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Abstract: For a non-square transfer matrix with zeros on the extended imaginary axis
including infinity, this paper discusses how to dilate (augment) such transfer matrix
to a square one without adding extra zeros on the extended imaginary axis. The
state-space construction for the dilation is proposed by using the finite and infinite
eigenstructures of the transfer matrix. Copyright c© 2002 IFAC
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1. INTRODUCTION

For multivariable control systems, we usually en-
counter the cases where the number of the in-
puts is not equal to that of outputs. The analysis
and design of non-square systems, for example,
the factorization or the inversion of non-square
transfer systems, are complicated than those of
square ones. The dilation (augmentation) of a non-
square matrix to a square one preserving some
properties is often used. For example, the dila-
tion of the 4-block H∞ control problem to 2-
block one or 1-block one has been adopted in
(Glover et al., 1991), (Green and Limebeer, 1995),
(Kimura, 1995), (Kimura, 1996).

In the above papers, the dilation is constructed
under the assumption that the non-square trans-
fer matrices do not have any zeros on the ex-
tended imaginary axis which includes the infinity
(denoted as Ωe here). For a non-square transfer
matrix with Ωe zeros, this paper tries to discuss
a special dilation of it without adding extra Ωe

zeros. The reason for such dilation is that many
control criteria require the assumptions of non-
existence of Ωe zeros. The offending Ωe zeros

make the analysis and design method complicated,
for example, the H∞ control problem with jω-
axis zeros (Hara et al., 1992), (Stoorvogel, 1991),
(Scherer, 1992), (Xin et al., 2000).

Let a stabilizable and detectable realization of a
transfer matrix G(s) with full normal rank be

G(s) =
[

A B
C D

]
, A ∈ Rn×n, D ∈ Rm×r, (1)

where D is not full rank and/or G(s) has finite
jω-axis zeros.

We consider the case m > r in this paper. The
dual case m < r can be treated similarly by
considering GT (s).

Consider the following dilation of G(s)

Ḡ(s) =
[
G(s) G′(s)

]
=

[
A B B′

C D D′

]
, (2)

where

B̄ :=
[
B B′ ] ∈ Rn×m,

D̄ :=
[
D D′ ] ∈ Rm×m.
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It is obvious that all the Ωe zeros of G(s) are those
of Ḡ(s). The reverse statement is not always true.
The dilation problem in this paper is to find an
appropriate dilation of G(s) as given in (2), if it
exists, such that G(s) and Ḡ(s) have the same Ωe

zeros.

On the other hand, it often needs to find a proper
annihilator with full normal rank m − r for G(s)
in (1) (Kimura et al., 1991), i.e. find G⊥(s) of size
(m − r) × m with full normal rank m − r such
that G⊥(s)G(s) = 0. However, if D is not full
column rank, G⊥(s) is usually non-proper and is
expressed by descriptor form. As an application of
the solution to the dilation problem in this paper,
we shall construct a unitary annihilator for G(s),
i.e. construct G⊥(s) such that G⊥(s) is proper
and satisfies G⊥(s)(G⊥(−s))T = Im−r. Note that
such unitary annihilator plays an important role
in working out solutions of H∞ control problems
(Kimura et al., 1991), and the problem of con-
struction of such annihilator for G(s) with infinite
and finite imaginary axis zeros has not been solved
yet.

This paper is organized as follows: some prelim-
inary results about the infinite and finite eigen-
structure of G(s) are given in Section 2. The dila-
tion is designed in Section 3. The unitary annihila-
tor of G(s) is presented in Section 4. A numerical
example is given in Section 5. Conclusion is made
in Section 6.

