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Abstract: In this paper a nonlinear robust adaptive control algorithm is designed and analyzed for a class 
of single-input nonlinear systems with unknown nonlinearities. The controller guarantees closed loop 
semiglobal stability and convergence of the tracking error to a small residual set. The region of attraction 
for semiglobal stability depends on the number of nodes and weights in the single layer neural network 
used to estimate the unknown plant nonlinearities. The size of the residual set depends on design 
parameters and can be calculated apriori. One example is used to demonstrate the performance and 
properties of the proposed scheme. Copyright © 2002 IFAC 
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1. INTRODUCTION 
 

The traditional way of designing feedback control 
system is based on the use of Linear Time Invariant 
(LTI) models for the plant. Off-line frequency 
domain techniques could be used to fit such an LTI 
model to experimental data and identify its 
parameters. In the case, where the parameters of the 
LTI model change with time, gain scheduling, on-line 
parameter identification, adaptive control, robust 
control techniques etc. are developed over the years 
to address such situations. The reliance on LTI 
models for control design purposes often puts 
limitations on the performance improvement that 
could be achieved for the plant under consideration. 
For example if the plant consists of strong 
nonlinearities, its approximation by an LTI model, 
may considerably reduce the region of attraction in 
the presence of disturbances and other modeling 
uncertainties. During the recent years, considerable 
research efforts have been made to deal with the 
design of stabilizing controllers for classes of 
nonlinear plants. These efforts are described in detail 
in a recent survey paper (Kokotovic and Arcak, 2001) 
where a very elegant and informative historical 
perspective of the evolution of nonlinear control 
design is presented and discussed. Most of the recent 
efforts (surveyed by Kokotovic and Arcak, 2001) on 
nonlinear control design assumed that the plant 
nonlinearities are known. The case where the plant 
nonlinearities are products of unknown constant 
parameters with known nonlinearities gave rise to a 
number of adaptive control techniques 
(Kosmatopoulos and Ioannou, 1999; Kristic, et al., 
1995; Chen and Liu, 1994; Liu and Chen, 1993; 
Sastry and Isidori, 1989; Taylor, et al., 1989). 
 
In this paper we consider a class of single input 
feedback linearizable nonlinear plants with unknown 
nonlinearities. We assume that the plant 

nonlinearities are smooth functions and the nonlinear 
function multiplying the input satisfies a sufficient 
condition that guarantees that the plant is 
controllable. The plant nonlinear functions are 
estimated on-line using a single layer neural network. 
A nonlinear adaptive control law is designed based 
on these estimates to satisfy certain stability 
conditions derived from a selected Lyapunov-like 
function. The control law contains a number of robust 
modifications that guarantee signal boundedness even 
in the case where the estimated plant loses 
controllability at certain points in time. The proposed 
control scheme guarantees that for all initial 
conditions from a region of attraction whose size 
depends mainly on the number of nodes and weights 
of the neural network, all signals are bounded and the 
tracking error converges to a residual set whose size 
depends on certain design parameters. The size of the 
residual can be chosen apriori by selecting these 
parameters appropriately. One example of a nonlinear 
plant is used to demonstrate the results. 
 
 

2. PROBLEM STATEMENT 
 

Consider the single-input, single output system: 
ubftx n )()()()( xx +=   (1) 

)()( txty =
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where , u is the scalar 
control input, y is the scalar system output, f, b are 
completely unknown smooth functions and 

. The problem is to design a control 
law u such that the output y(t) tracks a given desired 
trajectory , a known smooth function of time. 
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Assumption 1: b(x) is bounded from below by a 
constant b , i.e., bb ≥)(x
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We define the scalar function S(t) as the metric for 
describing the tracking error dynamics: 
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where  is a positive constant defining the 
bandwidth of the error dynamics. The sliding surface 

 represents a linear differential equation 
whose solution implies that e(t) converges to zero 
with time constant  (Slotine and Li, 1991). 
Differentiating S(t) with respect to time, we obtain: 
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where,  represent the coefficients in the 
Hurwitz binomial expansion of (2). Let 
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Then,  can be written in the compact form: S&

ubtvfS )()()( xx ++=&    (5) 
If f(x) and b(x) were completely known functions, 
then the control law 
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could be used to meet the control objective provided 
of course that the controllability condition b  
for all x is satisfied (guaranteed by Assumption 1). 
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Using (6) we obtain 
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which implies that S(t) and therefore , 
i=0,1,2,…,n-1, converge to zero exponentially fast. 

