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Abstract: Due to the increasing global demand for energy, and the potential dangers of 
relying too heavily on our fossil fuel reserves, more and more research is being directed 
towards alternative, and preferably reusable or sustainable forms of energy supply.  Many 
of these real world systems have operating regions or regimes that exhibit varying degrees 
of non-lineararity. An example of this are the significant variations in the dynamic 
characteristics of a distributed collector field within a solar power plant. Here a gain-
scheduled controller using pole placement with feedforward was chosen to control the 
more linear operating regimes of the plant. A study was then carried out to find the best-
suited and most efficient evolutionary-tuned fuzzy logic based controller, for exclusive 
and concentrated use on the plant’s more non-linear regions. Copyright © 2002 IFAC 
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1. INTRODUCTION 

 
Recent research has demonstrated that a gain 
scheduling approach, Johansen, et al. (2000), can be 
used to control a solar power generation plant 
successfully, over a large part of its operating range. 
However, the results of this type of control 
deteriorate somewhat when the plant is operated in 
its more nonlinear regimes. It is therefore proposed 
in this work to combine this type of controller with 
controllers best suited to the more nonlinear 
operating regimes. Previous work on controllers that 
fit these requirements include the fuzzy PD, Malki 
and Chen (1994), the fuzzy PI, Loebis (2000) and the 
fuzzy PI+D controller, Tang et al. (2001). The PI and 

PI+D controllers were combined in turn with the gain 
scheduler to find the best hybrid controller for the 
plant. The fuzzy tuning was implemented using a 
multiobjective genetic algorithm (MOGA), 
developed by Fonseca and Fleming (1998), and 
implemented within a hierarchical structure, devel-
oped from Tang, et al. (1996). 
 
Tang, et al. (1996), demonstrated how a hierarchical 
chromosome structure could be employed in the 
search for parsimonious fuzzy controllers, i.e. ones 
with a reduced fuzzy set and rule base. This approach 
has also been successfully applied in Ke, et al. 
(1998), and shown to offer acceptable control and the 
possibility of a simple hardware realisation. In this 
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work, this idea is extended by considering the use of 
the MOGA with the hierarchical chromosome 
structure to design the fuzzy controller to meet a set 
of performance criteria at different points in the 
operating regime. The overall effect of this approach 
will be to reduce the search space for the hierarchical 
MOGA, which itself will further reduce the number 
of membership functions and rule-base required for 
fine-tuning. This greatly improves the processing 
time when tuning the fuzzy controller, and improves 
control within the highly nonlinear regions of the 
plant. 
 
 

2. PLANT DESCRIPTION 
 
The ACUREX-field, Plataforma Solar de Almeria 
(PSA), is located in the southern part of Spain. The 
field is composed of 480 distributed solar parabolic 
collectors, arranged in 10 parallel loops and is 
outlined in schematic in Fig. 1. A collector uses the 
parabolic surface to focus the solar radiation onto a 
receiver tube, which is placed in the focal line of the 
parabola. The heat-absorbing oil is pumped through 
the receiver tube, causing the oil to collect heat, 
which is transferred through the receiver tube walls. 
The thermal energy developed by the field is pumped 
to the top of the thermal storage tank, whereupon the 
oil from the top of the storage tank can be fed to a 
power-generating system, a desalination plant, 
detoxification plant or to an oil-cooling system if 
needed. The oil outlet from the storage tank to the 
field is at the bottom of the storage tank. 
 
For the initial start-up of the plant, the system is pro-
vided with a three-way valve, which allows the oil to 
be circulated in the field until the outlet temperature 
is adequate to enter the storage tank. The oil pump, 
which pumps the oil from the storage tank, through 
the collector tubes and into the top of the storage 
tank is located at the field inlet. To ensure that the 
collectors give optimum solar absorption, every 
collector row has a sun tracking system fitted to it. 
 
