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Abstract: By means of a proper notion of periodic cyclic matrix, we study the
possibility of transforming a given periodic system into a canonical companion
form. The passage from such form to an input-output periodic representation is
straightforward. We characterize the structural properties of a system in canonical
form in terms of coprimeness of the two periodic polynomials appearing in the
input-output representation. Only single-input single-output discrete-time systems
are considered.
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1. INTRODUCTION AND PROBLEM
POSITION

In the last decades, periodic control has raised
increasing interest in the system and control com-
munity [1]. Yet, some basic issues have been solved
only in recent years, and other are still to be
clarified. As an example, we mention the cele-
brated Floquet theorem. Although the original
statement by Gaston Floquet goes back to 1883
[2], the discrete-time version of the theorem has
been established only recently [3]. In this paper,
we clarify some long standing questions related
to companion forms for periodic matrices and
periodic systems in discrete-time. For, we first
introduce the concept of periodic cyclic matrix by
means of which we address the issue of transform-
ing a given periodic matrix into a companion form
(with periodic coefficients). Then, we pass to con-
sider a single-input single-output periodic system,
and we discuss when a state space representa-
tion is equivalent to an input-output (PARMA)

representation. Among other things we consider
the periodic transfer function representation, and
we show that a periodic system given in a right-
coprime fractional representation can be given a
state-space form by means of a reachable canon-
ical form. This form enjoys the ”n-reachability
property”, namely any state can be reached in n
steps at most, where n is the dimension of the
state-space. This is a peculiar feature, since, in
general, the reachability transition of a reachable
periodic systems requires a time interval with nT
time points. Analogously, a periodic system given
in a left-coprime fractional input-output repre-
sentation can be realized in terms of the observ-
able canonical form. The achieved results clarify a
number of issues concerning the periodic transfer
function and the structural properties of periodic
systems. For recent survey paper, see [4] and [5].
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2. PROBLEM POSITION

Consider the system

x(t + 1) = A(t)x(t) (1)

where A(·) : t → IRn is a periodic matrix of
period T . The associate transition matrix is

ΨA(t, τ) =
{

A(t)A(t − 1) · · ·A(τ) , t > τ
In , t = τ

When τ = t− T , then the transition matrix takes
the name of monodromy matrix, denoted as ΦA(t):

ΦA(t) = ΨA(t + T, t)

Notice in passing that, although ΦA(t) changes
with time, the characteristics multipliers are time-
invariant, [6]. System (1), or, equivalently, A(·), is
stable if and only if the multipliers are all located
inside the unit disk in the complex plane.

Under the action of a state-space Lyapunov trans-
formation z(t) = Q(t)x(t), where Q(·) is a T -
periodic matrix invertible for each t, the trans-
formed system takes on the form

x(t + 1) = Ã(t)x(t)

where

Ã(t) = Q(t + 1)A(t)Q(t)−1 (2)

The two systems with matrices A(·) and Ã(·) are
said to be algebraically equivalent each other.

A basic system-theoretic issue is whether it is
possible to work out a change of basis in order
to represent in a simplified way a dynamical
matrix A(·). This leads to the definition of the
companion forms defined in the following section.
Precisely, we will introduce the notion of cyclic
periodic matrix and we will show that a periodic
system is algebraically equivalent to a system in
a companion form iff it is cyclic. In Section 3
we analize the structural properties of a system
in the reachable (observable) canonical form, by
resorting to the notion of strong coprimeness
of periodic polynomials. Partial results on the
realizability of a periodic system in the canonical
observability form can be found in [7] and [8].

3. COMPANION FORMS

In this section we introduce some canonical forms
for the dynamical matrix A(·). This leads to
the definition of the so-called companion forms.
Precisely we will focus on the following two forms.

1) The n × n matrix

Ahc(t) =




0 1 0 · · · 0
0 0 1 · · · 0
.
.
.

.

.

.
.
.
.

. . .
.
.
.

0 0 0 · · · 1
−αn(t) −αn−1(t) −αn−2(t) · · · −α1(t)




where αi(t), i = 1, 2, · · · , n, are T -periodic
coefficients, is said to be in h-companion form

2) The n × n matrix

Avc(t) =




0 0 · · · 0 −βn(t)
1 0 · · · 0 −βn−1(t)
0 1 · · · 0 −βn−2(t)
...