)(ie

In the case where, f, b are unknown, (6) can no longer 
be used. As in the linear case, we can use the 
Certainty Equivalence (CE) principle (Ioannou and 
Sun, 1996) to come up with an initial guess of a 
control law, which we can then modify to meet the 
stability and control objective. 
Let us therefore start with the CE control law 
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where the unknown functions f, b are replaced by 
their estimates ,  to be generated on-line. In the 
following sections we show how to generate ,  
and modify the CE control law in order to guarantee 
stability and satisfy the control objective. 
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3. APPROXIMATION AND ON-LINE 
ESTIMATION OF THE UNKNOWN 

NONLINEAR FUNCTIONS 
 
Since f and b are assumed to be smooth functions, 
they can be approximated using, for example, a 
single layer neural network as: 
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where  and  are the approximation functions 
for f and b respectively, read as “f(x) and b(x) 
approximation”,  and  are chosen basis 
functions,  are the number of the nodes, and 

 are the output weights for f and b respectively. 
The respective approximation errors are denoted by: 
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Here, it is assumed that there exist a set of output 
weights  and number of nodes , such that 
the smooth functions f and b can be approximated 
with any desired accuracy ε  and ε  over a 
compact set  so that: 

b
i

f
i θθ ,

∈Ω

bf ll ,

>b0>f 0
nℜ

f
a

f ffd ε≤−=
maxmax

)()()( xxx   (13) 

b
a

b bbd ε≤−=
maxmax

)()()( xxx , ∀  (14) Ω∈x 

As shown in (Park and Sandberg, 1993; Sanner and 
Slotine, 1992) and the references therein, a wide class 
of basis functions and neural networks exist to satisfy 
the above universal approximation conditions, (13), 
(14). In (9) and (10) we assumed that the designer 
fixes the number of nodes l . The weight 
parameters  are to be estimated on line. Let 

,  be the estimates of θ , θ  respectively 
at time t. Then the estimates of the approximation 
functions ,  at time t are formed as 
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The difference between the estimated and actual 
parameter values results in the estimation errors 
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are the parameter errors. 
The estimator and parameter errors are not available 
for measurement, therefore equations (17)-(18) are 
used only for analysis. In the following section we 
present the adaptive laws that generate the parameter 
estimates θ , θ  together with the control law. f

i
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4. ROBUST ADAPTIVE CONTROL LAW 

 
The CE control law (8) cannot be used to stabilize the 
closed loop system for a number of reasons. First , 

 cannot be generated on-line directly, only ,  
can be used in the control law. Second, the estimates 

,  may differ considerably from the actual ones, 
leading to the wrong control action initially. Third, 
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there is no guarantee that  will not assume 
values close to zero. In such case the estimated plant 
is close to lose controllability leading to possible 
large values for u. In order to take care of these 
problems the CE control law (8) is modified to: 
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where  is a design constant, δ , , 
, Φ  are small design constants and  
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The parameters θ ,  in ,  
respectively are updated as follows: 
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fk ,  are the adaptive gains chosen by the 
designer, σ  is a small design parameter, sgn(⋅) is 
the sign function ( sgn(x)=1, if  and sgn(x)=-1 
otherwise ), and ρ is a continuous switching function 
given by: 

0>bk

b 0>

0













∆−

−<<∆−−=

b

b
aa

b

b

bbbbb

b

εερ

ˆif,1

ˆif,/)ˆ(

ˆif,0

                                

         

                               

 (26) 

where  is a design parameter used to avoid 
discontinuity in ρ . A continuous switching function 
ρ , instead of a discontinuous one, is used in order to 
guarantee the existence and uniqueness of the 
solution of the closed-loop system (Polycarpou and 
Ioannou, 1993). 
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By design, the control law in (20) will never become 
singular since , . 
Therefore, the proposed controller overcomes the 
difficulty encountered in implementing some 
adaptive control laws where the identified model 
becomes uncontrollable at some points in time. It is 
also interesting to note that  with the same 
speed as . Thus, when the estimate b  
approaches zero, the control input remains bounded 
and also reduces to zero. In other words in such case 
it is pointless to control what appears to the controller 
as uncontrollable plant. The control law (20)-(23) is 
designed using stability and Lyapunov type 

arguments and its properties are described by the 
following theorem. 
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Theorem: Consider the system (1), the control law 
(20) and the adaptive laws (22), (23). If assumption 1 
holds and b  satisfies the condition ∆++> bb εδ 3
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signals in the closed-loop system are bounded and the 
tracking error and its derivatives are bounded from 
above by 
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Proof: Let us consider the following Lyapunov-like 
function: 
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The time derivative V(t) is then given by 
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 for Φ≤S . Therefore, the remaining of this 
proof deals strictly with the case of Φ>S . First, we 

analyze the first term in V in (28). Let us rewrite the 
control law in (20) as 
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The last term in (35) represents the effect of the 
design constant δ  in the control law and the 
approximation error . 
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In view of (22), the second term in V  can be 
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Finally, using (23) the last term in V  can also be 
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Here, we have used the identity 
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increasing with time, it has a limit, i.e., 
t
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which implies that . From , it 
follows that all signals are bounded which implies 
that . From  and  we have 

 as  (Ioannou and Sun, 1996). This 
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derivatives are bounded from above by 

