
DYNAMIC RECONFIGURATION
OF A COMPONENT BASED SOFTWARE SYSTEM FOR VEHICLES

Xuejun Chen

DaimlerChrysler AG
Research Information and Communication

RIC/TA, HPC T 728
D-70546 Stuttgart, Germany

xuejun.chen@daimlerchrysler.com

Abstract: The component system information and management architecture is a
component architecture to build the application software which is used in modern
vehicles. The components are distributed in the system: the individual components are
mainly located in different computers in vehicles, while the rest runs on computers in the
infrastructure. The components can be dynamically loaded to different places of the
component system, executed, removed and updated at runtime. In this article, we describe
dynamic reconfiguration of a software component system for vehicles. Furthermore, we
propose update strategies for updating components and component deployment strategies
for optimizing the distributed system. By the use of dynamic reconfiguration, the
flexibility and adaptability of the component based distributed system in vehicles are
enhanced. In addition, the dynamic reconfiguration can improve the performance of the
component system and reduce the costs of communication between a vehicle and the
infrastructure. Copyright© 2002 IFAC

Keywords: Mobile Application, Dynamic Reconfiguration, Distributed System, Update
Strategy, Component Deployment Strategy

1 INTRODUCTION

Modern vehicles are characterized by a steadily
increasing amount of software. However, it is hard to
decide which application software will be interesting
for a customer through the lifecycle of a vehicle.
Moreover, a vehicle in the future should not be
regarded as an isolated individual system any longer,
but should be able to be regarded as an active
computation node in a worldwide computer network.

To meet these demands, we have designed a component
system information and management architecture
(Stümpfle, et al., 2000), which supports construction of

component based application software. A component
system, based on this architecture, is distributed. That is
to say, most individual components are located in
different computers in a vehicle, while other
components run on computers in the infrastructure (see
Figure 1) (Chen and Stümpfle, 2001). Such a
component system represents at every point of time a
certain configuration which describes all components
participating in the system and the cooperation among
them.

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain

Application

Application
Support

Device Control

Display

Application
Components

Application
Support

Components

Internet

DaimlerChrysler Service Center

Service Center

Vehicle

Fig. 1. Vehicle and infrastructure

The components in our architecture can be dynamically
loaded into different places of a mobile comp onent
system, executed, removed and updated at runtime.
With the dynamic loading functionality, the component
system can load and keep exactly the amount of
software components that are required by the customer.
If an application component is not needed any longer, it
can be removed from the system. If an application
component becomes obsolete, the component can be
updated by a newer version obtained from the
infrastructure at runtime.

With dynamic reconfiguration the performance of the
component system can be improved by usage of
dynamic load balancing where the components can be
moved to different places within a vehicle and into the
infrastructure. At the same time, communication costs
between a vehicle and the infrastructure can be reduced.
Communication costs emerge when a vehicle
communicates with the infrastructure, for instance, a
vehicle gets current traffic data or a new version of a
component from the infrastructure, or utilizes the high
performance of the computers in the infrastructure.

The dynamically reconfigurable distributed comp onent
system needs an efficient and robust configuration
management that serves to build the component system
in such a way, that an optimal executable system can be
formed, both statically and dynamically. Therefore,
mechanisms of the dynamic configuration management
have to be investigated. For example, why and how is a
component migrated between a vehicle and the
infrastructure? When a component is migrated or
updated, which other components are influenced? How
must the component system react to this change? In this
paper, we will deal with the above mentioned questions.

This paper is structured as follows: the next section
describes the structure of the configuration
management. Section 3 represents a dynamic
reconfiguration. In Section 4 the possibilities to
optimize the system at runtime are described. The last
section gives a summary of the main points and an
outlook to the future.

2 STRUCTURE OF THE CONFIGURATION
MANAGEMENT

Generally speaking, configuration management means
all the activities that serve to build a distributed
component system in such a way, that an optimal
executable system emerges both statically and
dynamically. The tasks of configuration management
are static and dynamic configuration. A static

configuration is a deployment of the components to the
places where they function before the runtime. On the
contrary, a dynamic configuration is the reconfiguration
of deployment of the components at runtime. The
distributed configuration managers execute the tasks of
the configuration management.

The execution of the activities of the configuration
management is distributed in the vehicle and the
infrastructure. Some activities can only be carried out in
the vehicle, for example, gathering the information
about system status, finding out the requirements of
users or adjusting the component system by updating
components at runtime. The configuration manager
who executes the activities in the vehicle, is called local
configuration manager (LCM). There certainly are
further activities that must be carried out in the
infrastructure, such as offering an appropriate
component from a component database, which is
located in the infrastructure. The configuration manager
who carries out activities in the infrastructure, is called
central configuration manager (CCM). Furthermore,
there are auxiliary configuration agents located in each
runtime environment (see Figure 2).

