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ROBUST ADAPTIVE CONTROL OF LINEARIZABLE NONLINEAR SINGLE INPUT SYSTEMS
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Abstract: In this paper a nonlinear robust adaptive control algorithm is designed and analyzed for a class
of single-input nonlinear systems with unknown nonlinearities. The controller guarantees closed loop
semiglobal stability and convergence of the tracking error to a small residual set. The region of attraction
for semiglobal stability depends on the number of nodes and weights in the single layer neural network
used to estimate the unknown plant nonlinearities. The size of the residual set depends on design
parameters and can be calculated apriori. One example is used to demonstrate the performance and
properties of the proposed scheme. Copyright © 2002 IFAC
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1. INTRODUCTION

The traditional way of designing feedback control
system is based on the use of Linear Time Invariant
(LTI) models for the plant. Off-line frequency
domain techniques could be used to fit such an LTI
model to experimental data and identify its
parameters. In the case, where the parameters of the
LTI model change with time, gain scheduling, on-line
parameter identification, adaptive control, robust
control techniques etc. are developed over the years
to address such situations. The reliance on LTI
models for control design purposes often puts
limitations on the performance improvement that
could be achieved for the plant under consideration.
For example if the plant consists of strong
nonlinearities, its approximation by an LTI model,
may considerably reduce the region of attraction in
the presence of disturbances and other modeling
uncertainties. During the recent years, considerable
research efforts have been made to deal with the
design of stabilizing controllers for classes of
nonlinear plants. These efforts are described in detail
in a recent survey paper (Kokotovic and Arcak, 2001)
where a very elegant and informative historical
perspective of the evolution of nonlinear control
design is presented and discussed. Most of the recent
efforts (surveyed by Kokotovic and Arcak, 2001) on
nonlinear control design assumed that the plant
nonlinearities are known. The case where the plant
nonlinearities are products of unknown constant
parameters with known nonlinearities gave rise to a
number  of  adaptive control  techniques
(Kosmatopoulos and Ioannou, 1999; Kristic, et al.,
1995; Chen and Liu, 1994; Liu and Chen, 1993;
Sastry and Isidori, 1989; Taylor, et al., 1989).

In this paper we consider a class of single input
feedback linearizable nonlinear plants with unknown
nonlinearities. ~We assume that the plant

nonlinearities are smooth functions and the nonlinear
function multiplying the input satisfies a sufficient
condition that guarantees that the plant is
controllable. The plant nonlinear functions are
estimated on-line using a single layer neural network.
A nonlinear adaptive control law is designed based
on these estimates to satisfy certain stability
conditions derived from a selected Lyapunov-like
function. The control law contains a number of robust
modifications that guarantee signal boundedness even
in the case where the estimated plant loses
controllability at certain points in time. The proposed
control scheme guarantees that for all initial
conditions from a region of attraction whose size
depends mainly on the number of nodes and weights
of the neural network, all signals are bounded and the
tracking error converges to a residual set whose size
depends on certain design parameters. The size of the
residual can be chosen apriori by selecting these
parameters appropriately. One example of a nonlinear
plant is used to demonstrate the results.

2. PROBLEM STATEMENT
Consider the single-input, single output system:
x" (1) = f(x)+b(x)u )
y(t) = x(1)

where x =[x(2),x(t),~-,x" " (#)]" eR", u is the scalar
control input, y is the scalar system output, f, b are

completely unknown smooth functions and
def .

()" - d"(-)/dt". The problem is to design a control

law u such that the output y(f) tracks a given desired
trajectory y,(¢), a known smooth function of time.

Assumption 1: b(x) is bounded from below by a
constant b, i.e., |b(x)|=b, Vxe®R", and the sign of

b(x) is known for VxeR".



