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Abstract: A new iterative method using closed-loop data for controller tuning based on
the correlation approach is proposed. The main idea is to make the output error between
the closed-loop system and a reference model uncorrelated with the reference signal. The
controller parameters are calculated as the solution to a correlation equation involving
instrumental variables. Convergence and consistency of the controller parameters for two
choices of instrumental variables are analyzed. It is shown that the controller parameters
converge to their true values independent of the noise characteristics and modeling error.
Simulation results confirm the effectiveness of the proposed approach.
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1. INTRODUCTION

Control problems are generally expressed as the min-
imization of an error signal. In many servo control
problems, the error signal may be defined as the dif-
ference between the output of the closed-loop system
and the output of a reference model that represents the
desired response of the closed-loop system to a refer-
ence signal. This problem is called model following
and can be solved using pole-placement design pro-
vided that the plant model is perfectly known. For the
case of unknown plant models or models with time-
variant parameters, Self-Tuning Regulation (STR) or
Model-Reference Adaptive Control (MRAC) can be
employed (Åström and Wittenmark, 1989). In these
approaches, optimization methods are used to find the
controller parameters driving the error signal to zero.
The approaches can be extended to the case where a
general quadratic criterion is minimized. The gradient
of the criterion is calculated using an on-line estimated
model of the plant (Trulsson and Ljung, 1985) or using
closed-loop data as in the Iterative Feedback Tuning
(IFT) approach (Hjalmarsson et al., 1994). However,
a characteristic feature of these approaches is that, in
the presence of noise, the controller parameters do

not necessarily converge to their correct values (the
values computed from the true plant model). As an
extreme case, if the excitation signal is kept constant,
a minimum-variance controller is obtained, which is
known to lack robustness.

In this paper, a new approach to model-following
problem based on correlation technique is introduced
and its convergence is studied. The correlation ap-
proach is well known for estimation of the plant model
parameters in system identification, where the best
model for the process is defined as the model that
makes the error signal uncorrelated with the excitation
signal. In the context of closed-loop identification, the
best model in the closed-loop is defined as a model
which makes the closed-loop output error uncorrelated
with the excitation signal (Landau and Karimi, 1997).
However, in this paper the correlation approach will
be used, for the first time, for controller design. The
main idea is to modify the control objective so that,
instead of minimizing a norm of the error signal, one
tries to make the closed-loop output error (the differ-
ence between the output of the closed-loop system and
the reference model) uncorrelated with the excitation
signal. This way, the achieved closed-loop system will
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capture the dynamics of the reference model (i.e., the
desired dynamics) such that there remains no infor-
mation about the excitation signal in the closed-loop
output error. Thus, this error will mainly contain the
contribution of noise that is uncorrelated with the ex-
citation signal.

In contrast to MRAC, STR and IFT, the effect of noise
on the closed-loop output is not minimized in this
approach. In fact, the designed closed-loop model (ref-
erence model) is approximated by the achieved one,
independently of the noise characteristics. As a result,
the robustness properties of the designed closed-loop
system will be preserved, and the performance with
respect to noise attenuation is not changed. A detailed
comparison with the IFT approach together with a
real-time application of the proposed method can be
found in (Karimi et al., 2002).

The paper is organized as follows. In Section 2, the
notations and the basics of the correlation approach
and the choice of instrumental variables are presented.
The convergence and the consistency of the algorithm
for different choices of the instruments are studied in
Section 3. Simulation results are given in Section 4.
Finally, Section 5 concludes the paper.