Φ+1≤ −2) niit λ)( (ie ,  (Slotine and Li, 

1991) g. 
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5. SIMULATIONS 
 

In this section, we demonstrate the properties of the 
proposed adaptive control law using one example. 
Example: consider the following second order 
nonlinear system 

  (48) 

     
where the nonlinear functions and parameters are 
unknown. The output y=x and  are assumed to be 
available for measurement. The output y(t) is 
required to track a desired trajectory defined by 

. The magnitude of the tracking error 
 at steady state is required to be less than 

0.05. A one hidden layer radial Gaussian network 
with a basis function 

 is used to 
approximate  and b(x), which in this case are 
the ideal bandlimited smooth functions, on a compact 
set , where , 

,. The mean ξ  is the center of the 
radial Gaussian representing the sampling grid, and 

 is the variance representing a measure of the 
width of the radial Gaussian. By choosing a sampling 
grid with mesh size 0.125 and variance 4π, a small 
uniform approximation bound of , 

, can be achieved (Sanner and Slotine, 
1992). Furthermore . Note that 
0.01sin(100t) is considered as a disturbance term and 
is not estimated. The values of δ , ∆, are chosen to 
be 0.01, 0.05 respectively. Using (36a-c),δ , 

, . The constants 
,  and  are chosen 

such that conditions (45c-e) are satisfied. By 
selecting  and , the requirement of 
tracking error less than 0.05 is achieved. Given 
condition (45b), the gain  is chosen to satisfy 

. Therefore with a value of , the 
tracking error remains bounded from above by 0.05. 
Figures 1 and 2 show the simulation results for the 
tracking error, and continuous switching function ρ. 

1=λ 05.0=Φ

Sk
035.1≥Sk 2=Sk

 
Fig. 1. Tracking error during the first 10 seconds. The 

dashed lines indicate the required error bound 

 
Fig. 2. The continuous switching function ρ in the 

adaptive law during the first 4 seconds 
 
 

6. CONCLUSIONS 
 

In this paper, we consider the control problem of a 
single input feedback linearizable nonlinear system 
with unknown nonlinearities. The nonlinearities are 
assumed to be smooth functions and as such can be 
approximated and estimated on-line using a single 
layer neural network. A robust adaptive controller 
scheme is designed that uses the estimated nonlinear 
functions and employs a number of robust 
modifications in order to compensate for 
uncertainties in the estimation. The control scheme 
guarantees semiglobal stability and convergence of 
the tracking error to a small residual set whose size 
depends on certain design parameters. Semiglobal 
stability is characterized by a region of attraction for 
stability whose size depends on the nodes of the 
neural network used to approximate the nonlinear 
functions of the plant. Our results present a 
methodology for choosing various design parameters 
so that the tracking error is guaranteed to converge 
and remain within desirable bounds at steady state. 
The extension of these results to a wider class of 
nonlinear system is currently under investigation. 
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APPENDIX-PROOFS OF INEQUALITY (37) 
 

In this appendix, we prove inequality (37) used in the proof 
of theorem. Let us start with the equality 

}{}){1()( uuduuduud bbbbbb ′−+′−−=′− δρδρδx   (A.1) 

From (24), (30), the function  can be written as: u ′

u
b

u
b

a δ+
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2)ˆ(
1    (A.2) 

Then, 
uuub b

a =′+′ δ2)ˆ{(    (A.3) 

Since , (A.3) can be written as uuba =′ˆ
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   (A.4) 

Substituting b  into (A.4), we obtain aaa bbˆ +=
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Using (A.2), it follows that 
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From (A.6), the control law u can be expressed as 
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Using the fact bb
a bdbb ε−≥−= )()( xx , one has 
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Since (A.3) can also be written as 
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and, 

ub
b

u
b

ub
b

u
b

ub
b

b
u

b
u

a

bbb

a
a

b
a

a

b
a

a

b
a

′
−

+
+−

≤

′+
+

≤

′
+

+
+

≤′

~2
)(

1

~2
)(
1

~
)(

2

)(
1

2

2

22

εδε

δ

δδ

  (A.12) 

Using (A.8) and (A.12), the absolute value of the second 
term in (A.1) can be written in the following form: 
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The first term in (A.1) can be written as: 
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Since (  only if 0)1 ≠− ρ ∆−−≥ b
a bb εˆ , one obtains: 
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From (A.13) and (A.15), (37) follows, i.e. 
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where δ , δ , δ  are as defined in (36a-c). 1 2 3
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