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Abstract: The paper develops a new method of threshold setting for use in automated moni-
toring of a system to detect abnormal or degraded system behaviour. The method are de-
signed for use with damage detection in time-domain methods when the model of the sys-
tem is known, but it is uncertain and time-varying. The mathematical formulation of the 
dynamical system is based on a state-space model. Uncertainty in the system description is 
modelled by an unknown, norm bounded, additive perturbation of the system matrix. The 
method for upper bound estimates of the differences is presented. The suitability of the new 
method is demonstrated in damage detection example. Copyright © 2002 IFAC 
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1. INTRODUCTION 

Systems are damaged as result of overloading, fa-
tigue, ageing or environmental influences. In order to 
guarantee a safe working, it is necessary to determine 
and localise the early stages of damage. Uncertainty 
in the model description makes the problem more 
complicated. The main tasks for system monitoring 
are: receiving and interpretation data from process, to 
alarm when it is necessary and to provide further in-
formation.  

Real control systems are described by differential or 
difference system equations, non-linear and non-
stationary. Rarely we know exactly all coefficients. 
For analysis and simulation we exploit very often 
simplified linear models. Existence of uncertainty, 
non-stationarity or non-linearity in the system struc-
ture effects uncertainty at the state and output. 

There is an extensive literature related to system 
monitoring. A set of techniques, called as analytical 
redundancy (e.g. Frank 1990, Gustafsson 1996, Is-
ermann 1984, 1993, Srinivasan 1994, Willsky 1976) 
use mathematical models in conjunction with system 
measurements to detect system failures and some-
times to isolate the cause. An object of concern in 
analytical redundancy techniques is the robustness of 
the procedure. Frank (1990) discusses the difficulties 
inherent in setting thresholds, which are used in to 
distinguish a fault; He also presents some robustness 
techniques proposed to properly set thresholds in 
view of the fact that the models are imperfect. The 
use of adaptative thresholds, was stated in (Horak 
1988, Puig 1999). 

Our approach to threshold setting is designed for sys-
tems, for which the model is known and given as the 
space state model, but the its coefficients are uncer-
tain with additive bounded uncertainty. The method 
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is developed for discrete, time-varying systems, but it 
can be used for LTI models and it is possible to ex-
pand it for continuous-time systems. Having given 
the model in the state-space with time dependent co-
efficients the approach is for use rather with damage 
detection methods based on predictor-observer meth-
odology e.g. Model Based Fault Detection (Orchard 
2001). Basic structure for such methods are drawn on 
Fig. 1. The Observer could be state observer or out-
put observer (in some cases identity). 
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Fig. 1. Basic block diagram for damage detection us-
ing predictor-observer methods. 

One of the most important parts in the structure is 
comparator with threshold. Very often the main 
method of choosing threshold has been based on ex-
perience and experiments. The paper introduces new 
method for calculating threshold, using system model 
for uncertain systems. 

In practical applications input and output signals are 
filtered very often. Particularly when the level of 
noises is medium or high. It is possible to include the 
filter into system model, which should give better 
performance for obtained threshold. 

2. NOTATION 

Space of vector’s sequence are given by Hilbert 
space (l2) qqqNq RRRR ×××= ...)( . Elements of 
the space are sequences of vectors 

T)]1()...0([ −= Nzzz  where qi) Rz ∈( . 
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3. NOMINAL AND PERTURBED SYSTEM 

The nominal, non-stationary, linear control system Σ 
has the form 

( 1) ( ) ( ) ( ) ( )p p pk k k k k+ = ⋅ + ⋅x A x B v ,     (3) 

)()()( kkk pp xCy ⋅= ,  xp(0)=x0, k=0,1,...,N-1,    (4) 

where Nn
p )()( Rx ∈⋅  is nominal state, Nm

p )()( Rv ∈⋅  

is nominal input, Np
p )()( Ry ∈⋅  is nominal output, 

and ( ) ( )nk ∈A RL , ( ) ( , )m nk ∈B R RL , 
( ) ( , )n pk ∈C R RL  are system’s matrices. 

It is assumed that given are: nominal system, state 
space parameters A(k), B(k), C(k) for uncertain, 
linear, non-stationary discrete-time systems with the 
bounds for every matrix δA, δB, δC and a time horizon 
denoted by a positive integer N. 

Real control system is different from (3-4) and may 
be described by perturbed model Σ∆ as follows 

( 1) ( ) ( ) ( ) ( )pk k k k k∆ ∆ ∆ ∆+ = ⋅ + ⋅x A x B v ,             (5) 

)()()( kkk ∆∆∆ ⋅= xCy ,  x∆(0)=x0, k=0,1,...,N-1   (6) 

Uncertainty’s structure depends on the system, never-
theless for solving it has been assumed specific 
(additive perturbation) model. Analyse has been car-
ried out also for another model e.g. multiplicative 
uncertainty. 