...
. . .

...
...

0 0 · · · 1 −β1(t)




where βi(t), i = 1, 2, · · · , n, are T -periodic
coefficients, is said to be in v-companion form

We now characterize the conditions under which
A(·) is algebraically equivalent to a matrix in h-
companion or v-companion form. To this end, the
following definition is in order.

Definition 3.1. A n × n T -periodic matrix A(·)
is said to be T -cyclic if there exists a T -periodic
vector x(·), x(t) �= 0, ∀t, such that the following
n × n matrix

R(t) =
[
x1(t) x2(t) x3(t) · · · xn(t)

]
(3)

where

xi(t) = ΨA(t, t − i + 1)x(t), i = 1, 2, · · ·n
is invertible, for all t. If such a vector x(·) exists,
it is said to be a periodic cyclic generator.

To the best knowledge of the authors, the above
definition is given herein for the first time.

It is not difficult to show that for a T -cyclic
matrix A(·) it is possible to find a set of T -periodic
coefficients αi(·), i = 1, 2, · · ·n such that

αn(t − 1)x(t) + αn−1(t − 2)ΨA(t, t − 1)x(t − 1) +

αn−2(t − 3)ΨA(t, t − 2)x(t − 2) + · · · +
α1(t − n)ΨA(t, t − n + 1)x(t − n + 1) +

ΨA(t, t − n)x(t − n) = 0 (4)

Indeed, being matrix R(t) invertible, any vector
of Rn, and, in particular ΨA(t, t−n)x(t−n), can
be seen as a linear combination of the columns
of R(t). The periodicity of the coefficients is
a consequence of the periodicity of R(t) and
ΨA(t, t − n)x(t − n).



It is also important to stress that a T -periodic
matrix in h-companion form or in v-companion
form is indeed T -cyclic. Precisely, the cyclic gener-
ator associated with a h-companion form is xhc =[
0 0 · · · 1

]′, whereas the one associated with a
v-companion form is xvc =

[
1 0 · · · 0

]′.
We are now in the position to characterize the
class of T -cyclic matrices in terms of companion
forms.

Theorem 3.1. With reference to an n × n T -
periodic matrix A(·), the following statements are
equivalent each other

(i) A(·) is T -cyclic.
(ii) A(·) is algebraically equivalent to a T -
periodic matrix in v-companion form.

(iii) A(·) is algebraically equivalent to a T -
periodic matrix in h-companion form.

Proof (i) ↔ (ii)

Assume that (i) holds. Then there exists a T -
periodic vector x(·) such that R(t) defined in (3)
is invertible for each t. Then it is immediate to
see that for any i = 1, 2, · · · , n − 1, the i − th
column of A(t)R(t) is equal to the i+1-th column
of R(t + 1). As for the last column of A(t)R(t),
consider equation (4) with t replaced by t + 1.
It follows that the last column of A(t)R(t) is a
linear combination of the preceding columns of
R(t + 1), the i − th being weighted by coefficient
αn−i+1(t − i + 1). Hence,

A(t)R(t) = R(t + 1)Avc(t)

where the parameters βi(t) appearing in the ex-
pression of Avc(t) are given by βn−i(t) = αn−i(t−
i), i = 0, 1, · · · , n − 1. This proves point (ii). Vice
versa, if point (ii) holds, then there exists a T -
periodic invertible matrix S(·) such that S(t +
1)A(t)S(t)−1 = Avc(t). Hence, a cyclic generator
for A(·) is x(t) = S(t)−1xvc, as it is easy to verify.

(i) ↔ (iii)

Assume again that (i) holds and let x(·) be such
that R(t) defined in (3) is invertible for each
t. Moreover, consider again the coefficients αi(·)
defined in (4). Finally, set

v0(t) = x(t) (5)

v1(t) = A(t − 1)v0(t − 1) + α1(t − 1)x(t) (6)

v2(t) = A(t − 1)v1(t − 1) + α2(t − 1)x(t) (7)
...

vn−1(t) = A(t − 1)vn−2(t) + αn−1(t − 1)x(t)(8)

It it apparent that the vectors vi(t), i = 1, 2, · · · , n−
1, constitute a triangular combination of the
columns of R(t). As such, they span the entire
space Rn, for each t. It is then possible to define
the invertible state-space transformation

S(t) =
[
vn−1(t) vn−2(t) · · · v0(t)

]−1 (9)

From the definition of vi(t), it is straightforwardly
seen that the last n−1 columns of A(t)S(t)−1 are
given by

A(t)v0(t) = v1(t + 1) − α1(t)x(t + 1)

A(t)v1(t) = v2(t + 1) − α2(t)x(t + 1)

A(t)v2(t) = v3(t + 1) − α3(t)x(t + 1)
...