LCM

CCM Infrastructure

Vehicle LCM : Local
Configuration Manager

CCM : Central
Configuration Manager

 e.g. Internet

Component
Database

Agent Agent Agent

Fig. 2. Structure of the configuration management

2.1 Local configuration manager

The LCM manages the software components
participating in a vehicle. It is responsible for a
dynamic reconfiguration. The LCM analyses the state
information of each computer which are collected by
the agents (This entity will be explained in Subsection
2.2) and then decides, whether a reconfiguration should
be carried out and, if necessary, initiates the
reconfiguration process at runtime. Furthermore, the
LCM finds out the requirements of users or
applications. If the LCM detects either some
requirements that cannot be satisfied by the current
configuration or change of some conditions (e.g. the
communication costs with the infrastructure), it will
decide, how a reconfiguration should be performed. A
reconfiguration will be carried out, if one of the
following cases arises:

• The user needs a new service or information.

• A need for a component update at runtime occurs.

• A component should be migrated between the
vehicle and the infrastructure, in order to reduce

the communication costs or to improve the system
performance.

• Load balancing in the vehicle must be carried out.

2.2 Configuration agents

The LCM has an agent in each computer in a vehicle.
Component loading mechanism is realized by agents
for loading and unloading of components in a
component system. In the current implementation, this
mechanism is an extension of Java’s ClassLoader. In
cooperation with the LCM the agent controls the life
cycle of each component in a runtime environment. The
agent can initiate, start, stop a component and block or
restart its interaction with a certain comp onent. The
status information in each runtime environment (e.g.
processor load, free memory etc.) are gathered by
agents and registered by the LCM. When a component
is started, the agent registers it at the LCM. Therefore,
the LCM always knows, which components are located
in which runtime environment and what is their current
status. The agent offers some services to components,
for example, the naming service. Furthermore, the agent
contains a component list and with this list it knows
where each component is. The access to a component is
location transparent. For example, if component A
wants to communicate with component B, at first it has
to ask the local agent, which is in the same computer,
for a reference to component B. Then the component A
can communicate with component B by an appropriate
remote communication mechanism like Java RMI, or an
event mechanism.

2.3 Central configuration manager

The CCM is located in the infrastructure. It
administrates all the components in the infrastructure
and the configurations in all the vehicles that have been
registered in the infrastructure, so that the customers
can get the personalized service comfortably. When the
LCM needs a new component, it sends the
corresponding requirement to the CCM. Thus, the CCM
checks the current configuration of the vehicle and
provides an appropriate component. When a new
version of a component exists, the CCM informs the
LCM, so that the LCM can update the component.

3 DYNAMIC RECONFIGURATION

The configuration management in our component
architecture permits a dynamic reconfiguration at
runtime. However, two problems arise during a
dynamic reconfiguration:

• When a component is migrated or updated, which
of the other components are influenced?

• How must the component system react to this
change?

This section discusses these two problems.

3.1 Intercomponent dependency

A component can offer functionality to other

components. We call such components server
components. At the same time, a component can also
require services from other components. A component
that uses functions of other components is called client
component. If a component needs functions of other
components, we can say, it depends on other
components. The dependency relation among
components is described with a directed graph. In
addition to the dependency on software components, a
component can require certain hardware and other
resources. The dependencies on other components, on
hardware or on resources are called dependencies of a
component.

The dependencies among components are stored by the
LCM in an XML file. The dependencies, which can be
previously defined, are called static dependencies.
Since the component system is dynamic, the
dependencies among concrete comp onents can be
dynamically produced and changed at runtime. Such
dependencies are called as dynamic dependencies that
are important for a dynamic reconfiguration. We
describe this in Subsection 3.2.

The available component architectures (e.g. Enterprise
Java Beans (Sun, 2000), DCOM/ActiveX (Denning,
1997) and CORBA Component Model (OMG, 1997))
offer only very little support for the management of
dependencies. If dependencies among components are
not clearly specified, it is difficult to shape a robust
component system, especially for a dynamic component
system. Therefore, a dependency analysis is necessary
for shaping a component system. Without the
dependency analysis, a comp onent probably cannot
work after its installation, or the other components
perhaps cannot function after the installation of a new
component, because their requirements can be not
fulfilled anymore.

If the configuration management knows the
dependencies among components at every point of
time, it can support a dynamic reconfiguration of the
system. For example, by updating a component at
runtime, its dependencies have to be analyzed, so that it
can be decided, which other components in the system
will be affected, which new components must be loaded
into the system, and which components must also be
updated. If a certain dependency among the updated
components exists, an update sequence of those
components in a dynamic reconfiguration must be
fixed. With the help of the dependency analysis, their
update sequence can be correctly determined.