For linear system with additive uncertainty we as-
sume, following description 

For matrix A 

A∆(k)=A(k)+∆A(k)          (7) 

where ∆A(k) ( , )n n∈ R RL , k=0,1,...,N-1, and 

||∆A(k)|| ∞<≤ Aδ ,        (8) 

And similar for matrices B and C: 

B∆(k)=B(k)+∆B(k),   C∆(k)=C(k)+∆C(k),  k=0,1,...,N-1 

where ∆B(k) ( , )n m∈ R RL , ∆C(k) ( , )p n∈ R RL  and 
||∆B(k)|| ∞<≤ Bδ ,  ||∆C(k)|| ∞<≤ Cδ  

To obtain the norm of maximal output deviation, we 
needn’t know the uncertainty matrices ∆A, ∆B, ∆C , 
we have to know only their estimates δA, δB, δC. 



The multiplicative model is easy for using with rela-
tive uncertainty. It has following description. 

)())(()( kkk MA AIA ⋅∆+=∆       (9) 

)())(()( kkk MB BIB ⋅∆+=∆     (10) 

)())(()( kkk MC CIC ⋅∆+=∆     (11) 

We can solve the multiplicative system by converting 
it to the additive model by following transformations 

)()( kk MA AA ⋅∆=∆   (12) 

)()( kk MB BB ⋅∆=∆   (13) 

)()( kk MC CC ⋅∆=∆   (14) 

It should be clear that, by the transformation it is pos-
sible to obtain more conservative results. 

4. OPERATOR’S DEFINITIONS 

For the sake of simplicity we introduce three opera-
tors (( ) , ( ) )n N n N∈FL R RL , (( ) , )n N n∈FK R RL  
and ( , ( ) )n n N∈FN R RL , defined as follows 
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where ( ) ( )ni ∈h RL  i k=2,3,...,N.  

Theorem 1. For every system Σp described by equa-
tions (3-4) the state and output trajectory can be 
written as follows 

))(())(()( 0 kkk pp vBLxNx FF ⋅+=            (17) 

)()()( kkk pp xCy ⋅= ,                             (18) 

Theorem 2. For every perturbed system Σ∆ described 
by equations (5-6) the state and output trajectory can 
be written as follows 

( ) ( ) ( )( ) ( )( )p pk k k k∆ ∆= + ∆ ⋅ + ∆ ⋅F F
A Bx x L x L v   (19) 

)()()()()( kkkkk ∆∆∆ ⋅∆+⋅= xxCy C
,            (20) 

Theorems 1 and 2 were proofed using mathematical 
induction method (in manuscript). The proofs follow 
from linear system response results. 

 

 

5. NORMS OF OPERATORS 

It follows from the above formulas that effectivness 
of estimate (25) will highly depend on how good the 
estimates of the operator norms ||C⋅LF|| and ||LF|| are. 
In this section there are two methods presented which 
allows to obtain a very tight estimates for these 
norms.  

The first method take advantage of matrix notations 
for discrete evolution operators (Orłowski 2001) and 
singular value decomposition.  

In H2 space the norm of operator is equal to the 
maximal singular value, e.g. 

2
max ( )σ=F FL L   (21) 

Interval operator’s norm is given by 

2
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where ( ) ( )n N n N⋅ × ⋅∈FL R . 

The best way to estimate the norm of ||C⋅LF|| is to 
obtain maximal singular value of operator C⋅LF e.g. 

2
max ( )σ⋅ ⋅=F FC L C L  where ( ) ( )n N p N⋅ × ⋅⋅ ∈FC L R . 

When the time horizon N is large, then operators’ 
size grow with power of two.  

It is possible to reduce amounts of computations, 
using method based on solution of parametric 
optimisation problem using difference Riccati 
equation. The main idea of the second method have 
been presented for time invariant systems 
(Emirsajłow, Orłowski 1999) and for time-varying 
systems in (Orłowski 2000). Below we present only 
general result of its: 

Theorem 3. γ<⋅ FLC  if and only if the following 

difference Riccati equation for k=0,1,...,N-1 
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       (23) 

has a symmetric solution ( ) ( )nk ∈R RL . 

Discrete difference Riccati equation stated in theo-
rem 3 has a symmetric solution for all γ larger then 
the norm of operator. The infimum of the set of γ, for 
which equation (23) has a symmetric solution ap-
proximate the norm of operator. 

 



6. TRAJECTORY DEVIATION NORM 

The main purpose of this paragraph is to develop 
techniques for estimating the upper bounds for the 
difference Npp )(

)()(
R

yy ⋅−⋅∆  and their applications 

in damage detection problems for uncertain systems. 

Theorem 4. For every ( , )  n n N∆ ∈A R RL , 
( , )n m N∆ ∈B R RL , ( , )p n N∆ ∈C R RL , defined in 

paragraph 3 and 

1

Aδ
−

< FL        (24) 

are satisfied, the distance Npp )(
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R
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estimated as follows 
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Proof: It is a standard result of functional analysis, if 
we transform (19) with triangle inequality there is 
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If assumption (24) is satisfying, then uncertain state 
norm we can write as follow 
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Output difference y∆-yp is given 
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After normalization we obtain 
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When we substitute (26), we have 
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It is equivalent to equation (25).              � 

7. DAMAGE DETECTION 

Method for damage detection for uncertain systems 
using output uncertainty estimation is presented. The 
algorithm for this method is drawn on block diagram 
below. 
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Fig. 2. Block diagram for damage detection process 
for one time segment. 