Notations: In this paper, the complex plane and
open left half complex plane are denoted by C and
C−, respectively. Ω denotes the finite imaginary
axis (jω-axis). The set of all m × r constant
real matrices is denoted by Rm×r. Ir denotes the
identity matrix of size r×r. 0m×r denotes the zero
matrix of size m × r. The subscripts is dropped,
if these dimensions are clear from the the context.
AT means the transpose of A. |A| denotes the
determinant of A. Im A and Ker A denote the
image space and null space of A, respectively. The
generalized eigenspace of −sE + A corresponding
to the eigenvalues in domain D is denoted by
ν{−sE + A;D}. We denote

C(sE − A)−1B + D :=
[−sE + A B

C D

]
, E �= I.

If E = I, the term −sE +A in the above notation
is replaced by A for simplicity. For invertible
matrices M and N , the identity[−sE + A B

C D

]
=

[−sMEN + MAN MB
CN D

]
(3)

is termed as restricted equivalent transformation
(Verghese et al., 1981) under (M, N). If N =
M−1, the corresponding equivalent transforma-
tion is called as similarity transformation under
M .

2. PRELIMINARIES

This section serves to recall some background
material drawn largely from (Lewis, 1986), (Xin
and Mita, 1998), and it defines some key quantities
used subsequently through introduction of several
matrices and one special coordinate base.

Consider the system matrix pencil of G(s) being
defined as:

P (s) := −sPE + PA, (4)

where

PE :=
[

I 0
0 0m×r

]
, PA :=

[
A B
C D

]
. (5)

Since dim(KerPE) = r, there exist linear inde-
pendent infinite eigenvectors and extended infinite
eigenvectors such that

PEv1
j = 0, j = 1, · · · , r, (6)

and the extended infinite eigenvectors are defined
by

PEvk+1
j = PAvk

j , k = 1, · · · , kj − 1, (7)

where v
kj

j is the last (highest) vector of each

infinite eigenvector chain (v1
j , · · · , vkj

j ) satisfying

PAv
kj

j �∈ Im PE . (8)

According to Lemma 4 in (Copeland and Safonov,
1992), zj = ∞ (j = 1, · · · , r) are zeros of P (s) of
orders kj−1, and G(s) has infinite zeros zj = ∞ of
order kj − 1. Therefore, if kj = 1 holds for certain
j, then zj = ∞ is not an infinite zero of G(s).

Now arranging all the above infinite eigenvectors
in the following way to construct

V∞ :=
[
Vr Vh

]
, (9)

where Vh ∈ R(n+r)×r contains all the last (high-
est) infinite eigenvectors, i.e.

Vh :=
[
vk1
1 · · · vkr

p

]
(10)

and Vr ∈ R(n+r)×nr are the rest ones in any order,
where

nr := n∞ − r, n∞ :=
p∑

j=1

kj . (11)

Hence, the complete infinite eigenstructure of
−sPE + PA is defined by

(−sPE + PA)V∞ = PAV∞(−sN + In∞), (12)

where N ∈ Rn∞×n∞ is a nilpotent matrix.



From (7), we know that PAVr ∈ Im PE which leads[
C D

]
Vr = 0, then decompose

PAV∞ =
[

A B
C D

] [
Vr Vh

]
=:

[
T B̂

0 D̂

]
, (13)

which yields

T :=
[
A B

]
Vr, B̂ :=

[
A B

]
Vh, (14)

D̂ :=
[
C D

]
Vh. (15)

It follows from Lemma C.2 in (Copeland and
Safonov, 1992) that D̂ has full column rank.

From Lemma 3 in (Xin and Mita, 1998), we know
that there exists an invertible matrix

A∞ =
[

A11 A12

A21 A22

]
, A11 ∈ Rnr×nr , A22 ∈ Rr×r

such that

V∞A∞ =
[

T 0
0 Ir

]
, NA∞ =

[
Ir×r 0

0 0

]
(16)

hold. Therefore,

Im
[

T 0
0 Ir

]
= Im V∞ = ν{−sPE + PA, ∞}.(17)

Next, we need to consider the finite jω-axis eigen-
structure of P (s). Let the dimension of jω-axis
eigenspace of P (s) be nj and the eigenspace be
spanned by

[
T T

1 T T
2

]T
with T1 ∈ Rn×nj and

T2 ∈ Rr×nj , i.e.