A data acquisition system for the plant provides the 
following data: the solar intensity, inlet temperature 
to the field, outlet temperature of each loop and two 
other outlet temperatures between the field and 
storage tank, the current oil pump flow and requested 
value, and the tracking status of the collectors.  The 
plant can generate 1.2 MW of peak power with beam 
solar radiation of 900 W m-2. The oil-storage tank 
has a capacity of 140 m3, which allows for storage of 
2.3 thermal MWh for an inlet temperature of 210 oC 
and an outlet temperature of 290 oC. 
 
The operation limits for the oil pump are between 2.0 
and 10.0 l s-1. The minimum value is there for safety 
and to reduce the risk of the oil being decomposed, 
which happens when the oil temperature exceeds 
305oC. The consequence of exceeding the maximum 
oil temperature, is that all the oil may have to be 
changed  leading   to  plant  down  time  and  loss  of 
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Fig. 1. Schematic representation of the solar plant 
 
 
power generation. Another important restricting 
element in this system is the difference between the 
field’s inlet and outlet oil temperatures. A suitable, or 
normal, difference is around or less than 70 oC. If the 
difference is higher than 100 oC, then there is a 
significant risk of causing oil leakage due to high oil 
pressure in the pipe system. 
 
A control system for this plant has the objective of 
maintaining the outlet temperature (in this case the 
average outlet temperature of all the parallel loops) at 
a desired level in spite of disturbances like solar 
irradiation (clouds and atmospheric phenomena), 
mirror reflectivity and inlet oil temperature. The oil 
flow rate is manipulated by the control system 
through commands to the pump. It should be noted 
that the primary energy source, solar radiation, 
couldn’ t be manipulated. The performance measures 
of the control system are to keep the oil outlet 
temperature close to its set point, and to avoid 
oscillations in the oil pump flow rate.  
 

 

3. GAIN-SCHEDULED CONTROL 
 
In previous work, Johansen, et al., (2000), employed 
a traditional gain-scheduling approach for the solar 
plant. This used a set of local linear controllers, each 
designed by pole-placement, based on local linear 
ARX models that were identified using the methods 
and software described in Hunt and Johansen (1997). 
A feed-forward block was also placed in the 
controller from the solar radiation input (I), to 
improve disturbance rejection. The linear models 
were designed for control in the more linear regions 
of the oil-flow (q), i.e. above 5 l s-1. 
 
Their decomposition was carried out in the operating 
range of, 0 ≤ I ≤ 1000 W m-2 and 5 l s-1 ≤ q ≤ 10 l s-1. 
This decomposition was selected such that the gain 
and time constant of the linearisation of the simple 
model  varies  with  less  than  a  factor of  2 between 
 

 



     

Fig 2. The plant’s operating regimes. 
 
 
 
any neighbouring regimes. Thus, assuming the local 
models are exactly correct at the centre points of 
their corresponding regimes, the interpolated model 
gain and time constant are never more than a factor 
of √2 wrong. The decomposition of the proposed 
hybrid controller into its operating regimes, inclu-
ding those of the gain scheduler is shown in Fig. 2. 
 
Two local linear models presented by Hunt and 
Johansen (1997), were identified from experimental 
data, using locally weighted regression as described 
by Johansen, et al. (1998). These correspond to the 
operating points with oil flow rates at 6 and 8 l s-1 
respectively. The plant was perturbed with PRBS 
signals of amplitude 0.5 l s-1 around both of these 
operating points. Also, the gain of the local linear 
models was corrected using the average solar 
radiation during each PRBS test such that they 
corresponded to a solar radiation of 800 W m-2. 
Furthermore, by reducing the gain by a factor of 5/8, 
generated two new local models corresponding to a 
solar radiation of 500 W m-2. This gives a total of 
four local models corresponding to the four operating 
regimes. The plant does not normally operate in 
steady state at solar radiation levels below 400W m-2. 
 
In Johansen, et al. (1998), it was also shown that the 
performance of the gain-scheduled controller was not 
ideal at the lower flow rate of 4 l s-1, with significant 
overshoot and some oscillation of the control signal. 
Here, the authors will demonstrate that this may be 
improved by refining the models in this regime with 
an improved PRBS test signal. Furthermore, the non-
lineararities were more pronounced at low flow rates. 
Thus, a finer decomposition into operating regimes 
may be desirable as q becomes smaller. In view of 

the uncertainties and difficulties of control at low 
flow rates, the method chosen in this study was to 
use a hierarchical MOGA tuned fuzzy controller to 
improve these flow rates. 
 