2. CORRELATION APPROACH

A SISO linear time-invariant discrete-time system is
considered as the plant model. Let the output y(t) of
the system be described as:

y(t) =G(q−1)u(t)+v(t) (1)

where u(t) is the plant input, v(t) represents a zero-
mean noise and the transfer operator G(q−1) is de-
fined as:

G(q−1) =
B(q−1)
A(q−1)

(2)

This system is controlled by the control law:

u(t) =
S(q−1)
R(q−1)

[r(t)−y(t)] (3)

where

R(q−1) = 1+ r1q−1 + · · ·+ rnRq−nR (4)

S(q−1) = s0 +s1q−1 + · · ·+snSq−nS (5)

and r(t) is the reference or excitation signal. The
controller output can be presented in regression form
as:

u(t) = φT (ρ,t)ρ (6)

with the regressor vector φ(ρ,t) and the vector of
controller parameters ρ, both of dimension nρ, defined
as:
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Fig. 1. Block diagram of the achieved and designed
closed-loop systems

φT (ρ,t) = [−u(t−1) · · ·−u(t−nR),

e(t) · · ·e(t−nS)] (7)

ρT = [r1 · · ·rnR ,s0 · · ·snS ] (8)

and e(t) = r(t)−y(t).
Figure 1 shows the block diagram of the closed-loop
system. The upper part represents the achieved closed-
loop system and the lower part shows the reference
model (Bm/Am) which is presented as the desired
closed-loop system containing the initial model of the
plant (G0) and the initial controller (R0,S0). It is
assumed that the initial controller is able to meet the
control specifications with respect to the initial model.
In this way, the reference model gets a reasonable and
attainable structure.

Let the initial controller (R0,S0) be applied to the
real system excited by the reference signal r(t) and
the plant output be measured. Then, the closed-loop
output error (see Fig. 1) defined as

εcl(ρ,t) = y(ρ,t)−yd(t)
contains the effect of both modeling errors and noise.
Evidently, the effect of modeling errors is correlated
with the reference signal, while that of noise is not.
Since the lack of control performance results essen-
tially from the modeling errors, an improved con-
troller should be able to compensate the effect of the
modeling errors to the point that the closed-loop out-
put error contains only filtered noise. Thus, a reason-
able way to tune the controller parameters is to make
the closed-loop output error independent of the refer-
ence signal. So, the parameters of the controller should
be solution to the following nρ correlation equations:

f(ρ) =
1
N

N∑
t=1

ζ(ρ,t)εcl(ρ,t) = 0 (9)

where N is the number of data and ζ(ρ,t) is a nρ-
dimensional vector of instrumental variables. The in-
strumental variables should be correlated with the ref-
erence signal and uncorrelated with noise.

Equation (9) is in general nonlinear and cannot be
solved analytically. Iterative numerical solution is pos-
sible using the relationship:



ρi+1 = ρi−γi [QN (ρi)]−1 f(ρi) (10)

where γi is the step size andQN (ρi) is a square matrix
of dimension nρ. For faster convergence one can use
the Newton-Raphson method. In this method,QN (ρi)
is defined as the derivative of the correlation equation:

QN (ρi) =
1
N

N∑
t=1

{
∂ζ(ρ,t)
∂ρ

∣∣∣∣
ρ=ρi

εcl(ρi, t) +

ζ(ρi, t)
∂εcl(ρ,t)
∂ρ

∣∣∣∣
ρ=ρi

}
(11)

The gradient of the closed-loop output error with re-
spect to ρ can be represented in terms of the regressor
vector φ as follows (Åström and Wittenmark, 1989):

ψT (ρ,t) =
∂εcl(ρ,t)
∂ρ

=
B(q−1)
P (q−1)

φT (ρ,t) (12)

where P (q−1) = A(q−1)R(q−1)+B(q−1)S(q−1) is
the closed-loop characteristic polynomial. Since the
plant model is unknown, an estimate ψ̄ of this gradient
can be used instead (see the definition in Eq. (23)).
On the other hand, near the solution, the first term
in Eq. (11) is close to zero because the derivatives
of the instrumental variables are uncorrelated with
the closed-loop output error. Neglecting this term, let
redefine QN (ρi) as:

QN (ρi) =
1
N

N∑
t=1

ζ(ρi, t)ψ̄T (ρi, t) (13)