Im
[

T1

T2

]
= ν{−sPE + PA, Ω}. (18)

It follows that there exists Λj such that

(−sPE + PA)
[

T1

T2

]
=

[
T1

0

]
(−sI + Λj). (19)

Note that all eigenvalues of Λj are invariant zeros
of G(s) on jω-axis.

Finally, consider the stable eigenspace of W (s)
which is the system matrix pencil of the spectral
density matrix G∼(s)G(s) denoted as

W (s) := −sWE + WA (20)

with WE := diag{I, I, 0} and

WA :=


 A 0 B

−CT C −AT −CT D
DT C BT DT D


 . (21)

Let the stable eigenspace of W (s) be spanned by[
UT

1 UT
2 UT

3

]T
with U1 ∈ Rn×n− , U2 ∈ Rn×n−

and U3 ∈ Rr×n− , i.e.

Im


 U1

U2

U3


 = ν{W (s), C−}. (22)

It follows that there exists a real stable Λ ∈
Rn−×n− satisfying

WA


 U1

U2

U3


 = WE


 U1

U2

U3


Λ =


 U1

U2

0


Λ. (23)

LEMMA 1. (Xin and Mita, 1998) With the quan-
tities as defined in (14), (19) and (23), the Ωe

eigenspace of P (s) and the stable eigenspace of
W (s) satisfy the following statements:

(i) S is nonsingular, where

S :=
[
U1 T1 T

] ∈ Rn×n. (24)

(ii)

X :=
[
U2 0 0

] [
U1 T1 T

]−1 ≥ 0 (25)

is a solution of Riccati equation

XH11 + HT
11X + XH12X + H21 = 0, (26)

where

H11 = A − B̂(D̂T D̂)−1D̂T C,

H12 = −B̂(D̂T D̂)−1B̂T ,

H21 = CT (I − D̂(D̂T D̂T )−1D̂T )C. (27)

3. THE DILATION OF G(S)

We give one of main results of this paper as
follows:

THEOREM 1. For the stabilizable and detectable
realization of G(s) with full column rank in (1),
with the quantities as defined in Lemma 1, choose
D′ such that

[
D̂ D′ ]−1

=
[

D̂+

(D′)T

]
(28)

holds, and choose

B′ := −X+CT D′, (29)

where X+ is the pseudo inverse of X . Then Ḡ(s)
in (2) has the same Ωe zeros as those of G(s) in
(1).

Proof. Denote the system matrix pencil of Ḡ(s)
in (2) as

P̄ (s) := −sP̄E + P̄A, (30)



where

P̄E :=
[

I 0
0 0m×m

]
, P̄A :=

[
A B̄
C D̄

]
. (31)

In what follows, we shall study the infinite and
finite jω-axis eigenstructures of P̄ (s) with respect
to those of P (s).

First, it follows from (12) that

(−sP̄E + P̄A)
[

V∞ 0
0 Im−r

]

= P̄A

[
V∞ 0
0 Im−r

] [−sN + In∞ 0
0 Im−r

]
.(32)

Therefore, together with (17), we obtain

Im
[

T 0
0 Im

]
= Im

[
V∞ 0
0 Im−r

]
⊆ ν{−sP̄E + P̄A, ∞}. (33)

Next, it yields from (19) that

[−sI + A B B′

C1 D D′

] 
 T1

T2

0




=


 T1

0
0


 (−sI + Λj), (34)

which yields

Im





 T1

T2

0





 ⊆ ν

{−sP̄E + P̄A, Ω
}

. (35)

Now denote the system matrix of Ḡ∼(s)Ḡ(s) as

W̄ (s) :=


−sI + A 0 B̄

−CT C −sI − AT −CT D̄
D̄T C B̄T D̄T D̄


 .(36)

We shall explore the relationship between the
stable eigenspaces of W̄ (s) and W (s).

