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A NEW VARIABLE STRUCTURE PID-CONTROLLER FOR ROBOT MANIPULATORS WITH
PARAMETER PERTURBATIONS:AN AUGMENTED SLIDING SURFACE APPROACH
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Abstract: In this paper a new variable structure PID-controller is designed for stabilization
of robot manipulator systems with parameter perturbations. The sufficient conditions for
the existence of a sliding mode is considered. The techniques of matrix norm inequalities
are used to cope with robustness issues. Some effective parameter-independent conditions
are developed in a concise manner for the global asymptotic stability of the multivariable
system using LMI’s techniques and principle of Rayleigh's min/max matrix eigenvalue
inequality. The stability conditions are derived by using the Lyapunov full quadratic form
for the first time. The parameter perturbations of the robot motion are evaluated by
introducing Frobenius norm. Simulation results have shown that the control performance
of the robot system is satisfactory. Copyright © 2002 IFAC
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1. INTRODUCTION

In recent years, the variable structure principles are
frequently used for the stabilization of robot motion
(Hung, 1993), (Fu, 1987). Among some of the
successful variable structure control applications,
Bailey and Arapostathis developed a control law that
ensures the stability of the intersection of the
discontinuity surfaces to reduce the complexity of
the design. In dealing with the set-point regulation
problem of manipulators, in (Yeung, 1988), a new
control algorithm is proposed which successfully
utilizes the advantage of symmetric positive
definiteness of the inertia matrix. The control law is
successful in overcoming the strong dynamic
coupling problem. In (Su, 1999) a model-based
adaptive variable structure control scheme is
successfully introduced for underactuated robots.
The uncertainty bounds that are used depend only on
the inertia parameters of the system. In (Chern,
1992), an integral variable structure control for robot
manipulators is presented to achieve accurate servo-
tracking in the presence of load variations, parameter
variations and nonlinear dynamics. An integral

sliding mode control of robot manipulators is
considered by (Utkin, 1999). Integral sliding mode
control approach for guided missile system is
considered by (Jafarov, 2001). A survey paper
(Sage, 1999) presents an overview of six different
robust control schemes including current robot state
coordinates for robot manipulators. Discontinuous
min-max control term, combined with the linear
control term or relay-saturation type control is used
in robot control systems. In this paper a new PID-
variable structure controller is designed for
stabilization of robot manipulators with parameter
perturbations.

2. DYNAMICS OF THE ROBOT MANIPULATOR

t
Introducing w(¢) = jﬁ(t)dt , let an n-link manipulator
0
be considered whose augmented dynamics is given
by (Fu, 1987), (Bailey, 1987):


mailto:cafer@itu.edu.tr
mailto:istef@boun.edu.tr
mailto:aparlakci@bilgi.edu.tr

=0
0=0 (1)
& =M(O)- BO.6)0 - £(6) +u]
where
74 : nx1 angular position integral vector
0 : mx1 angular position vector
0] : nx1 angular velocity vector
M) nxn positive definite inertia matrix
B0, 9) nxn coriolis and centripetal force matrix
f (9) : nx1 joint friction vector
u(t) : nx1 controlinput vector

The state vector of the dynamics is given
as, x = [l// 17 a)]T . Let w,(t), 6,(t)and w,(t)
denote the reference position integral, position and

velocity. Then the deviation of the actual position
integral, position and velocity from the reference

counterparts are denoted by =y -y, , 0 =6- 6,,
® = w-w,, respectively. The position control case
Wa()=0,t,;0,(t) = 0,50,() =0
where #, is the settling time of the control process.

is considered:

The goal is to select a control law such that the
system (1) will be globally asymptotically stable.

3. PID-CONTROL LAW

To achive this goal, the PID-variable structure
control law is formed as follows

u(t) =u, )~ K, |00 + K [ 0] + K 0 Fign(sto)

@
feedback gain

where K ,K,,K, are scalar

parameters to be selected, ||(-)||: ()" () is the
Euclidean norm, T is the transpose of vector or
matrix, sign(s(t)):[sign(sl(t)),...,sign(sn(t))]Tis the
signum function vector and u,,(¢) is the equivalent

control. Let an augmented sliding surface is defined

as follows
s=Cy+C0 +@ 3)
where C,,C, are design matrices. In order to

investigate how the design matrices can be chosen to
establish a stable sliding surface, let s(t)=0 be

represented in form as follows:

é(f) _ [O”X” Lo }{20)} with n as the degree of
wey| -G —G )

the robot arm

state-space

system. From the state-space

0 1
representation, it is inferred that { e e } must
I U )
have stable eigenvalues. Differentiating the sliding
surface along the state trajectory of system (1), (2),
the equivalent control is derived using the equivalent
method procedure:

S=CU+CO+d=0=ut)=u,() 4)

Substituting (1) into (4) and rewriting (4) by using
the given desired trajectory of @,(¢) =0 and
@,t)=0, (5)
§=C,0+Ca+ M (O)-BO,0)+ f©)+u,, ()]
Then the equivalent control including the accessible
manipulator parameters is obtained as follows,

u,, (t) = B(0,0)0+ f ()~ M(0)C,0 - M(6)C,é (6)
After selecting the sliding mode control (2) with
sliding surface (3) and determining the corresponding
equivalent control which can be easily implemented
by the digital microprocessors, the next step is to
choose the design parameters, such that the sufficient
conditions for the existence of a multivariable sliding

condition are satisfied and the closed-loop sliding
system will be globally asymptotically stable.