Choice of instruments: An “idealized” choice is a
noise-free estimate of the gradient ψ(ρ,t) based only
on the reference signal (Söderström and Stoica, 1983).
This makes QN (ρ) as close as possible to a positive
semi-definite matrix. The instruments can be obtained
in two different ways by filtering a noise-free estimate
of the regressor:

(1) The first approach is based on identified mod-
els, and the corresponding Iterative Correlation-
based Tuning will be labeled ICT-IM:

ζIM (ρ,t) = ψ̂(ρ,t) =
B̂

P̂
φ̂(ρ,t) (14)

where

φ̂T (ρ,t) = [−û(t−1) · · ·− û(t−nR),

ê(t) · · · ê(t−nS)] (15)

and

û(t) =
ÂS

P̂
r(t) , ê(t) =

ÂR

P̂
r(t) (16)

The closed-loop models ÂS
P̂

and ÂR
P̂

can be
identified using open-loop identification meth-
ods or they may be computed using the plant
model identified in closed loop (Landau and
Karimi, 1997) and knowledge of the controller.

(2) The second approach uses the designed output,
leading to the acronym ICT-DO:

ζDO(ρ,t) = ψd(ρ,t) =
Bm
AmS

φd(ρ,t) (17)

where

φTd (ρ,t) = [−ud(t−1) · · ·−ud(t−nR),

ed(t) · · ·ed(t−nS)] (18)

and

ud(t) =
S

R
ed(t) , ed(t) = r(t)−yd(t)

Notice that the instrumental variables ζDO(ρ,t)
are independent of the noise and their computa-
tion do not require the knowledge of the plant
model. However, this choice can be implemented
only if the controller has no zeros or poles out-
side the unit circle.

Both choices of instrumental variables can be ex-
pressed in the following general form:

ζT (t) = F (q−1)[−S
R
r(t−1) . . .− S

R
r(t−nR),

r(t) . . . r(t−nS)] (19)

where F (q−1) is an asymptotically stable filter. There-

fore, for ICT-IM one has F = D ÂR
P̂

, D = B̂
P̂

and for

ICT-DO F =DAm−Bm
Am

, D = Bm
AmS

.

3. CONVERGENCE AND CONSISTENCY

This section discusses the limiting behavior of the
controller parameters ρi as the number of data tends
to infinity. When dealing with consistency, the concept
of convergence with probability one (w.p.1) to the true
controller parameters is considered. The methods of
analysis used here are adopted from the framework
used in (Söderström and Stoica, 1981).

Let introduce a number of assumptions about the true
system, the controller structure and the experimental
conditions under which the data are collected.

(A1) The system to be controlled is SISO, linear time-
invariant, finite order and strictly causal.

(A2) The disturbance v(t) is a stationary stochastic
process with zero mean and a rational, nonsingular
spectral density matrix.

(A3) The reference signal r(t) is persistently exciting
of sufficiently high order, and uncorrelated with the
disturbance v(s) ∀s, t.

(A4) The controller computed at each iteration stabi-
lizes the closed-loop system.

(A5) The order of the estimated controller (nR and
nS) and the order of a controller (n∗R and n∗S) that
is solution to the correlation equation are related by
the following inequality:

min(nR−nR∗ ,nS−nS∗)≥ 0 (20)



(A6) The solution ρ∗ to the correlation equation is
unique.

Assumptions A1 and A2 define the class of systems
and disturbances to be considered, while A3 is a clas-
sical assumption for the excitation signal in param-
eter estimation algorithms based on the correlation
approach. The only additional assumption compared
with the classical IV methods for model identification
is A4. This assumption may be rather restrictive for
some systems, but it is required for implementing the
controller on the real system in each iteration. In prac-
tice, a stability test based on the initial model of the
plant or the model identified in the previous iteration
can be performed before implementing a controller. If
the stability test fails, the step size γi is reduced so
as to obtain a stabilizing controller. The stability test
can also be performed without using the plant model,
based on the Vinnicombe gap, as it is proposed for the
IFT approach in (Kammer et al., 2000).