A(t)vn−2(t) = vn−1(t + 1) − αn−1(t)x(t + 1)

The first column of A(t)S(t)−1 can be computed
by means of a back propagation of the sequence
(5)-(8), and by taking into account (4). It follows

A(t)vn−1(t) =

A(t)A(t − 1)vn−2(t) + αn−1(t − 1)A(t)v0(t) =

· · · = ΨA(t + 1, t − n + 1)v0(t − n + 1) +
n−2∑
k=0

αn−k−1(t − k − 1)ΨA(t + 1, t − k)v0(t − k) =

−αn(t)v0(t + 1)

Hence A(t)S(t)−1 = S(t + 1)Ahc(t) so yielding
point (ii). Conversely, if statement (iii) holds, then
S(t + 1)A(t)S(t)−1 = Ahc(t) for some invertible
T -periodic state-space transformation S(·). Then,
xhc(t) is a cyclic generator for Ahc(t) and, conse-
quently, vector x(t) = S(t)−1xhc(t) is a periodic
cyclic generator for A(·), as can be easily verified.

4. STRUCTURAL PROPERTIES

In this section we point out the relation between
cyclicity and the structural properties of a SISO
periodic system described by

x(t + 1) = A(t)x(t) + B(t)u(t)

y(t) = C(t)x(t)

where B(·) and C(·) are T -periodic as well. We
first consider systems in thereachable canonical
form, i.e. systems described by



A(t) =




0 1 0 · · · 0
0 0 1 · · · 0
.
.
.

.

.

.
.
.
.

. . .
.
.
.

0 0 0 · · · 1
−αn(t) −αn−1(t) −αn−2(t) · · · −α1(t)




B(t) =
[
0 0 · · · 0 1

]′
C(t) =

[
γ1(t) γ2(t) · · · γn−1(t) γn(t)

]
where αi(·) and γi(·) are T -periodic functions, ∀i.
The dynamic matrix of this form is a matrix in
h-canonical form.

The system in the canonical reachable form can
be equivalently rewritten by resorting to the two
T -periodic polynomials

d(σ, t) = σn + α1(t)σn−1 + α2(t)σn−2 + · · · + αn(t)

n(σ, t) = γ1(t)σn−1 + γ2(t)σn−2 + · · · + γn(t)

which completely define the system. The variable
σ represents the one step-ahead operator. It is
worth noticing that this operator does not com-
mute with a periodic polynomial, say r(σ, t). How-
ever, the following skew commutative rule holds:

σkr(σ, t) = r(σ, t + r)σk

Hence, commutation occurs iff k is a multiple of
the period T .

By means of the above defined polynomials, one
can represent the system given in the canonical
reachable form by the input-output polynomial
model

y(t) = n(σ, t)z(t)

u(t) = d(σ, t)z(t)

where, as easily checkable, the variable z(t) coin-
cides with the first state variable x1(t). Hence,

y(t) = n(σ, t)d(σ, t)−1u(t)

is the right fractional representation of the system.

There are some papers where the algebra of pe-
riodic polynomials is studied. Among them, the
paper [9] furnishes some preliminary facts. The
concept we are interested in is the definition of
strong right coprimeness of two periodic polyno-
mials. We say that (n(σ, t), d(σ, t)) are strongly
right coprime if there exist two periodic polyno-
mials x(σ, t) and y(σ, t) such that the following
operatorial Bezout identity holds true:

x(σ, t)n(σ, t) + y(σ, t)d(σ, t) = 1

The system in the canonical reachable form de-
fined above is, by construction, a fully reachable

periodic system. In addition, thanks to the struc-
ture of matrices (A(·), B(·)), the reachability in-
terval is no longer than the system order n. Notice
that this property does not hold in general since,
as well known, the interval of time required to
reach the states of a reachable periodic system
may be as long as nT steps, see [10] and [11].

