section 4 can be directly applied to systems (48) and



(49) to get the fusion estimate X, (k|k) , i.e,

x(k k) and g (k [K).

6. SSMULATION STUDY

Example 1: The first example comes from a pulsive
system model of aship (Zhou and Frank, 1996)

x(2,k+1) =0.1ax?(2,k) + x(2, k) + 0.1bu(2, k) + w(2,k)
z(i,k+1) = x(i, kK +D) +v(i,k+1), i =21

Where parameter a is the resistance of the hull, b
is the efficiency of the ship engine, X is the
velocity of the ship. The nomina valuesof aand b
ae a°=-058andb’=02 ,  respectively,
Q =[0.00001] . There are two sensors observing the
system a scale 2 and 1 with R(2) =[0.007 and
R(1) =[0.001] , respectively. We take x(0)=0 ,
P(0]0)=100 . The following model/plant
mismatch cases are tested: case 1: a=0.75a°,b=b°;
case 20 a=a’,b=12" ; cae 3
a=06a" b=0.8

u(k) isasquared wave with magnitude 0.9 and 1.1,

respectively, the period is 200. One of the
simulation results is shown in Fig.1, which presents
the results in case 3. To test the tracking ability, in
case 1 to case 3, we have added a state sudden
change at k =300.

Table1l The accumulated absolute errors by use of
the multiscale estimation

Multiscale
fusion
Case Parameter Filter Serisor estimation
with sensor
land?2

Normal a=a® EKF 343529 300139
case  b=h" STF 115339 6.1997
a=07s0 EKF 281175 235369
b=b° STF 213445 5.9453
a=a® EKF 341480 29.9969
b=12° STF 221862 6.0255
a=06a" EKF 243217 19.7929
b =0.80°

STF 206452 5.9901

Case1l

Case 2

Case3

Table 1 gives the corresponding accumulated
absolute errorsin every case. All datain Table 1
are the average value of 100 Monte Carlo runs.

L L )
400 500 600
time (k) (a)

s s '
400 500 600
time (k) (b)

Fig.1. Simulation results of example 1incase 3. In
(a) “----" is the estimates by use of EKF based on
sensor 1, “_ " is the fusion estimates by use of
multiscale EKF; In (b) “----" isthe estimates by use of
STF based on sensor 1, “ " isthe fusion estimates

by use of multiscale STF.

From Table 1 and Fig.1 we find that: 1) In the normal
case, the state estimation precison and tracking
abilities by use of EKF and STF are equivalent, but the
state fusion estimation precision of STF is higher. 2)
When there are parameter mismatches the STF has
stronger tracking ability and higher estimation
precision than the BEKF. The fusion estimation by use
of STF hasthe highest estimation precision.

Example 2: Considering the following nonlinear

systems

(2, k +1) = 0.1a(2, k) X* (1, k) + XL, k)
+0.02u(L k) +w(2,K)

Where the parameter ak) is time varying with
unknown changing law, which is to be estimated.
Q=[0.001], R(2) =[0.001] , R(1) =[0.002] .

22,k +1) =2,k +D)x(2, k +1) +v(2,K) ,
z(Lk +1) = a(Lk +Dx(Lk +1) + V(LK) .

In the simulations we select: x(0) =0, a(0) =- 0.58,
%(0/0)=0; 4(0|0)=-0.38, P(0|0) =0.3I,, ahd we choose
a(k) arbitrarily asfollows:

pagk)+ w, (k), 0£k £108;
1a(199) + a°/10 + w, (199 ), k = 199 ;
Ta(k)+w, (k), 200 £ k £ 399 ;

a(k +1) =ja(k)- a®/500 + w,(k), 400 £ k £ 499 ;
Fa(k) +w, (k), 500 £ k £ 698
fa(k)+a®/5+w,(k), k= 699;
fagk) +w, (k), 700 £ k £ 899 .
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0 100 200 300 400 500 600 700 800 900

time (k) (a)
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Fig.2. Simulation results of example 2. In (@) * ----
" is estimates by use of EKF based on sensor 1, “_
_ " isfusion estimates by use of MEKF; In (b) “----
" is estimates by use of STF based on sensor 1, “
_ " isfusion estimates by use of MSTF.

With w(2 k) ~ N[0,0.00001] . The simulation
results are shownin Fig.2 and Table 2.

Table2 The accumulated absolute errors

Multiscale fusion
Sensor 1 Estimates with sensor
land 2
EKF 47.2140 27.6767
STF 20.1746 12.8410

Table 2 and Fig.2 show that, when the model
parameters is time-varying with unknown changing
law, no matter whether the system runs in steady-
state or not, changing abruptly or slowly, the state
and parameter estimation precision of STF is much
higher than that of EKF. The state fusion estimation
precision on the basis of STF is the highest; the
STF has strong robustness against model
uncertainties and has strong tracking ability to the
dtate and time-varying parameters (see Figsl-2).
From Figs.1-2 and Tables 1-2, it is illustrated that
STF can effectively solve the problem pointed out
in Mazor, et al.(1998) and overcome the main
limitation of KF or EKF.

7. CONCLUSIONS

In this paper, by combining the STF theory with
multiscale state fusion approaches, we have
proposed a new state fusion estimation algorithm
for a class of nonlinear systems with multi-rate
sensors having different sampling rates. Computer
simulation results show that the proposed

multiscale fusion agorithm is more effective than
those of EKF-based fusion algorithms.
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