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Abstract: A nonlinear predictive controller is presented in the paper. The greatest 
advantage of predictive functional control (PFC) is very fast and easy calculation of 
control variable. Combined with the Takagi-Sugeno (TS) fuzzy model, the PFC becomes 
nonlinear and is called fuzzy PFC (FPFC). The controller was evaluated by simulation on 
the well-known process, the continuous stirred-tank reactor (CSTR), which exhibits 
strongly nonlinear characteristics. The TS model of the process was obtained by 
identification. At the end the resulting controller has been compared to a conventional PI 
controller.  Copyright © 2002 IFAC 
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1. INTRODUCTION 
 
Predictive control development started with the 
expansion of computer control. At the beginning, the 
predictive control algorithms were applied in the 
process technology. Today the predictive controllers 
are used in many areas, where high–quality control is 
required. The principle of predictive control is to 
calculate the control action in the way to minimize 
the difference between the predicted process output 
and the reference trajectory. Basic predictive 
methods are Generalized Predictive Control (GPC) 
(Clarke et. al., 1987), Dynamics Matrix Control 
(DMC) (Cutler, Ramaker, 1980) and Predictive 
Functional Control (PFC) (Richalet et. al., 1978), 
(Richalet, 1993). 
 
Strongly nonlinear characteristics of many process 
requires nonlinear control. Nonlinearities can be 
divided into two groups. In the first group are 
processes with linear dynamics and static nonlinear 

transformations on the input or the output of the 
system. Such processes can be modelled with Wiener 
or Hamerstein models. The nonlinearities can be 
compensated using the static nonlinear mapping with 
the inverted nonlinear characteristics. The second 
group consists of processes with the nonlinear 
dynamics. To control such processes the controller 
should have the nonlinear dynamics too. In many 
cases suitable controllers are actually linear 
controllers with changeable parameters. Looking 
widely the parameters could not only be changed on 
the nonlinear base, but also according to the 
operating conditions. This idea, which was originally 
used only to accommodate changes in process gain, 
is called gain scheduling. Like the predictive 
algorithms the gain scheduling is difficult and 
expensive to implement in the analogue technique 
and very easy in the computer–controlled systems. 
 
In the paper the PFC algorithm is combined with the 
global linear model of the process given in the form 
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of Takagi–Sugeno fuzzy model. The fuzzy 
scheduling used in the proposed algorithm is not 
directly applied to the controller parameters but is a 
part of the process model, which is a part of the 
controller. The method called fuzzy PFC (FPFC) is 
capable of controlling highly nonlinear processes 
with long time delay and exhibits remarkable 
robustness with the respect to the model mismatch 
and unmodeled dynamics. It was evaluated on a 
strongly nonlinear process by simulation. The control 
problem of the continuous stirred–tank reactor 
(CSTR) was presented by Morningred et. al. (1992). 
The formulation of the model in the state space 
domain leads to a simple solution, when deriving the 
control law for the second order process with 
complex poles of the transfer function. Since the 
control law is derived in the state space domain, can 
be treated as a universal derivation for all kinds of 
stable processes. 
 
The rest of the paper is organized as follows: Fuzzy 
identification concept is presented in Section 2. In 
Section 3 the principles of predictive functional 
control based on fuzzy model are described, the case 
study is the theme of Section 4 and the conclusion is 
given in Section 5. 
 
 

2. FUZZY IDENTIFICATION 

 

The fuzzy model consists of three operations. 
Fuzzification at the input of the model is 
transformation of input antecedent variables to the 
antecedent linguistic variables using membership 
functions. Defuzzification at the output is the 
opposite operation, which transforms consequent 
linguistic variables to output. Between fuzzification 
and defuzzification is inference. It consists of if–then 
rules which link antecedent variables to consequent 
variables. Generally there are two types of fuzzy 
models: The Mamdani and the Takagi–Sugeno type. 
In our case the Takagi-Sugeno model was more 
appropriate to describe the process. The model was 
obtained using fuzzy identification, which was 
already described in the literature (Takagi, Sugeno, 
1985), so at this point let us just see the quick review. 
The rule of TS model can have the following form:  
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where 1ia , 2ia  and ib  are linear model parameters,  
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That solution offers very compact presentation of 
nonlinear model. It was used in the FPFC method 
presented in the paper. 
Eq. (2) can be divided to the series of K linear 
equations as follows: 
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The use of least squares identification method 
requires the regression matrix iΨ  and the output data 
vector i

pY : 
 ( ) ( ) ( ) ( ) ( 1) ( ) ( ) ( )1i i p i p i ik k y k k y k k u k D kβ β β β = − − ψ ,(5) 
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The vector of parameters iθ  can be obtained using 
the least squares method: 