We define the scalar function S(f) as the metric for
describing the tracking error dynamics:

Sty =(d/dt+1)""e() 2)

e()=y(0) -y, (1)

where A is a positive constant defining the
bandwidth of the error dynamics. The sliding surface
S(#)=0 represents a linear differential equation
whose solution implies that e(f) converges to zero
with time constant (n—1)/A (Slotine and Li, 1991).
Differentiating S(#) with respect to time, we obtain:

3)

S=e" +a, """ +--+a,e
= f(x)+b(x)u—-y" + ((x”fle(”’” +--4a,€)

where, o -,a, represent the coefficients in the

e
Hurwitz binomial expansion of (2). Let

v(t):_y((i”) +0"n716(”71) +"'+a|é (4)

Then, S can be written in the compact form:

S = f(x)+ (1) +b(x)u 5
If fix) and b(x) were completely known functions,
then the control law

u=r -0 -k, S0)] (©)

(x)
could be used to meet the control objective provided
of course that the controllability condition b(x) =0
for all x is satisfied (guaranteed by Assumption 1).
Using (6) we obtain
S =—kgS (7)

which implies that S(f) and therefore e,
i=0,1,2,...,n-1, converge to zero exponentially fast.
In the case where, f, b are unknown, (6) can no longer
be used. As in the linear case, we can use the
Certainty Equivalence (CE) principle (Ioannou and
Sun, 1996) to come up with an initial guess of a
control law, which we can then modify to meet the
stability and control objective.

Let us therefore start with the CE control law

[—J}(x,f)—V(t)—ksS(t) ®)

u=-—

b(x,t)
where the unknown functions f, b are replaced by
their estimates f, b to be generated on-line. In the

following sections we show how to generate f, b

and modify the CE control law in order to guarantee
stability and satisfy the control objective.

3. APPROXIMATION AND ON-LINE
ESTIMATION OF THE UNKNOWN
NONLINEAR FUNCTIONS

Since f and b are assumed to be smooth functions,
they can be approximated using, for example, a
single layer neural network as:

1) = ze’ g/ (%) )

b (0 =30/ (x) (10)

where f“ and b° are the approximation functions
for f and b respectively, read as “fix) and b(x)
approximation”, g/(x) and g’(x) are chosen basis
functions, /,,/, are the number of the nodes, and

0/,0; are the output weights for f'and b respectively.
The respective approximation errors are denoted by:
d,(x)=f(x)=f"(x) (11)
d, (x)=b(x)~b" (x) (12)
Here, it is assumed that there exist a set of output
weights 6,6 and number of nodes /,,/,, such that
the smooth functions f and b can be approximated
with any desired accuracy &, >0 and ¢, >0 over a

compact set Qe R" so that:
ld, (x) b"(x)—b(x)|m <g,, VxeQ  (14)

As shown in (Park and Sandberg, 1993; Sanner and
Slotine, 1992) and the references therein, a wide class
of basis functions and neural networks exist to satisfy
the above universal approximation conditions, (13),
(14). In (9) and (10) we assumed that the designer
fixes the number of nodes /,,/,. The weight

max

parameters 0,0 are to be estimated on line. Let
6/(f), 67(1) be the estimates of 6/, 6 respectively

at time ¢. Then the estimates of the approximation
functions f“, b“ attime ¢ are formed as

Fexn = ze /(0g! (x) (15)

b (%0 =300 0g! () (16)

The difference between the estimated and actual
parameter values results in the estimation errors

f"(x,r)=f"(x,r)—f"(x)=§e~/(t)g/(x) (17)

B () =b'(x.)-b*(x) =30 (0g! (x)  (I8)
i=1
where
0/ (1=6/"-0/, 6,/1)=6/(1-0/ (19)
are the parameter errors.
The estimator and parameter errors are not available
for measurement, therefore equations (17)-(18) are

used only for analysis. In the following section we
present the adaptive laws that generate the parameter

estimates 6, 6 together with the control law.