 
 

4. FUZZY CONTROLLER CHOICE 
 
In the work developed by Malki and Chen (1994), 
the fuzzy PD controller was shown to have the edge 
over traditional controllers, particularly when the 
system to be controlled is nonlinear. 
 
This work was extended further by Tang, et al. 
(2001) where the defuzzification of the fuzzy D 
controller, Fig. 3, was developed to realise a fuzzy 
PI+D controller, Fig. 4, which again achieved 
improved results when controlling nonlinear plants. 
The additional defuzzification required for the PI 
controller section is similar to that of the D except 
that the input signals in this case are different. 
 
Also work by Loebis (2000) used a MOGA tuned 
fuzzy PI controller with feedforward to obtain good 
results when controlling a solar power plant, Fig. 5. 
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Fig. 3. Fuzzy D controller input-combination values 
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Fig 4. Fuzzy PI+D control system. 
 
 
The work in this paper adds Hierarchical MOGA 
tuning and feedforward to the PI and PI+D fuzzy 
controllers mentioned above, and attempts to find the 
most suitable controller for the more nonlinear 
regimes of the solar power plant. Only the improved 
fuzzy PI tuning is described next as the PI+D tuning 
is similar. 

 
 

5. TUNING THE FUZZY PI CONTROLLER WITH 
A HIERARCHICAL MOGA 

 
In an initial study by Loebis (2000), a fuzzy PI type 
controller was designed for better control of the solar 
plant’s low flow rates. This offered an improved 
performance compared with the standard PI con-
troller. A MOGA was used to optimise the rule-base 
and membership functions for the controller against 
two performance criteria; rise time, for each portion 
of the set point (due to each step input having a dif-
ferent step time, initial value and final value), and 
covariance (for all portions), giving ten objective 
functions in all. 
 

Fig 5. A Fuzzy PI controlled Solar Power Plant. 

In the work presented here, the following improve-
ments to the work of Loebis (2000) were developed 
to vastly reduce the processing time required to tune 
the fuzzy PI controller: 

• The search space was reduced by allowing the 
fuzzy PI controller to operate only in the high 
nonlinear areas of the system, i.e. where the 
oil flow was under 5 l s-1. 

• A hierarchical MOGA (HMOGA) was de-
signed in order to obtain the optimum number 
of membership functions and fuzzy rules. 

Further, the multiobjective GA could be designed to 
allow more control objectives to be employed such as 
settling time and steady-state error. This is possible 
because there are no step changes inside the more 
nonlinear regions. 
 
The HMOGA is designed in such a way that the 
genes of the chromosome are classified into two 
different types. One type of gene (control) affects the 
activation of the other type of genes (parametric). 
The effectiveness of this genetic formulation enables 
the fuzzy subsets and rules to be reduced while 
maintaining the system performance at the desired 
level. 
 
The fuzzy logic PI controller (FLC) proposed here, 
defines the error (e) as the difference between the 
plant’s output temperature (To) and the set point 
signal (Tr). The error and its increment (∆e) are 
considered to be the inputs for the fuzzy controller 
and the output variable (∆u) is the increment to the 
control signal. A feed-forward term was added after 
the FLC to improve the disturbance rejection caused 
by variations in the solar radiation. 
 
The HMOGA is utilised to optimise the fuzzy 
membership functions, while an evolution process to 
obtain an optimal set also governs the fuzzy rules. 
The HMOGA is inspired by the hierarchical structure 
of DNA in biological systems. There are two types of 
genes, the control genes and the parametric genes, 
constructed in a hierarchical manner. The control 
genes govern the activation states of the parametric 
genes. Different activation states of the parametric 
genes can result in different structures in the pheno-
types and therefore different membership function 
sets. The control scheme for the Fuzzy PI controller 
is depicted in Fig. 6. An example of one particular 
fuzzy set within a chromosome is shown in Fig. 7. 
 