 ( ) 1T T i
i i i i p

−
=θ Ψ Ψ Ψ Y . (8) 

iθ  consists of the elements 1ia , 2ia , ib  and ir : 
 [ ]1 2

T
i i i i ia a b r=θ . (9) 

The steps presented in Eq. (5) to (9) should be 
repeated for all rules. Parameter vectors iθ  can be 
joined to the parameter matrix Θ  as follows: 
 [ ]1 2 K=Θ θ θ θ" . (10) 

For the purpose of deriving the control law, the 
model should be written in more compact form also 
called global linear model. 
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Global linear parameters 1a# , 2a# , b#  and r#  are given 
in the following equations: 
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3. FUZZY PREDICTIVE FUNCTIONAL 
CONTROL IN STATE SPACE DOMAIN 

 
Model–based predictive control (MBPC) is a name 
of a several different control techniques. All are 
associated with the same idea. The prediction is 
based on the model of the process. The control action 
is determined in the way to minimize certain cost 
function, generally the difference between the 
predicted future behaviour and the reference 
trajectory expressed as 

 ( )
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where ( )my k j+ , ( )ry k j+  and ( )u k j+  are j–step 
ahead prediction of process output, reference 
trajectory and control signal. Parameter λ weights the 
relative importance of control signal, N1, N2 and Nu 
are boundaries of signal activity. The result of 
optimisation is vector of next samples of control 
action. Only the first element is used. At the next 
sample time the procedure is repeated. 
 
Predictive functional control (PFC) is one of the 
MBPC methods. The method is suitable for any 
stable process. Originally was developed for linear 
systems (Richalet et. al., 1978), (Richalet, 1993), but 
can also be used for nonlinear systems written as TS 
fuzzy model (Škrjanc, Matko, 2000), (Škrjanc, 
Matko, to be published). The method avoids the 
criterion minimization presented in Eq. (13). The 
control law is expressed explicitly, so the method is 
very robust and calculation of control law is time 
saving. The basic idea is to equalize the model output 
increment m∆  and the objective increment p∆ . 
 p m∆ = ∆ . (14) 

Model output increment is the predicted increment of 
model output over the next H samples 
 ( ) ( )m m my k H y k∆ = + − . (15) 

The objective increment is the difference between 
predicted trajectory and present process output: 
 ( ) ( )p r py k H y k∆ = + − . (16) 

To derive the H–step ahead prediction the model has 
to be transformed to the state space domain: 

 ( 1) ( ) ( )m m m m mk k u k+ = + +x A x B R# # # , (17) 

 ( ) ( )m m my k k= C x# . (18) 

If the state vector ( )m kx  is chosen as 
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than the matrices mA# , mB# , mR#  and mC#  become 
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Presuming the constant control signal over the whole 
horizon, the H–step ahead prediction can be 
obtained: 
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The reference trajectory is normally output of the 
reference model, which is usually the same order as 
the controlled process to assure natural response. 
When formed in state space domain, the following 
can be written: 

 ( 1) ( ) ( )r r r rk k w k+ = +x A x B# # , (25) 

 ( ) ( )r r ry k k= C x# . (26) 

The parameters should be chosen to fulfil the 
following criterion, which assures the gain factor of 
the reference model equal to one: 

 ( ) 1 1r r r
−− =C I A B . (27) 

The H–step ahead prediction of the reference model 
can be derived in the similar way like the process 
model prediction: 
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Combining the Eq. (14), (15), (16), (24) and (28) the 
control law can be derived: 
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5

( ) ( ) ( ) ( ) ( )( ) r p m mC k C w k y k C k C y k
Cu k + − − − += x x . (29) 

Coefficients C1 and C2 are constant, other are 
variable: 
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4. CSTR CASE STUDY 

 
Continuous stirred–tank reactor (CSTR) process 
consists of an irreversible, exothermic reaction, A → 
B, in a constant volume reactor cooled by a single 
coolant stream which can be modelled by the 
following equations: 
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Table 1 -  Nominal CSTR parameters values 

Measured product conc. CA 0.1 mol/l
Reactor temperature T 438.54 K 
Coolant flow rate qc 103.41 l/min 
Process flow rate q 100 l/min
Feed concentration CA0 1 mol/l
Feed temperature T0 350 K
Inlet coolant temperature Tc0 350 K
CSTR volume V 100 l 
Heat transfer term hA 7 x 105 cal min-1 K-1 