Now, we want to assess the observability proper-
ties of the system, which, as already said, depends
on the properties of the two polynomials above.

Theorem 4.1. The system in the reachable canon-
ical form is observable for each t if and only if the
two polynomials (d(σ, t), n(σ, t)) are strongly right
coprime.

Proof If the system is not observable, then

[
σI − A(t)

C(t)

]
p(t) = 0 (10)

for some nonzero exponentially modulated vector
function p(t) = λtp̄(t), where λ is a complex num-
ber and p̄(·) a periodic function. Hence, taking
into account the structure of A(·) and C(·) it
follows

n(σ, t)p1(t) = 0, d(σ, t)p1(t) = 0 (11)

where p1(·) is the first entry of p(·). Notice that
p1(·) cannot be identically zero. Hence, the Bezout
identity cannot be satisfied by any x(σ, t) and
y(σ, t), i.e. the two polynomials n(σ, t), d(σ, t) are
not strongly right coprime.

Vice-versa, if the polynomials are not strongly
right coprime, there exists an exponentially modu-
lated non zero function p1(t) such that (11) is sat-
isfied. By taking pi+1(t) = pi(t+1), i = 1, 2, · · ·n−
1 the conclusion (10) follows, so that the system
is not observable for each t.

It is easy to show that a dual result can be given
if the system in the canonical observable form is
considered, i.e.

A(t) =




0 0 · · · 0 −βn(t)
1 0 · · · 0 −βn−1(t)
0 1 · · · 0 −βn−2(t)
...

...
. . .

...
...

0 0 · · · 1 −β1(t)




B(t) =
[
δ1(t) δ2(t) · · · δn−1(t) δn(t)

]′
C(t) =

[
0 0 · · · 0 1

]



where βi(·) and δi(·) are T -periodic functions, ∀i.
Now, the fractional polynomial representation of
the system in canonical observable form is

d(σ, t)y(t) = z(t)

n(σ, t)u(t) = z(t)

where

d(σ, t) = σn + σn−1β1(t) + σn−2β2(t) + · · ·βn(t)

n(σ, t) = σn−1δ1(t) + σn−2δ2(t) + · · · δn(t)

Hence,
y(t) = d(σ, t)−1n(σ, t)u(t)

is the left fractional representation of the system.
Notice in passing that this model corresponds to
the so-called PARMA representation, widely used
for prediction and identification purposes.

The polynomials d(σ, t), n(σ, t) are said to be
strongly left coprime if there exist two periodic
polynomials x(σ, t) and y(σ, t) such that the fol-
lowing identity holds true:

n(σ, t)x(σ, t) + d(σ, t)y(σ, t) = 1

The system in the observable canonical form is,
by construction, observable for each t. Moreover,
observability can be performed in n steps at most.
As for the reachability properties of the system,
the following result can be proven in a totally
analogous way of Theorem 4.1.

Theorem 4.2. The system in observable canonical
form is reachable for each t if and only if the
two polynomials (d(σ, t), n(σ, t)) are strongly left
coprime.

5. CONCLUSION

This paper is composed by two parts. The first
one deals with purely algebraic concepts relative
to square matrices with periodically time-varying
coefficients. Precisely, we discuss when a generic
matrix of this family is algebraically equivalent
to a periodic matrix in companion form. This
possibility is of notable interest since matrices in
companion forms are characterized by a relatively
small number of free parameters and as such lead
to parsimonious representations. The equivalence
is provided in terms of the key notion of cyclic
periodic matrix, introduced in this paper for the
first time. Then, we pass to the realm of discrete-
time dynamic systems. For single-input single-
output periodic systems in state-space descrip-
tion, we define a canonical model based on the

reachable canonical form and a canonical model
based on the observable canonical form, both rely-
ing on dynamical matrices in periodic companion
forms. From these canonical models the passage to
polynomial input-output descriptions is straight-
forward. We discuss the reachability and observ-
ability properties of the canonical forms in terms
of strong coprimeness of the periodic polynomials
of the input-output description. The results so
obtained clarify a number of important issues. In
particular, they lead to a better comprehension
of the emerging concept of transfer function in
periodic control theory. The extension to multi-
input multi-output periodic systems is not a triv-
ial subject, and is currently underway.
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