To begin with, using (27) and (28), we have

H21 = CT D
′
(D′)T C ≥ 0. (37)

Pre-multiplying by (I−XX+) and post-multiplying
by (I−X+X) of (26), together with (37), we have

(D′)T C(I − X+X) = 0. (38)

It follows from (29) that

(D′)T C + (B′)T X = 0 (39)

holds. Post-multiplying S of (24) to the above
equation yields

(D′)T CU1 + (B′)T U2 = 0. (40)

Together with (23), we obtain

−sI + A 0 B B′

−CT C −sI − AT −CT D −CT D′

DT C BT DT D 0
(D′)T C (B′)T 0 Im−r







U1

U2

U3

0




=




U1

U2

U3

0


 (−sI + Λ), (41)

which follows that

Im







U1

U2

U3

0





 ⊆ ν

{
W̄ (s), C−

}
. (42)

Thus,

Im







U1

U3

U2

CU1 +
[
D D′ ] [

U3

0

]






⊆ ν






−sI + A B̄ 0 0

C D̄ 0 −I

0 0 −sI − AT −CT

0 0 −B̄T −D̄T


 ,C−


 .(43)

Note that the sum of the eigenspace dimensions of
the left sides of (43), (35) and (32) is n+m owing
to nonsingularity of

[
U1 T1 T

]
. Since −sP̄E +

P̄A is a square pencil, the sum of the eigenspace
dimensions of the left sides of (43), (35) and (32)
is also n + m. Hence, the equations in (43), (35)
and (32) must hold.

Therefore, the infinite zeros and finite jω-axis
zeros of P̄ (s) are the same as those of P (s),
respectively. Hence, the dilation Ḡ(s) in (2) with
D′ in (28) and B′ in (29) preserves the Ωe zeros
of G(s).

4. APPLICATION: CONSTRUCTION OF
UNITARY ANNIHILATOR

As an application of the above dilation, we shall
construct a unitary annihilator of G(s). Decom-
pose the inverse of Ḡ(s) as

Ḡ−1(s) =
[

G+(s)
G⊥(s)

]
(44)

in accordance with (2). Therefore,

G+(s)G(s) = Ir, G⊥(s)G(s) = 0 (45)

hold. Since D = G(∞) is not full column rank,
G+(s) is a non-proper matrix. As to G⊥(s), we
have



THEOREM 2. For the stabilizable and detectable
realization of G(s) with full column rank in (1),
suppose that B′ and D′ in Ḡ(s) in (2) are chosen
according to (29) and (28), respectively. Then an
annihilator of G(s) is given as

G⊥(s) = (D′)T

[
L1(A − HC)U1 L1H

−CU1 Im−r

]
, (46)

where L1 is defined as
 L1

L2

L3


 :=

[
U1 T1 T

]−1 = S−1, (47)

and

H :=
[
B̂ B′ ] [

D̂ D′ ]−1
. (48)

Moreover, G⊥(s) in (46) is a unitary matrix, i.e.

G⊥(s)(G⊥(s))∼ = Im−r. (49)

where (G⊥(s))∼ := (G⊥(−s))T .

Proof. The derivation of G⊥(s) in (46) is
omitted due to the space limit. Here, we shall just
show that G⊥(s) is a unitary matrix.

Denoting A1 := A−HC and R := HHT , we have

G⊥(s)(G⊥(s))∼

= (D′)T


 L1A1U1 L1RLT

1 L1H
0 −UT

1 AT
1 LT

1 UT
1 CT

−CU1 HT LT
1 Im−r


D′.(50)

Performing the similarity transformation under

M =
[

I 0
UT

1 U2 I

]
, M−1 =

[
I 0

−UT
1 U2 I

]
,

and using U2L1 = X which holds owing to (25)
and (47), we have

G⊥(s)(G⊥(s))∼ = (D′)T


 L1(A1 − RX)U1

W21

−CU1 − HT XUT
1

L1RLT
1 L1H

−UT
1 (A1 − RX)T LT

1 UT
1 (CT + XH)

HT LT
1 Im−r


D′, (51)

where

W21 = UT
1 (XA1 + AT

1 X + XRX)U1.

Since R = HHT = B̂(D̂T D̂)−1B̂T +B′B′T . From
(26) and (29), we know

XA1 + AT
1 X + XRX

= XH11 + HT
11X + XH12X + H21 = 0.

