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Abstract: In this paper a new variable structure PID-controller is designed for stabilization 
of robot manipulator systems with parameter perturbations. The sufficient conditions for 
the existence of a sliding mode is considered. The techniques of matrix norm inequalities 
are used to cope with robustness issues. Some effective parameter-independent conditions 
are developed in a concise manner for the global asymptotic stability of the multivariable 
system using LMI’s techniques and principle of Rayleigh's min/max matrix eigenvalue 
inequality. The stability conditions are derived by using the Lyapunov full quadratic form 
for the first time. The parameter perturbations of the robot motion are evaluated by 
introducing Frobenius norm. Simulation results have shown that the control performance 
of the robot system is satisfactory.  Copyright © 2002 IFAC 
 
Keywords: PID variable structure control, robot control, sliding mode, Lyapunov full 
quadratic form. 

  
 

 
1. INTRODUCTION 

 
In recent years, the variable structure principles are 
frequently used for the stabilization of robot motion 
(Hung, 1993), (Fu, 1987). Among some of the 
successful variable structure control applications, 
Bailey and Arapostathis developed a control law that 
ensures the stability of the intersection of the 
discontinuity surfaces to reduce the complexity of 
the design. In dealing with the set-point regulation 
problem of manipulators, in (Yeung, 1988), a new 
control algorithm is proposed which successfully 
utilizes the advantage of symmetric positive 
definiteness of the inertia matrix. The control law is 
successful in overcoming the strong dynamic 
coupling problem. In (Su, 1999) a model-based 
adaptive variable structure control scheme is 
successfully introduced for underactuated robots. 
The uncertainty bounds that are used depend only on 
the inertia parameters of the system. In (Chern, 
1992), an integral variable structure control for robot 
manipulators is presented to achieve accurate servo-
tracking in the presence of load variations, parameter 
variations and nonlinear dynamics. An integral 

sliding mode control of robot manipulators is 
considered by (Utkin, 1999). Integral sliding mode 
control approach for guided missile system is 
considered by (Jafarov, 2001).  A survey paper 
(Sage, 1999) presents an overview of six different 
robust control schemes including current robot state 
coordinates for robot manipulators. Discontinuous 
min-max control term, combined with the linear 
control term or relay-saturation type control is used 
in robot control systems. In this paper a new PID- 
variable structure controller is designed for 
stabilization of robot manipulators with parameter 
perturbations. 
 
 
2. DYNAMICS OF THE ROBOT MANIPULATOR 

 

Introducing , let an n-link manipulator 

be considered whose augmented dynamics is given 
by (Fu, 1987), (Bailey, 1987): 

dttt
t

∫=
0

)()( θψ

     

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain

mailto:cafer@itu.edu.tr
mailto:istef@boun.edu.tr
mailto:aparlakci@bilgi.edu.tr


[ ]ufBM +−−=

=

=

− )(),()(1 θθθθθω

ωθ

θψ

&&&&

&

&

 (1) 

where 

orinput vect control1:)(
ectorfriction vjoint 1:)(

matrix force lcentripeta and coriolis:),(
matrix inertia definite positive:)(

torlocity vecangular ve1:
ectorposition vangular 1:

 vectorintegralposition angular 1:
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The state vector of the dynamics is given 
as, . Let ψ , )(tdθ and )(tdω  
denote the reference position integral, position and 
velocity. Then the deviation of the actual position 
integral, position and velocity from the reference 

counterparts are denoted by dψψψ −=~ , , dθθθ −=
~

dωωω −=~ , respectively. The position control case 
is considered: sdd tt θψ =)( 0)( ;)(; == tt ddd ωθθ  
where  is the settling time of the control process. 
The goal is to select a control law such that the 
system (1) will be globally asymptotically stable. 
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3. PID-CONTROL LAW 
 

To achive this goal, the PID-variable structure 
control law is formed as follows 

[ ] ))((sign)(~)(~)(~)()( tstKtKtKtutu dipeq ωψθ ++−=  

(2) 
where  are scalar feedback gain 

parameters to be selected, 

dip KKK  , ,
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 is the 
Euclidean norm, T is the transpose of vector or 
matrix, is the 
signum function vector and u is the equivalent 
control. Let an augmented sliding surface is defined 
as follows 

Tts ((sign 1ts ))((sign =

ωθψ ~~~
21 ++= CCs  (3) 

where  are design matrices. In order to 
investigate how the design matrices can be chosen to 
establish a stable sliding surface, let 

21  , CC

0)( =ts&  be 
represented in state-space form as follows: 
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 with n as the degree of 

the robot arm system. From the state-space 

representation, it is inferred that  must 

have stable eigenvalues. Differentiating the sliding 
surface along the state trajectory of system (1), (2), 
the equivalent control is derived using the equivalent 
method procedure: 
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Substituting (1) into (4) and rewriting (4) by using 
the given desired trajectory of 0)( =tdω  and 

0)( =tdω& , 

[ ])()()( (),~~ 1
2 tuBMC eq+−+ − θω1Cs += θ& f+ θθθ &&  

(5)

Then the equivalent control including the accessible 
manipulator parameters is obtained as follows, 

ωθθθθθθθ ~)(~)()(),()( 21 CMCMfBtueq −−+= &&&  (6)
After selecting the sliding mode control (2) with 
sliding surface (3) and determining the corresponding 
equivalent control which can be easily implemented 
by the digital microprocessors, the next step is to 
choose the design parameters, such that the sufficient 
conditions for the existence of a multivariable sliding 
condition are satisfied and the closed-loop sliding 
system will be globally asymptotically stable. 
 