Assumption A5 implies that there is at least one solu-
tion to the correlation equation and this solution is at-
tainable by the estimates. This assumption is required
for parameter convergence. However, it is also well
known that over-parameterization of the controller
leads to numerical difficulties due to zero-pole can-
cellation. Assumptions A6 is necessary only for the
consistency analysis and it also implies the equality in
(20).

The sufficient conditions for convergence (under As-
sumptions A1-A5) and consistency (under Assump-
tions A1-A6) of the iterative parameter update equa-
tion (10) are the same as those for conventional pa-
rameter estimation methods based on the correlation
approach (Ljung, 1987). That is:

Q= lim
N→∞

1
N

N∑
t=1

ζ(ρ,t)ψ̄T (ρ,t) (21)

exists and is nonsingular w.p.1, and

lim
N→∞

1
N

N∑
t=1

ζ(ρ,t)v(t) = 0 w.p.1. (22)

where

ψ̄T (ρ,t) =D(q−1)φT (ρ,t) (23)

is an estimation of the gradient vector ψ (defined in
12). After some straightforward calculations, ψ̄ can be
expressed as:

ψ̄T (ρ,t) =
AD

P
[r(t) · · ·r(t−nρ+1)]ST (24)

where S is defined as:

S =




0 −s0 · · · −snS
. . .

. . . 0
0 −s0 · · · −snS
1 r1 · · · rnR

. . .
. . .

. . . 0
0 1 r1 · · · rnR




Under Assumption A2, the limits in (21) and (22)
can be replaced by the corresponding expected values
(Söderström and Stoica, 1983):

Eζ(ρ,t)ψ̄T (ρ,t) =Q (25)

Eζ(ρ,t)v(t) = 0. (26)

Note that, under Assumption A3, Eq. (26) is trivially
satisfied. The conditions of nonsingularity of Q for
different types of excitations are given in the following
theorem:

Theorem 1. Consider the matrixQ in Eq. (25) and the
transfer function H(z−1) defined as:

H(z−1) =
F (z−1)

R(z−1)D(z−1)
P (z−1)
A(z−1)

(27)

Suppose that Assumptions A1-A5 hold.

(a) If r(t) is persistently exciting of order nρ and
H(z−1) (after zero-pole cancellation) is a strictly
positive real transfer function, then the matrix Q
is nonsingular.

(b) If r(t) is a deterministic periodic signal with
period nρ and persistently exciting of order nρ
and H(z−1) (after zero-pole cancellation) has
no pole on the unit circle, then the matrix Q is
nonsingular.

The proof of the part (a) of the theorem is based on the
following lemma (Söderström and Stoica, 1981):

Lemma 1. Let Ψ(t) = [x(t − 1) . . .x(t − p)]T be
a p-dimensional stationary stochastic process. As-
sume that x(t) is persistently exciting of order p.
Let the scalar filter H(z−1) be a strictly positive
real (SPR) transfer function. Then the matrix Z =
E[H(z−1)Ψ(t)]ΨT (t) is nonsingular.

Proof of Theorem 1: Taking into account the relation
(24), the general form of Q is:

Q=E
F (q−1)
R(q−1)




−S(q−1)r(t−1)
...

−S(q−1)r(t−nR)
R(q−1)r(t)

...
R(q−1)r(t−nS)




×[rf (t) · · ·rf (t−nρ+1)]ST

where



rf (t) =
AD

P
r(t) (28)

This matrix can also be presented as:

Q= S ·T ·ST (29)

where the matrix T is defined by:

T =E
F (q−1)
R(q−1)

[r(t) · · ·r(t−nρ+1)]T

×[rf (t) · · ·rf (t−nρ+1)] (30)