4. ROBUST ADAPTIVE CONTROL LAW

The CE control law (8) cannot be used to stabilize the
closed loop system for a number of reasons. First /1,
b cannot be generated on-line directly, only f*, b°
can be used in the control law. Second, the estimates
¢, b* may differ considerably from the actual ones,
leading to the wrong control action initially. Third,
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there is no guarantee that b*(x,¢) will not assume
values close to zero. In such case the estimated plant
is close to lose controllability leading to possible
large values for u. In order to take care of these
problems the CE control law (8) is modified to:

— D s-vo - 7 e
(b (x.0))" +3, (20)

—o (0 sat(S / @) - , F(x, z)‘ sat(S / @)}

where k>0 is a design constant, §, >0, c,6 >0,

G, >0, ®>0 are small design constants and

1, ifS>®
sat(S/ @)=1S/®, if|s|<® 21)
-1,  ifS<-@

The parameters 6/ (1), 0/() in f*(x,0), b(x.t)
respectively are updated as follows:
6/ ()=k,S,g/ (x) (22)

07(1) = k,S,ug’ (x)+ ks, sen(®)|S,|(u] + g’ (x) (23)
where

W=k SO -0 ] (x,0)
b (x, t))2 +3, (24)
o (0)]sat(S | D) —o |7 (x, 1)‘ sat(S / D)}
S, () = S(t) - D sat(S(¢) | ) 25)

k,, k,>0 are the adaptive gains chosen by the

/ b
designer, o, >0 is a small design parameter, sgn(-) is
the sign function ( sgn(x)=1, if x>0 and sgn(x)=-1
otherwise ), and p is a continuous switching function
given by:

0, if

p= (l;—ab—‘l;”‘)/A, if b—g,-A<[b’|<b—-g, (26)

1, if [p’|<b-g,-A

where A>0 is a design parameter used to avoid
discontinuity in p . A continuous switching function
p , instead of a discontinuous one, is used in order to
guarantee the existence and uniqueness of the
solution of the closed-loop system (Polycarpou and
Toannou, 1993).

By design, the control law in (20) will never become
(b (x,0)* +8, >8,>0, Vxt.
Therefore, the proposed controller overcomes the
difficulty encountered in implementing some
adaptive control laws where the identified model
becomes uncontrollable at some points in time. It is
also interesting to note that « —0 with the same

singular  since

speed as b —>0. Thus, when the estimate b°
approaches zero, the control input remains bounded
and also reduces to zero. In other words in such case
it is pointless to control what appears to the controller
as uncontrollable plant. The control law (20)-(23) is
designed wusing stability and Lyapunov type

arguments and its properties are described by the
following theorem.

Theorem: Consider the system (1), the control law
(20) and the adaptive laws (22), (23). If assumption 1

holds and & satisfies the condition b > \/E +3e, +A,
then given small positive numbers @ and ¢ ,, there
exist positive constants 5, <1, &, <1, &, <1 such
that  for k=g, /(1-3)), o,28 (1-3)),
6,28 /(1-8,), o, >max{5;,5,}, 0,/(0),0,(0)eQ,
and x(0)eQ_, where Q, cR"™, Q cQc®R", all
signals in the closed-loop system are bounded and the

tracking error and its derivatives are bounded from
above by |e“’(z)| <2NTD =01, ,n—1.

Proof: Let us consider the following Lyapunov-like
function:
1 1 Y (~ 2 1 b (~ 2

V) =—S8>+—>B ()] +—> B (¢ 27

=38t g 2b/ 0]+ 260 en
The time derivative V() is then given by

. . by o X b o~ A

P(0)= 5,8, 366/ (0+-—36/6"(0)  (28)

k/ izl k, =

where, $,=0 for |S@)|<® and S§,=S for
|S(t)| > @ . In view of the adaptive laws (22) and (23),
V=0 for |S|<® . Therefore, the remaining of this
proof deals strictly with the case of |S|>® . First, we

analyze the first term in ¥ in (28). Let us rewrite the
control law in (20) as

O b(x,0) -

=— (29)
(b (x,1))" +3,
where u is given by:
i = —kS(6)—v(1) = f*(x,1) 30)

-0 Ju()|sat(S /@) -c,

f“(x,z)| sat(S /D)

In view of equation (5) and S, =S for [S()|>®, S,
can be written as:

S, = f(x)+v(t) +b(x)u (1)
By substituting the control input (29) and (30) into
(31), one obtains:

S, = f(x)+v(t)+b" (x,u+[b(x)—b* (x,)]u
%

(b (x,0)* +5,
+[b(x)—b* (x,)u

W(1)|sat(S/ ) —c

LX) £ (0] +[B(xX) ~ b (x,0)]u~5 ,u’
(32)

=f(x)+v(t)+u—

=—k;S-c,

f” (x, t)‘ sat(S / ®)

Using the identities,
=[x =(f(x)= £ ()= (f* (.0~ (x))
=d, ()= (x.1)
(33)
3



b(x)—b" (x,1) = (b(x) ~b" (x,1)) ~ (b* (x,) ~b" (x)) (34)
=d,(x)~b " (x,1)

S, becomes:
S, = kS~ Jv(t)]sat(S/ ®) o , ‘ o, z)‘ sat(S / D)

—f (0 =b(x,tyu+d (%) +4d, (xX)u—8 ,u'}

(35)
The last term in (35) represents the effect of the
design constant §, in the control law and the

approximation error d,(x).

Define:
def .
RO S I (36a)
b—g,—A (b—g,—A) +9,
5,0 2 (36b)
b—g,
5,2 5 36
3 == (36¢)
b-¢g,

Then, as shown in the Appendix, the absolute value
of the last term in S, can be expressed as:

\d, (x)u —8 1| < 8,[1] + p3,|b "(x,z)"u’| +p8.p "(x,z)"u|
(37)
Since |$|<|S,|+® , one has
7l < kiJsl+ @, + D]+ @, + D] (x.0) o
<ky|S, |+ k@ + (o, + D0+ (o, +1)f"(x,t)‘
and (37) can be rewritten as:
|d, () —8,u| < 8,kg|S, | +8 k@ +38,(c, + Dv(®)
+3,(c, +1)‘f”(x,t) + p8, g“(x,t)"u'| +ps, g“(x,t)"u|
(39)

Then in view of (35), and using (25) and
S, sat(S/®) =|S,|, the first term in ¥ is expressed
as:

85,8, =—ksS; —ks®|S,|-c p(@)[S,]
_G/‘fa(xst)|SA|_SAJ?a(x»t) (40)
—8,b (X, 0u+S,d (%) +S,{d, (xX)u—3,u'}

Using (39) in (40), in the mean while noticing (13),
(14), one obtains:

S.8, <—(1-8 kS —{(1-8 k@ —¢ , }|S,|
~{o, =8,(1+c 0S|
—{o, =8,(1+c )| “(x,1)
—S, [ (x,1)=8,b* (x,0)u

b ”(x,t)"u'|+ 03,5,

s, | (41)

+p3d,|S,

b (x, t)"u|

In view of (22), the second term in ¥ can be
expressed as:

1 b~ X 1 b~ .
—20,/ P/ (1)=—20, )k, S,g/
kj’él()e[() kfgll[(){f g/ (¥); 2)

=8,/"(x,10)

Finally, using (23) the last term in ¥ can also be
expanded as:

L3606/ (1) = ki[ﬁgf(t){kb&ugf (x)

k, = =

+ pk,o, sgn(b())|S,|(u'| +[u) g (x)}
= 8,b"(x.0u— po, |b*(x.0)|S, || - po b (x,0)]|S, ]
(43)
Here, we have used the identity
pb * (x, 1) sen(b(x)) = —plb * (x, t)| . Since

b (x)=b"(x,0)=b"(x) = (b"(x,t)+d,(x))~b(x) and
p#0 only if ‘b (x, t)‘ <b-g, implies that
b (x, 1+d, (x)‘ <b, then, for p=0, the sign of
pb “(x,f) is always the opposite sign of b(x) V ¢>0.