3.2 Dynamic reconfiguration

The dependency among the components can be
dynamically changed at runtime. For example,
component A needs a service offered by component B.
Before component A calls a method of component B, A
must ask the local agent for a reference to B with the
function agent.lookup(B) . When A invokes a method on
the server component B, the invocation dependency
between the client component A and the server
component B is registered by the middleware. After A
has invoked a method on the server component B, the
registration of the invocation dependency between A

and B is removed by the middleware. That is to say,
only when an invocation between two comp onents is
taking place, the both components are actually
dependent. When the LCM decides to carry out a
reconfiguration, it collects the dependency information
by each agent and makes a global dependency graph.
During a reconfiguration of a component we must
decide, which components are actually dependent on
the goal component.

Because of the consistency of a system, a component is
not reconfigurable at arbitrary point of time. Similar to
the definition of a reconfigurable state of a node in the
work (Kramer and Magee, 1990), we define that a
component is reconfigurable, only when the following
conditions are fulfilled:

• Its clients initiate no new communication with it.

• The calls of its clients to it have been completed.

• It initiates no new communication with any
component.

• Its calls to its server components have been
answered.

• Its internal transaction has been terminated, if it
initiated an internal transaction.

The following example describes, how a component is
updated (see Figure 3). B is the target component,
which is updated. B‘ is a new version of B . Component
A is a client component of B. Component C is a server
component of B.

A B C

updated
by B‘

Fig. 3. Update of a component

The update process is described as follows:

1) install(B‘)

2) unlink(A, B)

3) unlink(B,C);

4) transferState(B, B‘)

5) link(A, B‘)

6) link(B‘, C)

7) remove(B)

However, how to deal with the interactions among
components during a dynamic reconfiguration is a
challenge. The interaction among the components must
be able to be controlled, for instance, block and rebuild
the interactions. After a component is reconfigured, the
LCM notifies its client components to update the
reference to this component. To monitor and treat the
interactions among components during a dynamic
reconfiguration, we have developed a middleware
(Chen, 2002) that supports the dynamic reconfiguration.

Using a dependency management (Chen and Simons,
2002) we can exactly decide which components and
which communication activities of those components
are affected and therefore, only those communication
activities must be blocked during a reconfiguration.
This mechanism leads to a minimal interruption during
the reconfiguration and at the same time, guarantees the
consistency of the system.

3.3 Update strategies

There are two kinds of dynamic updates. One is the
update of a component during its execution. This kind
of update causes high costs, since the execution of the
concerned components has to be broken during the
update. Despite of the high costs, the update of a
component during its execution is necessary, if:

• it is necessary to replace a defective component
during its execution;

• a new service is inserted in system, which requires
new versions of other components;

• a component has several implementations of
different suppliers. Each implementation has own
advantages. In a certain case, the best
implementation is applied;

• user wishes lead to an update.

The other kind is the update of a component also at
runtime, but not during its execution. Thus this kind of
update leads to the same low costs compared to the
static update.

There are different update strategies. The update
strategies decide when and which components should
be updated. There are two extremes in the update
strategies (see Figure 4).

to update as few
components as possible

to update as many
components as possible

Other update strategies

Fig. 4. Update strategies

One extreme is “to update as few components as
possible”. In this case a component is updated, just
when it is defective or it prohibits the system operation.
We call this kind of update lazy update. The other
extreme is “to update as many components as possible”.
In this case the components are updated, if they have
new versions. This update strategy is called eager
update here. With the consideration of the update costs,
we use a flexible update strategy in our component
system. During checking a configuration for an update,
the configuration manager registers all components in
the system which have a new version. Nevertheless, an
update is not executed immediately, but:

• If the components that should be updated are
running in the system, the strategy Lazy Update is
applied.

• If the components that should be updated are still
in the system, the strategy Eager Update is applied.

By the use of the flexible update strategy, we can
update a component at runtime with as small cost as
possible.

4 OPTIMIZING THE SYSTEM AT RUNTIME

With dynamic reconfiguration the performance of the
component system can be improved by usage of
dynamic load balancing, where the components can be
moved to different places within a vehicle and into the
infrastructure.

Before the execution of one component, the LCM looks
for a suitable place for it with the consideration of load
sharing. If the load of a computer exceeds its load
threshold , then the agent informs the LCM and the
LCM assigns no more new components to this
computer. If the load of a computer exceeds its
overload threshold, then the agent informs the LCM
and the LCM shifts a component of this computer to
another one. To relocate a component, the LCM
chooses an underloaded computer and takes the costs of
the communication between a relocated comp onent and
other components into consideration.