It results from Eq. (29) that Q is nonsingular if and
only if the matrices T and S are nonsingular. As for
the S matrix, it is well known in the theory of resul-
tants (van der Waerden, 1991) that S is nonsingular if
and only if the polynomials R and S are coprime (this
condition will be satisfied under Assumption A5 with
the equality in 20). Thus, Q is nonsingular if and only
if T is nonsingular. But T can be expressed as:

T =E
F (z−1)

R(z−1)D(z−1)
P (z−1)
A(z−1)




rf (t)
...

rf (t−nρ+1)




×[rf (t) · · ·rf (t−nρ+1)]

Now Lemma 1 can be applied to show that T is
nonsingular if H(z−1) is SPR. Note that, under this
condition, rf (t) is also persistently exciting of order
nρ because H(z−1) has no zeros on the unit circle.

The proof of part (b) of the Theorem goes along
the lines of the proof of Theorem 5.1, part (iii) in
(Söderström and Stoica, 1981) and will not be given
here.

Remarks:

(1) The transfer functionH(z−1) for ICT-IM variant
becomes:

H(z−1) =
Â(z−1)
A(z−1)

P (z−1)
P̂ (z−1)

(31)

It is clear that when Â = A and P̂ = P , this
transfer function is SPR. However, with a good
estimation of the closed-loop system, the strictly
positive realness of H is strongly expected. Yet,
it is interesting to mention that poor estimates
of A and P might as well give a consistent
algorithm if the SPR condition is satisfied. In
this case, only the convergence speed is affected
because a good estimation of the filter B̂/P̂
preserves the gradient descent direction and im-
proves the speed of convergence. This will be
illustrated by a simulation example in Section 4.

(2) For ICT-DO variant, one has:

H(z−1) =
P (z−1)

A(z−1)R(z−1)
Am(z−1)−Bm(z−1)

Am(z−1)

It can be observed that this transfer function is
independent of the identified plant model. On
the other hand, in the proximity of the optimal
solution, where Am ≈ P and Am−Bm ≈ AR,
the transfer function H is likely SPR. Therefore,
this variant seems to be suitable for systems with
large unmodeled dynamics and noise in final
iterations.

(3) Part (b) of Theorem 1 shows that with a periodic
signal of period nρ as the excitation signal, the
method will be consistent for all A,B,P and
their estimates with a much weaker condition on
H . However, if for practical reasons this type of
signal is not implementable on the real system,
Part (a) that is valid for all persistently exciting
r(t) of at least order nρ may be used.

It should be mentioned that, in practice when the num-
ber of data N is finite, the solution to the correlation
equation changes in each iteration because of different
noise realization (this change tends to zero when N
tends to infinity). However, when the number of itera-
tions goes to infinity, the expectation of the estimates
tends to the true values (the solution with infinite
number of data). As a result, the proposed iterative
controller tuning method needs more iterations for
convergence compared with the IV methods for model
parameter estimation where only one data collection is
used in all iterations.

4. SIMULATION RESULTS

The aim of this section is to provide two simulation
examples in order to illustrate the theoretical results of
Section 3. In the first simulation the influence of mod-
eling errors on the convergence speed in the absence of
noise is investigated. The second simulation compares
the behavior of ICT-IM and ICD-DO variants in the
presence of noise via Monte-Carlo simulation.

The following system is considered:

(1−1.5q−1 +0.7q−2)y(t) = (q−1 +0.5q−2)u(t)

+(1+0.5q−1 +0.5q−2)e(t)

where e(t) is zero-mean, stationary, white Gaussian
noise with variance λ2 (for the first simulation λ= 0).
The reference model is given by:

Bm
Am

=
−0.0781q−1−0.0625q−2−0.0117q−3

1−1.5781q−1 +0.6375q−2−0.0117q−3

which has two poles at 0.7794 and one pole at 0.019.
Using the pole-placement technique, the optimal con-
troller can be easily computed as: R∗(q−1) = 1 and
S∗(q−1) = −0.0781− 0.0234q−1 which gives ρ∗ =
[−0.0781 −0.0234]T . The same structure is consid-
ered for the initial controller with the initial parameter
vector ρ0 = [0.075 0]T which represents a propor-
tional controller that stabilizes the closed-loop system.