Combining (41), (42), and (43), V satisfies:
V< —(1-8)ksS: —{(1-8 )k, @ —¢ }|S, |

—{o, =8,(1+ WS, ~ o, =8,(+0 )} f*(x.0)|S,|
GRS A (e [ BANCAR I N e
(44)

By choosing k;,®,6,,56,,5, such that the

following conditions are satisfied,

8, <1 (45a)
€.
ky®>—~ 45b
@2 (45)
81
G|,281(1+G|,)36v21 5 (45¢)
— %

5,
Gf281(1+0f):>cf21 5 (45d)
-

G, >max{5,,5,} = max _28" ,_8” (45¢)

b-¢g, b-g,
one obtains
V=0, for |s|<® (462)
V<-(1-8)k,S: <0, for [S]>® (46b)

The results (46a-b) are valid provided (13)-(14) hold.
Since (13)-(14) hold on a compact set, i.e., x€Q,
all states need to remain in this compact set for all
t>0 in order for the results to be valid. Consider the
set

M(x6/.6")={x.6/.6,| V<V, (47)
where 7, >V (0) and ¥, >® is chosen as the largest
constant for which M =Q_xQ,, where Q_cQ.
Then for Vx(0)eQ._ and 60/(0,0'(0)eQ, it
follows from (27), (46a-b) that ¥(¢) is bounded from
above by ¥V, for all #>0 which implies that
xeQQ cQ, Vix0.

This implies that S, and 6,/,6/ are bounded for all
t>0. Since V(f) is bounded from below and is non-
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increasing with time, it has a limit, i.e., limV($)=V_.
Using (46b) and the fact that S, =0 for |S|<®, we

ro-r.

1-5,

which implies that S, eZ,. From §,,0/.,0" €L, it
follows that all signals are bounded which implies
that S, €L, . From S,eL, and S, L, we have
S,(#)—>0 as t—>ow (loannou and Sun, 1996). This

have  lim | kST @)dt =k [ Sy (t)dt <

implies that S(f) converges to the region |S|<®
which in turn implies that the tracking error
converges to a small residual set whose size is
characterized by the size of the design parameter ®.
We can also establish that the tracking error and its
derivatives are bounded from above by
|e(”(t)|£2ixi”’*‘d3, i=0,1,---,n—1 (Slotine and Li,

1991) W

5. SIMULATIONS

In this section, we demonstrate the properties of the
proposed adaptive control law using one example.
Example: consider the following second order
nonlinear system

_ 4£ sin(4mx) j( sin(mx) Jz
- o B (48)

+(2 +sin(x) + 0.01sin(1007) Ju
y=x
where the nonlinear functions and parameters are
unknown. The output y=x and x are assumed to be
available for measurement. The output () is
required to track a desired trajectory defined by
v, =sin(nt). The magnitude of the tracking error

e=y-y, at steady state is required to be less than

0.05. A one hidden layer radial Gaussian network
with a basis function
g/ (x)=exp[-no*(x-E,)" (x-§,)] is used to
approximate f(x,x) and b(x), which in this case are
the ideal bandlimited smooth functions, on a compact
set Q=0 xQ,, where Q. ={x|xe(-33)},
Q. ={x|xe(-5,5)},. The mean &, is the center of the
radial Gaussian representing the sampling grid, and
o’ is the variance representing a measure of the
width of the radial Gaussian. By choosing a sampling
grid with mesh size 0.125 and variance 4, a small
uniform  approximation bound of &, <0.05,
€, <0.02, can be achieved (Sanner and Slotine,

1992). Furthermore h(x)>bh=099. Note that
0.01sin(100t) is considered as a disturbance term and
is not estimated. The values of &,, A, are chosen to

be 0.01, 0.05 respectively. Using (36a-c),, =0.0334,
5, =0.02062 , 6, =0.02062 . The constants
c,=0034, 6,=0034 and o,=0.03 are chosen

such that conditions (45c-e) are satisfied. By
selecting A =1 and ®=0.05, the requirement of
tracking error less than 0.05 is achieved. Given
condition (45b), the gain k, is chosen to satisfy

kg 21.035. Therefore with a value of k=2, the

tracking error remains bounded from above by 0.05.
Figures 1 and 2 show the simulation results for the
tracking error, and continuous switching function p.