4. SLIDING CONDITIONS

Here, the sufficient conditions for the existence of
the sliding mode in the robot-manipulator system is
analyzed.

Lemma 1: The stable sliding mode on s(2)=0 always
exists in uncertain system (1) driven by variable
structure controller (2), if the following conditions
hold

K, = L@, K, = [C], K, K, =[], K,
(7)
where ||(~)||F =/trace((")" (-)) is the Frobenius norm

and n is the degree of the robot arm system.
Proof: Let a Lyapunov function be chosen as

V(t,60,0) :%[s(t)Tsign(s(t))]z ®)

Time derivative of V' along the state trajectory of
system (1), (2), (3), and (6) is given by

v =[5 sign(s(e) [sign(s)] ()

= [soy" sign(son[cy + .8 + M7 @) B©.6)

- fO)+ BO.6) + f(0) - M©O)Cy - MO, |

- [Kp g (z)” + K| + Kd||a~)(t)||][vl’l(H)Sign(s(t))]

= sy sign(s(op Jsens T i, |6 0

+ K o)+ K || @)sign(so) )
Note that, if K,,K;,K,>0 then V<0 because

M~ (0)>0. But the 7-reaching condition can be

used (Hung et al., 1993), (Asada, 1986). For the
multivariable case 7 -reaching condition is given by

v =[50 sign(s0) [sign(s)]" 56 < —nfs(o)|’
<K, [s)" sign(s(e) [sign(s@)] .|, |70

+lel

~ - K. -
|l -lcl, ol
d



K ~
+ (K—" AR j”e (t)H}M 1 @)sign(s(6)) < —1s)|’
d
(10)
Choosing the gain parameters K, K;,and K, such

that Ki2||cl||FKd and Kp2||C2||FKd and noticing
€.l ol+lc.,

s(1)" sign(s(1) s (1)

arranged as follows,
ign(s(e)] [- 1K 2,0, (M (@) + ign(s@)s(o) <0
(11)

0 () +@@) sty and

, the inequality in (10) can be

Therefore, the inequality in (11) implies
nkK nkK
- d <n- d <0 (12)
T 1@~ max|M @],

n

If conditions (7) are satisfied, then sliding inequality
(11) reduces to V<0 for all s(r)=0 and we

conclude that the sliding motion is always generated
on the switching surface s(¢) = 0.

The global asymptotic stability with respect to the
state coordinates of the robot-manipulator system
will be analyzed now.

5. STABILIZATION OF THE CLOSED-LOOP
SYSTEM

The following theorem summarizes the stability
results, which are based on full quadratic Lyapunov
function method with LMI's techniques.
Theorem 1: Suppose that the conditions (7) of
Lemma 1 hold, then the uncertain multi-input system
(1) driven by discontinuous sliding mode controller
(2), (3), (6) is globally asymptotically stable, if the
following conditions hold
2
max| 7,
R,>0, minA(R)>—2——
0.0 min A(R;)
0.6

2
max"P "
1 0.0 I IF

>
PoAin (C1)

K, (13)

max| [
min A(R,) ——%¢
6,0

min A(Ry)

T e N e O

K z|C], K. K, =[C)],K,
where
&3, 53, P55 are appropriate scalars to be chosen,

(D13 :¢]3In><n’ ’(D23 :¢23In><n’ CD33 :¢33In><n’
¢0 :¢123 +¢223 +¢3233C1 :%((DIT}(D”
+(D§3CD1T2 +(D3T3q)1T3lC2 :%(q){s(blz

1
+q)§3q)22 +q)3T3(D§3)Pl =E(cD1Tqu)H
+q)12McD1TZ +®13M(D1T3 _¢0C1TMC1)

— ! M, + D, MO, + D MDT )CC,

R =PC/'C, +CI () P+ L g, clMC,
+¢,C/MC, —D] MD , - D, MD, — D ,MD,,
—OLMOT, — D MO, — D, MD, )

+lelery (@ M, + D, M,

+ O MOL)CTC, — L (@] MD,, + DL M,

+ O, MOL) P, = O MO, + D, MD ., )

+® L MDY —§,CTMC, )+ L (4,CTMC, - 0T M,
— O, MO, —d M )C!