Costs of load balancing consist of the communication
costs for collecting the state information of computers,
the costs of component migration and process costs for
execution of the load balancing algorithm. These costs
must be taken into account, when the LCM makes
decision, if a component should be relocated or not.

The components can be migrated between the vehicle
and the infrastructure, in order to improve the
performance and to reduce the communication costs.
By deployment of components between the vehicle and
the infrastructure the question is which components
shall run in the infrastructure.

The aspects which should be taken into consideration
when designing the strategies for the deployment of
components between the vehicle and the infrastructure
are the following:

• All components can be executed in the vehicle and
thus the communication with the infrastructure is
not necessary.

Ø This is very advantageous for the user,
however, the case is not very usual.

• If all components are executed in the vehicle, the
performance is low.

Ø The user should migrate the components to the
infrastructure, in order to benefit from the high
computing capacity there and to improve the
system performance.

Ø Communication with the infrastructure is
necessary.

• The user wants to have current useful information
from the infrastructure, such as traffic data or other
useful data.

Ø Communication with the infrastructure is
profitable.

• An application must constantly communicate with
the infrastructure. For instance, a diagnose
application needs the support of a large database in
the infrastructure.

Ø The application should be migrated to the
infrastructure.

Ø If a component is migrated to the infrastructure
and executed there, it does not mean that the
communication between the vehicle and the
infrastructure must always exist. The
mechanism „disconnected operation“ (Noble,
1998) can be used to reduce the communication
costs.

• A component in the vehicle must intensively
communicate with an application that is executed
in the infrastructure.

Ø The component should be migrated to the
infrastructure or its communication partner
should be migrated to the vehicle.

If we use a suitable component deployment strategy, we
can improve the system performance, and at the same
time, reduce the costs of communication between a
vehicle and the infrastructure.

5 CONCLUSIONS

This paper presented a dynamic reconfiguration of a
distributed component system in vehicles. Such a
reconfiguration guarantees the system consistency and
minimizes the interruption to the system execution
during the reconfiguration. Furthermore, we proposed
update strategies for updating components of the
system and component deployment strategies for
optimizing the distributed system. By the use of
dynamic reconfiguration, the performance of the whole
component system can be improved and the costs of
communication between a vehicle and the infrastructure
can be reduced.

Based on the implemented basic mechanisms, the
dynamically reconfigurable component system should
be further researched and developed. First of all, the
focus of the further research is the adaptation of
components, where a context model should be
introduced. The context influences the semantics of the
information or the semantics of processing the
information in some way (Heuer and Lubinski, 1996).
Since the component system of a vehicle is located in a
mobile and constantly changing environment, the
characteristics of the component system that originate
from mobility must be further investigated.

ACKNOWLEDGMENTS

The author would like to thank Viktor Friesen for his
valuable comments and proofreads.

REFERENCES

Chen, X. and Stümpfle, M. (2001). Dynamic
Configuration Management of a Telematics System
for Vehicles, 1st IFAC Conference on Telematics
Applications in Automation and Robotics,
Weingarten, Germany.

Chen, X. (2002). Extending RMI to Support Dynamic
Reconfiguration of Distributed Systems, accepted
by the 22nd International Conference on Distributed
Computing Systems (ICDCS 2002), Vienna,
Austria.

Chen, X. and Simons, M. (2002). A Component
Framework for Dynamic Reconfiguration of
Distributed Systems, accepted by the First
IFIP/ACM Working Conference on Component
Deployment (CD 2002), Berlin, Germany.

Denning, A. (1997). ActiveX Controls Inside out,
Microsoft Press, second edition.

Heuer, A. and Lubinski, A. (1996). Mobile Information
Access Challenges and Possible Solutions,
http://www.informatik.uni-rostock.de/~lubinski
/artikel, In: Proc. IMC'96, Rostock, Germany.

Kramer, J. and Magee, J. (1990). The Evolving
Philosophers Problem: Dynamic Change
Management. IEEE Transactions on Software
Engineering, SE-16, 11, pages 1293-1306.

Noble, B. (1998). Mobile Data Access, PhD thesis,
School of Computer Science, Carnegie Mellon
University.

OMG (1997). CORBA Component Model RFP, Object
Management Group, http://www.omg.org

Stümpfle, M., Hermes, F., Friesen, V., Müller, F.,
Chen, X., Bachhofer, S., Jiang, D., Ly, K., Gauger,
G. and Stiess, P. (2000). COSIMA – A Component
System Information and Management Architecture,
IEEE Intelligent Vehicles Symp osium, Dearborn,
MI, USA.

Sun Microsystems (2000). Enterprise JavaBeans,
http://java.sun.com/products/ejb/index.html