Robust Adaptive Contral of & Second Order Sysem

a 1 z a 4 = a 7 a 0 0
Tima (Becand)

Fig. 1. Tracking error during the first 10 seconds. The
dashed lines indicate the required error bound

Fig. 2. The continuous switching function p in the
adaptive law during the first 4 seconds

6. CONCLUSIONS

In this paper, we consider the control problem of a
single input feedback linearizable nonlinear system
with unknown nonlinearities. The nonlinearities are
assumed to be smooth functions and as such can be
approximated and estimated on-line using a single
layer neural network. A robust adaptive controller
scheme is designed that uses the estimated nonlinear
functions and employs a number of robust
modifications in order to compensate for
uncertainties in the estimation. The control scheme
guarantees semiglobal stability and convergence of
the tracking error to a small residual set whose size
depends on certain design parameters. Semiglobal
stability is characterized by a region of attraction for
stability whose size depends on the nodes of the
neural network used to approximate the nonlinear
functions of the plant. Our results present a
methodology for choosing various design parameters
so that the tracking error is guaranteed to converge
and remain within desirable bounds at steady state.
The extension of these results to a wider class of
nonlinear system is currently under investigation.
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Perspective,

APPENDIX-PROOFS OF INEQUALITY (37)

In this appendix, we prove inequality (37) used in the proof
of theorem. Let us start with the equality
d(x)u-38u' =1-p){du—38,u'}t+p{du-3du"} (A1)

From (24), (30), the function u’ can be written as:

u' = ,\;17 (AZ)

() +8,

Then,

(b Yu' +8,u =u (A3)
Since bu’ = u , (A.3) can be written as

bu=u—8u (A4)
Substituting b* =b*+b* into (A.4), we obtain

bu=1u—-3,u' —bu (A.5)
Using (A.2), it follows that

bu = l—Aa—h i —bu
(b") +38,

A (A.6)
ay2 -
= A(b;)lj —bu
(") +8,
From (A.6), the control law u can be expressed as
[ay2 — -
RGN an

(19")2 +5, b" b
|b(x) d, (x)| >h —¢g, , one has

[l < = [
ba| ba|

| (A.8)
<= |L_l| += b ul
b—¢g, b—¢g,
Since (A.3) can also be written as
(" +b°) +8,}u' =1 (A.9)
one has
(b)Y +(b°Y +8,u' =u—2b°bu" (A.10)
Therefore u' can be expressed as
‘= L - 20 U (A.11)
BY + () +85, B + (B +5,
and,
20|~
| < ———1u + |2 | |
B +5, | (b)Y +5,
P W (A.12)
")’ +38, I

Eu

S il |

(b —-¢,) +9, b-¢g,

Using (A.8) and (A.12), the absolute value of the second
term in (A.1) can be written in the following form:

p{du—8,u}| < p|d,,||u| +p3,|u

8}7
Sp{ﬁ—a (b—a,,) +8 }l “l

2 €, |7
+p= U+ p= b|u A.13
P | P | (A.13)
<pl=—— i
b-g,—A (b—g,—A) +9,
+p_2 b |pe u|
b b-g,
The first term in (A.1) can be written as:
, dp’  _
(1= p)idyu—8,u'} = (1 p) =L
(") +3, (A.14)
“(-p)—=—"—u
b)Y +8,

Since (1-p)#0 only if b= b —g, — A, one obtains:

. dy) | 3 _
|<1—p>{d,,u—zs,,u}|s(l—p>ﬁ|u|+a—p>m|u|
3 €, 3, .
=( p){b— - +(1§—sb—A)2+5b}|”|
(A.15)
From (A.13) and (A.15), (37) follows, i.e.
o €, 3, _
i Sbuls{g—sb—A+(I;—sb—A)2+6b}|u|
28;; ’ & |7a
P u|+p[;_8hb W (A16)
=3 Ji |+ p3.[b° ]

where §,, 8,, 8, are as defined in (36a-c).
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