It follows from (29) and (39) that

(D′)T (C + HT X) = (D′)T C + (B′)T X = 0.

Based on these identities,

G⊥(s)(G⊥(s))∼ = Im−r

hold. This completes the proof.

5. A NUMERICAL EXAMPLE

Consider the following system

G(s) =


 s(s2 + 2s + 2) 3s2 + 8s + 4

s2 s + 2
s s2 + 2s




(s − 1)(s + 1)(s + 2)

=




0 1 0 0 1
0 0 1 1 0
2 1 −2 −2 1
2 2 1 1 0
0 1 0 0 0
1 0 0 0 0




. (52)

From its state-space realization, we have

PE =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




, PA =




0 1 0 0 1
0 0 1 1 0
2 1 −2 −2 1
2 2 1 1 0
0 1 0 0 0
1 0 0 0 0




.

First, it yields from (6) that

v1
1 =

[
0 0 0 0 1

]T
, v2

1 =
[
0 0 0 1 0

]T
.

From PEv1
2 = PAv1

1 , we obtain v2
1 =

[
1 0 1 0 0

]T .
Since PAv2

1 �∈ Im PE , we know that v2
1 is the

highest infinite eigenvector starting from v1
1 . Also

owing to PAv1
2 �∈ Im PE , we know that v1

2 is the
highest infinite eigenvector starting from v1

2 . Thus,
Vh =

[
v2
1 v1

2

]
, Vr = v1

1 , n∞ = 3 and nr = 1. From
(14) and (15), we obtain

T =


 1

0
1


 , B̂ =


 0 0

1 1
0 −2


 , D̂ =


 3 1

0 0
1 0


 .

Next, since s = 0 is a zero of G(s) in (52) on
jω-axis, it follows from

PA

[
T1

T2

]
= 0,

that T1 =
[
0 0 1

]T , T2 =
[ −1 0

]T hold. There-
fore, nj = 1.



Now we calculate (23). From

|W (s)| = −s2(s − 3)(s + 3),

the stable solution of |W (s)| = 0 is s = −3, and
its corresponding eigenvector of W (s) is

U1 =


 −6
−15
28


 , U2 =


 0
−3
0


 , U3 =

[
17
33

]
.

Note that n− = 1 holds. Thus, n− + nj + nr = 3,
and

[
U1 T1 T

]
is nonsingular. Therefore, from

(26),

X =




0 0 0

0
1
5

0
0 0 0


 .

From (28) and (29), the matrices related to the
dilation are

D′ =


 0

1
0


 , B′ =


 0
−5
0


 .

Using (48) and (47) yields

H =


 0 0 0

1 −5 −2
−2 0 6


 , L1 =

[
0 − 1

15
0

]
.

Finally, we obtain from (46)

G⊥(s) =

[
3 − 1

15
1
3

2
15

15 0 1 0

]

=
[ −1

s − 3
s + 2
s − 3

2
s − 3

]
.

It is easy to check that the above G⊥(s) is unitary
and is an annihilator of G(s) in (52).

6. CONCLUSION

The dilation of a non-square matrix with full
column rank to a square matrix preserving the Ωe

zeros has been discussed in this paper. The state-
space solution to the dilation has been proposed.
As an application, a unitary annihilator of the
non-square transfer matrix has been presented.
The obtained result is useful for analysis and
design of non-square systems with infinite and
finite imaginary axis, i.e, the factorization, and the
left/right inversion of these systems.

Note that though the techniques are completely
different, completing the singular pencil associ-
ated with a given transfer matrix is discussed in
(Cabral et al., 2001). The discussion between the
result developed in this paper and that in (Cabral
et al., 2001) will be a future subject.
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