R = PIC;' +(CT) ' B+ L (CT) (@] M, + @, M,
+ D MOT, — g, CTMC, )

assuming £, is nonsingular,

P = (@M, +DLMD,, + D, MDL —CTMC,)
+ LTy (g, CTMC, - T M, - D, MDY,

@, MO | - BTG - CI () ' P+ REP,
Ry=R,-P (B")Y'RR'R+P' P 'P+P (B')"P,

Proof: Let a positive definite full quadratic form of
Lyapunov function candidate be introduced as

~T ~

% %
~ 2~ _ | Tarr n
[0
where
o, D, O, I 00
0=|®l, ®, O, |M©O)=M@®0 1 0
o, ol o, 0 0 I

Q is a full rank design matrix and I is an nxn identity
matrix. Taking the time derivative of (14) along the
trajectory of (1), (2), (3), (6), and choosing C, and

C, as
Cl = (CDIZMCDB + cD;-ZsMcDZ} + CD;MCDB l(chTZsMchl
+ 0L MO, + DT MDT,)
-1
G = ((DlTsM(Dls + q);M(Dzs + (D3T3M(D33) ((I)1T3M(I)12
+OLMD,, + Ol MO,
Dy =01, Dy =01, 03 =¢,[,0;, Dy, Oy are
scalars and remembering from sliding conditions that

K, K, andK, are chosen as K,.2||C,||FKd and

p?

K, 2||C2||FK . and using the triangular inequality

191+ ]

where  s(7)” sign(s(t))>||s(t)||. After rearrangings,

7 H + @] Hcln,; +C,0 + 5” = s

finally it is obtained

V< [L 0] Mo, + @ 010], + 0, ML) -4, CTK,C J7
+ 7 [0 Mo, + D, M7, + @ MO, )+ (0] 21,
T+ DM, + D MDT, ) 24,CT K ,C, — 4,CTMC, P



+ i [0f M, + @ M, + D ML)+ (@7 M,

+ D MD,, + D MD, ) 24,CT K, — $,CTMC, o

+ DLN®D,, + Dy MO - 4,CTK,C, — h,CIMC, P

+ 8" [0 M, + D MO, + D MO )+ (T, M,

+ OLMD,, + Dy MO )+ (@, MO, + DTN D,

+ Dy MD,, ) 24,CTK, — 4,CIMC, — 4,CTM o

+ " @M, + DLMD,, + D MD, )+ (@] M
+ DLMD,, + DLMD, ) - 4K, — 4, MC, 5

T ~
‘/: H, H, Hj; ‘/:

=—0 Hsz H,, Hy|0 (15)
o||HL, H, H,|®

where

Hy, =¢,CIK,C,— (@ M, + D, M,

L@ MOL)=K, . H,y =K, C;'C,

+ @l M, + @, D]+ @ MO O C,

+ L g clMC, - (@] MD,, + D, MDT, + D MO,
~ ol M@, +® LMD, +® ML) H, = K, C;
+ ol Mo, + 0 M, + @, VDT, o)

+ g, CcTMC, —@ \ MD,, —,MD , — D, MO, )
-3$,C/ M, H,, =Cy(C/)'K,,C/'C,

Ll (@M, + @ LMD, + @ MO JCrC,

+§(¢0C2TMC1 +¢,C/MC, — D[ MD,, — D, MD,,

— D, MD, — DL MOT, — D MO, — D, MD, )
oL Mo, + LMD, + D, Ml )

Hyy =CI(C) K, ¢+ 1l (cl) (@] Mo,

+O LMD, +® ML O+ (C] MC, -0l Mo,
—OL MO, — D, MO )~ g, CI M,

Hy =(C) 'K+ (el (@] M, + @, Mo,
+(D13M(D1T3 . _%¢0M

Now the next step is to choose K,that makes H

nonnegative. Since H is a partioned matrix, a
proposition given in (Parlakci, et al., 2001) will be
used to search for positive definiteness.

The following inqualities are set up to choose
appropriate K,'s that make H positive definite,

H, >0, H,-HLHH,>0 (16)
H33 _H1T3HGIH13 _(H2T3 _le;Hﬂlletzz

_ -1 _
_HszHanlz) (st _H1T2H111H13)>0 (17)

The inequalities in (16) and (17) are reduced to
Auin(K ) >0, R~ P'K P >0 (18)

where B, and R, are as given in (13).

Establishing conditions such that R, >0 is satisfied

and K, >0 from the first condition,

_ _ 2
Rl - IDITKdlll)l > ﬂ'min (Rl) - ﬂ’max (I<d1l ) HQI%X"E"F (19)

Therefore, the stability condition given in (16) is
converted to

2
max| P
Ao (K )>—20—— (20)
ﬂ‘min (Rl)
Finally, let us now consider the stability condition
given in (17),
Hy; — H1T3H1_11H13 =R, - PzTK(;llpz

where A, and R, are as given in (13).