Reaction rate constant k0 7.2 x 1010 min-1 

Activation energy term E/R 1 x 104 K 
Heat of reaction ∆H 2 x 105 cal/mol
Liquid densities ρ,ρc 1 x 103 g/l 
Specific heats Cp,Cpc 1 cal-1 K-1 

 
The measured concentration has a time delay 

0.5mind = . The objective is to control the measured 
concentration of A AC  by manipulating the coolant 
flow rate cq . This model is a modified version of the 
first of a two – tank CSTR example by Henson and 
Seborg (1990). In the original model the time delay 
was zero. The nominal parameter values appear in 
Table 1. 
A discrete static compensator was added to stabilize 
the process at higher concentration values: 
 [ ]( ) ( 1)ff ffu K T k T k∆ = − − , (33) 

where Kff was chosen to be 3. Sampling time of 
compensator was 0.1 min. 
 
 
4.1 Process idetification 

 
The process was identified as a discrete second order 
process. The sampling time was 0.1 min. Strong 
nonlinearity forces us to use large number of rules. In 
our case there were six rules with the same shape of 
membership function. 
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Fig. 1 -  Membership functions 
 
If the shape and place of membership functions 
would be optimised using clustering, the number 
could be reduced, but then each membership function 
would be harder to evaluate, so that would not be a 
great benefit. For the antecedent variable the present 
and not delayed concentration ( )AC t  was used. That 
can be done because the data are already prepared 
before the identification. When applying the model 
to the controller, present concentration is obtained 
using the prediction model. After the membership 
functions A1 to A6 shown in Fig. 1 were determined 
the following fuzzy model was obtained: 
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4.2 FPFC applied to the CSTR process 

 
The obtained fuzzy model was used as internal 
model of the control algorithm. Besides the process 
model, the controller parameters are also the 
reference model and the prediction horizon.  
 
The reference model was chosen to have two discrete 
poles placed at 0.82. The predictive horizon H is 
normally chosen to fulfil the criterion: 
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r
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TN H
T
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where N is order of process, Tr is raising time and Ts 
is the sampling time. Large H means the process has 
more time to equalize with the reference trajectory 
what results in the smaller gain factor of the 
controller. The benefit is in the case of great noise 
disturbance of measured signal or varying dead–time. 
The disadvantage of large H is the great deviation of 
global linear model parameters from the process 
parameters because the response prediction is based 
on the present degrees of membership. In our case 
the predictive horizon was chosen to be 4H = . 
 
The FPFC was compared to the conventional PI 
controller. The parameters Kp and Ti were optimised 
using the ITAE criterion, to give good response for 
set–point change from 0.1 to 0.15 mol/l. The 
controller gain was 148 l2mol-1min-1 and the integral 
time was 0.76 min. 
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Fig. 2 -  Step response in comparison with PI control 
 
The obtained predictive controller has been evaluated 
by the reference step response and the disturbance 
rejection. The simulation results of set–point tracking 
are presented in Fig. 2. The upper diagram presents 
the set–point with the dash–dot line, the FPFC 
response is plotted with the solid line and the PI 
controller response with the dashed line. The lower 
graph presents control signal. The solid line 
corresponds to the FPFC and the dashed to the PI 

controller. The set–point was changed from 0.1 to 
0.15, back to 0.1, then to 0.05 and again to 0.1 mol/l. 
The changes were made every 8 minutes. 
The disturbance rejection can be seen from Fig. 3. 
The unmeasured feed concentration changes from 1 
mol/l to 0.95 mol/l at 8 min and back to 1 mol/l at 24 
min. The unmeasured coolant temperature decreases 
from 350°C to 340°C at 16 min and back to 350°C at 
32 min. The responses associating the FPFC are 
plotted with solid line and those which associating 
the PI control with the dashed line. 
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Fig. 3 -  Disturbance rejection in comparison with PI 

controller 

 
 

5. CONCLUSION 

 
The FPFC algorithm is presented. The development 
of a new fuzzy predictive scheme was motivated by 
the unsatisfactory results obtained by using PI 
controller. The new controller is computationally 
efficient and offers great robustness when designed 
with model inaccuracies. It is tuned by placing the 
reference model poles and choosing the predictive 
horizon H. The simplicity of design and its great 
performance means great progress in comparison to 
the conventional control techniques. 
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