Three fuzzy sets are required for the solar plant FLC, 
namely e, ∆e, and ∆u and these were encoded into 
such a hierarchical chromosomes. The control genes, 
in the form of bits, determine the membership func-
tion activation, whereas the parametric genes are in 
the form of real numbers to represent the member-
ship functions. The domain of all the fuzzy variables 
was normalised into the range of [-100, 100]. The 
fuzzy rules for each chromosome were classified, as 
the fuzzy subsets may vary from one chromosome to 
another. Also to allow each fuzzy rule table to evolve 
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Fig. 6. The solar power plant fuzzy PI control 

scheme using HMOGA tuning 
 
 
a special delta shift form of mutation was designed 
for this purpose, Ke, et al. (1998). When decoding 
the chromosomes to phenotypic values, a remedial 
procedure was performed to ensure that there was no 
undefined regions represented by the fuzzy member-
ship functions, i.e. that invalid fuzzy sub-sets could 
be bypassed and the valid subsets enlarged to cover 
all the undefined regions. 
 
The HMOGA uses the same Pareto-optimality 
criteria as Fonseca and Fleming (1998) to determine 
fitness on the basis of non-dominance of the 
individuals. 
 
The criteria used to assess the performance of the 
fuzzy controllers and their transition from the fuzzy 
mode to gain scheduled is: 

i. integral of the absolute value of the error multi-
plied by a variable penalty factor, Ke, et al. 
(1998) 

ii. overshoot 
iii. rise-time 
iv. settling time 
v. covariance 

vi. oil flow rate 
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Fig. 7. HMOGA chromosome structure 
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Fig. 8. The combined controller 

 

 
6. THE COMBINED CONTROLLER 

 
The decision making for the combined controller, 
Fig. 8, is determined by the oil flow rate. The 
HMOGA tuned Fuzzy controllers only being 
implemented at flow rates below 5 l s-1. 
 
 

7. RESULTS 
 
Figs. 9 and 10 show a typical response for the outlet 
oil temperature tracking for the combined controllers, 
i.e. fuzzy-PI and PI+D with the gain scheduler, 
respectively. In the figures, each discrete step point 
change corresponds to a separate design objective for 
ii, iii, iv and v. The design of the final controller is 
therefore a compromise that offers good performance 
across the operating range and also minimises that set 
point tracking error. 
 
A typical set of reduced subsets (3×5×5) for fuzzy 
membership functions obtained  by  the HMOGA are 
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Fig. 9. Typical simulation results for the fuzzy PI 
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Fig 10. Typical simulation results for the fuzzy PI+D 
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Fig. 11. Typical fuzzy subsets and membership 

functions for the solar power plant 
 
 
shown in Fig. 11. It should be noted that the reduced 
subsets do not degrade the system performance and 
are generally comparable with those obtained using 
conventional fuzzy design methodologies. However, 
as HMOGA is a Pareto-based approach there will not 
be one single ‘best’  solution. Rather, there will be a 
family of solutions that offer different trade-offs over 
the design objectives. The systems engineer could 
therefore make the choice of the final solution, on the 
basis of performance criteria rather than the algebraic 
properties of a weighting function, as is generally the 
case with single objective design techniques. 
 
 

8. CONCLUDING REMARKS 
 
The combined control of the solar plant was shown 
to be more effective than that of using fuzzy or gain- 
scheduled control alone. 
 
Allowing the fuzzy controller to operate only in the 
regions of higher non-lineararities: 

• Reduced the search space, which in turn 
permitted the MOGA to produce a set of non-
dominating solutions at a much faster rate. 

• Improved control by allowing a wider choice of 
performance criteria. 

• Increased the operating range at low oil flow 
rates, which allows the plant to function in envi-
ronments where local solar radiation conditions 
have always been regarded as marginal. 

The reduction in the size of the fuzzy controllers is 
attractive because it is simpler to both understand and 
validate, and also easier to implement in hardware. 
 
Although both HMOGA-tuned fuzzy controllers 
perform well in controlling the more nonlinear 
regimes of the solar power plant, it is felt that the 
hybrid controller using the fuzzy PI+D has more 
potential regarding nonlinear control. 
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