Block diagram for process of damage detection is 
shown on fig. 2. For every section of N samples, 
where N is arbitrary positive integer, analysis goes as 
follow: 

Firstly, system matrices A(k), B(k), C(k), bounds δA, 
δB, δC time horizon N and input function v(k) have to 
be known at least at the beginning of every time sec-
tion. On the next step norms of operators, state and 
output trajectory have to be evaluated. Then it is pos-
sible to calculate the estimates of output deviation. 
When the measurements from physical system are 
compared to evaluated output (or state) trajectory it 
produces an error. When the input, process and out-
put noises are negligible, damage will be detected, it 
can happen if signal error is larger then the evaluated 
estimate. In the case of large noises, signal error 
should be filtered before comparison with estimate of 
deviation. It is possible to use Kalman or only low-
pass filter, but special cases of noises will be consid-
ered in the future works. 

The analysis are doing periodically, where the length 
of the time horizon is equal to N samples and 
symbolically is shown on upper part of fig. 2. N can 
be fixed or varied. In the case of time invariant sys-
tem (A(k), B(k), C(k) are independent on k) and fixed 
N, norms of operators are constant, which allow to 
calculate it only one time. The deviations could be 
evaluated for trajectory or for final vector, but this 
paper develops only method for trajectory deviations 
estimates. Norm can be estimated in H2 or H∞ space. 
Larger time horizon is better when the noise covari-
ance large is. The shorter time horizon we have, the 
shorter time of damage detection is. 

The next section focus on numerical computations 
and consists an example of threshold evaluate with 
application in damage detection problem using block 
diagram on fig. 2. 

8. NUMERICAL EXAMPLE 

Let us consider example of damage detection in 
satellite positioning control.  

The linearized and normalized equations of motion of 
the satellite around the translunar equilibrum point 
are (Jones, Bishop 1993) 
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where [ ]T

1 2 3 4 5 6x x x x x x=x  

The state vector x consists of the satellite position 

1 3x −  and velocity 4 6x − . The inputs u are the engine 
thrust accelerations.  

The equations have been discretized (sampling pe-
riod T=0.02s). The aim of control is to minimize in-
put and final error energy. The functional is given by 
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Feedback matrix is obtained from standard minimisa-
tion problem. Input signal u(k) is delta Croneckera 
for the first input and zeros for inputs 2,3. Initial state 
is equal [ ]T

0
-0.82  1.38  0.89  -0.60  1.17  -0.27=x . The 

perturbation norm is 
A

0.001δ = . Time horizon N=30. 

Following operators’ H2 norms have been computed: 

2
=FL 19.0, 

2
 ⋅ =FC L 18.0. 

After 15 steps (0.3s) the damage effects on coeffi-
cient 6,6A  and change it value (the new one is 25). 
Outputs y1 and y2 work correctly, only the damage is 
observable on the third output.  

Figure 3 shows norm of output ( )
∞

⋅y  for systems: 
damaged and uncertain not damaged. Also H∞ 
bounds for system without noise have been marked. 
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Fig. 3. Norm of output ( )
∞

⋅y  for nominal system 
with damage (solid), without damage (dashdot), 
uncertain system (dashed) and upper and lower 
bounds (dotted). 

Figure 4 shows norms of output error ( )
2

⋅y  for: 
nominal system with fault, uncertain one and uncer-
tain with white noise (mean value m=0, standard de-
viation 0.002σ = ). Upper error bounds has been 
marked. 
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Fig. 4. H2 norms of error 
2

( ) ( )p∆ ⋅ − ⋅y y  for nominal 

system with damage (solid), uncertain system 
without noise (dashed), with white noise (dash-
dot), and upper bounds (dotted). 

9. CONCLUSION 

It should be rather clear that tools for setting thresh-
old for damage detection problems and estimates pre-
sented in this work are only one of the possibilities.  

The analysis of the uncertain system and the devia-
tions’ estimates are accomplished in time domain and 
in finite time horizon. For time invariant and periodi-
cally varying systems, the operators are invariant and 
could be evaluated only once. The estimates com-
puted in H∞ space are more conservative then their 
equivalents in H2. Nevertheless, when the process 
and measurement noises are normal and not negligi-
ble, it is easier to estimate the energy or power of the 
noises than the peak noise value.  

It seems, however to be true that tight estimates for 
operator norms ||C⋅LF|| and ||LF|| will always play a 
crucial role. For this reason, presented methods 
provide a very effective solution to this problem. The 
developed estimates can be used also in various 
control desgn tasks for perturbed non-stationar linear 
discrete time systems. 

It is possible to connect this method with another 
techniques e.g. statistical process control, system 
identification. Future work will focus on sensibility 
the threshold when the model assumed for 
identification is different to real system, and 
identificated parameters of the system are different 
from real. 
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