Consider first the ICT-IM variant where the closed-
loop models used for filtering ( ÂS

P̂
, ÂR
P̂
, B̂
P̂

) in (14)
and (16) are computed using the current controller
and the plant model ( B̂

Â
) identified in closed loop. The

reference signal r(t) is a PRBS generated by an 11-bit
shift register (data length N = 2047). Table 1 gives the
number of iterations needed to achieve a parametric
distance of 1e-9, defined as PD = (ρi − ρ∗)T (ρi −
ρ∗), for different orders of the polynomials Â and B̂.

Table 1. Influence of the modeling error

nÂ = deg(Â) 0 1 1 2 2

nB̂ = deg(B̂) 1 1 2 1 2

No. iter. 55 11 9 6 5

It is clearly seen that the speed of convergence de-
pends on the order of the identified plant model. Note,
however, that ICT-IM variant gives consistent esti-
mates even in the case when the plant is modeled only
by a gain (nÂ = 0 and nB̂ = 1).

The second simulation study illustrates the behavior
of the ICT-IM and ICD-DO variants in the presence
of noise. To compare ICT-IM and ICT-DO variants
100 Monte-Carlo simulations are performed. For each
simulation run, 20 iterations are carried out and each
iteration is performed with a different realization of
the noise e(t) that provides a ratio noise/signal of
about 7,5% in terms of variance. The same PRBS
as in the previous numerical example is used as the
reference signal. The plant model for the ICT-IM
variant is identified with nÂ = 1 and nB̂ = 1. For the
first 10 iterations, the ICT-IM variant is used and in
the next 10 iterations, when the estimates are close to
the solution, the two variants are compared.

Let define the parametric error as ∆ρj = ρ∗j −ρj ; j =
0,1. Table 2 shows the mean values and variances of
the parametric errors over 100 simulation runs for both
the ICT-IM and ICT-DO variants.

It can be seen that both variants provide the conver-
gence to the optimal values in the presence of noise.
Note also that, in the proximity of the solution, ICT-
DO variant is less sensitive to noise and shows better
performance in terms of mean-value and variance of
the parametric error. This suggests using the ICT-IM
variant in few first iterations and then switching to the
ICT-DO variant.

5. CONCLUSIONS

It has been shown that making the output error be-
tween the closed-loop system and a reference model

Table 2. Comparison of IV variants

ICT-IM ICT-DO
mean(∆ρj ) var(∆ρj ) mean(∆ρj ) var(∆ρj )

ρ0 -2.71e-3 5.96e-5 -6.81e-4 2.11e-5
ρ1 2.97e-3 6.64e-5 7.35e-4 2.15e-5

uncorrelated with reference signal, can be used as ob-
jective for controller tuning in model-following prob-
lems. The iterative correlation-based tuning (ICT) ap-
proach preserves the designed objectives, presented
in terms of a reference model, independently of the
noise characteristics. The algorithm requires an ap-
proximate model of the plant for computing the gra-
dient of the output error. However, the convergence
analysis shows that modeling errors do not affect the
parametric convergence as long as a SPR condition on
some transfer function is satisfied. Simulation exam-
ples illustrate well the theoretical results regarding the
consistency of the proposed method.
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Åström, K. J. and B. Wittenmark (1989). Adaptive
Control. Addison-Wesley.

Hjalmarsson, H., S. Gunnarsson and M. Gevers
(1994). A convergent iterative restricted com-
plexity control design scheme. In: 33rd IEEE-
CDC. Vol. 2. pp. 1735–1740.

Kammer, L. C., R. R. Bitmead and P. L. Bartlett
(2000). Direct iterative tuning via spectral anal-
ysis. Automatica 36(9), 1301–1307.
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