€2y

Suggesting a change of variable results in as follows
Hy, _HszHﬁlle =R, _ETK;:E =K (22)
then assuming £ is nonsingular
Hy; — H1T3H1_11H13 =R, - PzT (ET)_IRlpl_le
+B(B')'K,,B'P, (23)

Now, the inequality in (17) is reduced to

R = P/K;\P>0 (24)
Similarly as in the second condition, establishing
conditions such that R, >0 is satisfied and since

K,, >0 from the second condition,

Ry = PIK (3P, > Aoy (Ry) = A (K ) max||P|

(25)

Hence, the last stability condition is obtained as
follows

2
max|P
0.6 F

Aunin (R5)
Note that each condition when satisfied, guarantees
to satisfy the former, in other words it is only needed
to satisfy the third condition without worrying about
the first and second conditions.

Since there exist a nonlinear relationship between

K, and K,,, we can express the stability condition

Amin (K 42) > (26)

in terms of K,

PN 7.
min( d2) min( 1) ﬂ,min (Kdl) ﬂ,min (R3)
27
max|P [
Assuming A_ (R)>-2%—— holds, it can be
ﬂ’min (R3)
implied that
K > 72 K, = L0 + o]
o Jmax|ir .0 > Al
BlF)"p% >E max||P3||
/1min (Rl) e
ﬂ“min (RS)

(28)
In view of (32) if conditions in (13) are satisfied,
then (19) reduces to

V(6,d) < {q H{?} <0

@ (4]

(29)

Hence Theoreml is proved.



6. SIMULATION RESULTS

For simulation purposes the problem of controlling a
two-link SCARA type manipulator shown in Fig.1
can be considered. Denoting 1//2[(//1 1//2] where

w,=[0dt, w,=[6dt, 6=[6, 6,] and
u:[ul uz] the matrices, M (), B(H,é) and

vector f (9) can be defined as below,

M@©®) = |:P1 +2p;cos(8,) p,+ p, COS(HZ):|
D, + p;cos(60,) P,
B(6,0)=| é’ng .Sin(l92) — (6, +0,) p;sin(6,)
6, p,sin(6,) 0
76y =| K+ Kasen(@)
K0, + K, sgn(8,)

where the inertial parameters are set as p,, p,, p; -

For a numerical example, we the mass, inertia and
friction parameters are selected appropriately to yield

p, =32,p,=0.11,p,=0.17,K, =1,K, =10,c=1s"
The reference trajectory for the position control
problem is chosen as, 6,(¢)=6,,0,(t)=0,t>0
where 6, =0.7199rad . Moreover, the initial state
of the manipulator is set to be as
6,(0)=0.0005rad, 6,(0)=0.05rad, 91 (0)=0rads™

and 6’2 (0)=0rads™. The required min/max values

of the inertia matrice are computed as follows:
min A(M (6)) = 0.0905 ,mgax”M(H)"F =3.5229, and

%X”M(e, é)HF =0.0655max(6,)” .

Fig. 2 shows the position and velocity errors which
perfectly converge to zero. Furthermore, the rate of
convergence is good which is an important issue in
some applications. For a comparison it can be said
that the convergence rates of the system trajectories
to the switching surfaces are less than the
stabilization rates of the sliding manifolds. Fig. 3
represents the switching surfaces which converge
perfectly and smoothly as well. Finally looking at
Fig. 4 which represents the applied control inputs, it
is observed that the control tends to go to zero after
the sliding mode occurs and the system becomes
stable. There exists a chattering in the applied
control. If required, saturation function can be used
in the control law instead of pure signum function.
The simulations given in Fig. 5,6 have shown that by
utilizing a saturation function the performance
continues to be good.

8. CONCLUSION

A new variable structure PID control law is
successfully designed for the stabilization of robot
manipulators with parameter perturbations by using
the Lyapunov full quadratic form function. The
compact form of the sliding and stability results are
elaborately derived by using LMI’s techniques and
Rayleigh's principle of min/max eigenvalues. By this
way, the robustness and stability of the control law is

ensured in large. The proposed design procedure is
applied to the control of a two-link robot arm and
simulations are performed. The results of the
simulations clearly indicate that the practical results
confirm the theoretical conclusions.
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Figure 4. Control inputs applied on the
joints

Fig. 1. Joint positions of the manipulator
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Figure 5. Positional and velocity errors on the
joints with saturation in the control law

Figure 2. Positional and velocity errors on the joints
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Figure 6. Switching surfaces and applied control
inputs for the joints with saturation in the control law

Figure 3. The switching surfaces and applied control

inputs for the joints