 

4. SLIDING CONDITIONS 
 

Here, the sufficient conditions for the existence of 
the sliding mode in the robot-manipulator system is 
analyzed. 
Lemma 1: The stable sliding mode on s(t)=0 always 
exists in uncertain system (1) driven by variable 
structure controller (2), if the following conditions 
hold 
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where ))()(trace()( ⋅⋅=⋅ T
F

 is the Frobenius norm 
and n is the degree of the robot arm system. 
Proof: Let a Lyapunov function be chosen as 

[ ]2))((sign)(),,(
2

1 tststV T=ωθ  (8) 

Time derivative of V  along the state trajectory of 
system (1), (2), (3), and (6) is given by  
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Note that, if  then V  because 

. But the 

0 , , >dip KKK 0<&

0)(1 >− θM η -reaching condition can be 
used (Hung et al., 1993), (Asada, 1986). For the 
multivariable case η -reaching condition is given by 
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Choosing the gain parameters such 

that 

    and , , dip KKK

dFi KCK 1≥  and dFp KCK 2≥  and noticing 
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arranged as follows, 
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If conditions (7) are satisfied, then sliding inequality 
(11) reduces to V  for all  and we 
conclude that the sliding motion is always generated 
on the switching surface .  

0<& 0)( ≠ts

0)( =ts
The global asymptotic stability with respect to the 
state coordinates of the robot-manipulator system 
will be analyzed now. 
 
 

5. STABILIZATION OF THE CLOSED-LOOP 
SYSTEM 

 
The following theorem summarizes the stability 
results, which are based on full quadratic Lyapunov 
function method with LMI's techniques. 
Theorem 1: Suppose that the conditions (7) of 
Lemma 1 hold, then the uncertain multi-input system 
(1) driven by discontinuous sliding mode controller 
(2), (3), (6) is globally asymptotically stable, if the 
following conditions hold 
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Proof: Let a positive definite full quadratic form of 
Lyapunov function candidate be introduced as 
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scalars and remembering from sliding conditions that 
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The inequalities in (16) and (17) are reduced to 
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Hence, the last stability condition is obtained as 
follows 
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(28) 
In view of (32) if conditions in (13) are satisfied, 
then (19) reduces to 
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Hence Theorem1 is proved. 

     



6. SIMULATION RESULTS 
 

For simulation purposes the problem of controlling a 
two-link SCARA type manipulator shown in Fig.1 
can be considered. Denoting [ 21 ]ψψψ =

[ 21

 where 
, , ∫= dt11 θψ ∫= dt22 θψ ]θθθ =

)(

 and 

 the matrices, [ 21 uuu = ] θM ,( θθ &B,  and 

vector  can be defined as below, 
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where the inertial parameters are set as . 
For a numerical example, we the mass, inertia and 
friction parameters are selected appropriately to yield 

321 ,, ppp

11,10,1,17.0,11.0,2.3 21321
−====== scKKppp

0,0)(,)( 21 >
The reference trajectory for the position control 
problem is chosen as, == ttt d θθθ  
where  rad 7199.0=dθ . Moreover, the initial state 
of the manipulator is set to be as 

and . The required min/max values 
of the inertia matrice are computed as follows: 

-1
121 s rad 0)0(   ,rad 05.0)0(   rad, 0005.0)0( === θθθ &
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&&&
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Fig. 2 shows the position and velocity errors which 
perfectly converge to zero. Furthermore, the rate of 
convergence is good which is an important issue in 
some applications. For a comparison it can be said 
that the convergence rates of the system trajectories 
to the switching surfaces are less than the 
stabilization rates of the sliding manifolds. Fig. 3 
represents the switching surfaces which converge 
perfectly and smoothly as well. Finally looking at 
Fig. 4 which represents the applied control inputs, it 
is observed that the control tends to go to zero after 
the sliding mode occurs and the system becomes 
stable. There exists a chattering in the applied 
control. If required, saturation function can be used 
in the control law instead of pure signum function. 
The simulations given in Fig. 5,6 have shown that by 
utilizing a saturation function the performance 
continues to be good. 
 
 

8. CONCLUSION 
 

A new variable structure PID control law is 
successfully designed for the stabilization of robot 
manipulators with parameter perturbations by using 
the Lyapunov full quadratic form function. The 
compact form of the sliding and stability results are 
elaborately derived by using LMI’s techniques and 
Rayleigh's principle of min/max eigenvalues. By this 
way, the robustness and stability of the control law is 

ensured in large. The proposed design procedure is 
applied to the control of a two-link robot arm and 
simulations are performed. The results of the 
simulations clearly indicate that the practical results 
confirm the theoretical conclusions. 
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Fig. 1. Joint positions of the manipulator 
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Figure 4. Control inputs applied on the 
joints 

Figure 5. Positional and velocity errors on the 
joints with saturation in the control law 

Figure 2. Positional and velocity errors on the joints 

Figure 6. Switching surfaces and applied control 
inputs for the joints with saturation in the control law

Figure 3. The switching surfaces and applied control
inputs for the joints 

     


