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Abstract: This paper studies the energy based control of an underactuated two-link
robot called the Pendubot. After having investigated the characteristics of the closed-
loop system with the energy based control law (Fantoni et al., 2000) for swinging
the Pendubot up, this paper proposes a sufficient condition about parameters in the
control law such that the total energy of the Pendubot will converge to the potential
energy of its top upright position. This paper gives an answer to the unsolved issue in
(Fantoni et al., 2000) whether the total energy of the Pendubot will converge to the
potential energy of its top upright position. Moreover, with the aid of the proposed
condition, the parameters in the control law are easy to be chosen. Copyright c© 2002
IFAC
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1. INTRODUCTION

The Pendubot as shown in Fig. 1 is a two-
degree-of-freedom planar robot with single actu-
ator at the shoulder of the first link; the joint
of two links is unactuated and allowed to swing
free. In addition to other mechanical systems
such as inverted pendulum (Åström and Furuta,
2000), the Acrobot (Spong, 1995), (Berkemeier
and Fearing, 1999), (Olfati-Saber and Megret-
ski, 1998), (Zergeroglu et al., 1999), (Brown and
Passino, 1997), and brachiating robot (Nakanishi
et al., 1999), such robot is used for research as
an example of underactuated mechanical systems
(Kolmanovsky and McClamroch, 1995) and for
control and robot education, (Spong and Block,
1995).

The swing up control problem for the Pendubot
is to swing the Pendubot up to its unstable in-
verted position (top unstable equilibrium) and
balance it about the vertical. For solving such

problem, (Spong and Block, 1995) uses partial
feedback linearization techniques for the swing
up control (swing up phase), and performs lin-
earization about the desired equilibrium point and
then uses linear quadratic regulator (LQR) or
pole placement technique for the balancing control
(balancing phase). However, no stability analysis
is provided there.

Without using the standard techniques of feed-
back linearization or partial linearization, (Fantoni
et al., 2000) proposes a novel energy based con-
trol solution to the swing control problem of the
Pendubot. The control algorithm and stability
analysis are given based on Lyapunov stability
theory. When initial conditions of the Pendubot
and parameters in the proposed control law satisfy
certain conditions, (Fantoni et al., 2000) shows
that the total energy of the Pendubot converges
to a constant. If such constant is equal to the po-
tential energy of the position in which both links
are at vertical, (Fantoni et al., 2000) shows that
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link 1 is at rest at the vertical and link 2 moves
according to a homoclinic orbit which contains
the point corresponding to link 2 being at rest at
vertical. Otherwise, (Fantoni et al., 2000) shows
that the Pendubot can be brought close to the top
unstable equilibrium if the control input torque is
small. Furthermore, (Fantoni et al., 2000) shows
that the torque can be guaranteed to be small if
a parameter in the control is chosen sufficiently
small.

However, (Fantoni et al., 2000) does not show
which of the forementioned two cases will occur for
a given initial condition of the Pendubot and given
parameters in the control law. Also, for the latter
case, i.e., the total energy of the Pendubot con-
verges to a constant which is not equal to the po-
tential energy of its top upright position, (Fantoni
et al., 2000) does not make clear how small the
parameter should be chosen. If the parameter is
chosen to be too small, the solution of the closed-
loop systems will converge slowly. In this respect,
the latter case is somewhat undesirable. Therefore,
with the anxiety for possible occurence of the
latter case, it is not easy to choose the parameter
appropriately to bring the Pendubot closely to the
top equilibrium.

This paper gives an answer to the issue when the
former case will occur, i.e., when the total energy
of the Pendubot will converge to the potential
energy of its top upright position. This result
implies how to exclude the possibility of occurence
of the latter case. With the aid of this result,
the control parameter in the control developed
in (Fantoni et al., 2000) is easy to be chosen.
To explain specifically, first we present simple
formulae of the energy of the Pendubot when the
latter case occurs. Then, we show that if two
parameters in the control law of (Fantoni et al.,
2000) satisfy a linear inequality, then the former
case will occur. In this way, the characteristics
of the solution to closed-loop systems with the
energy based control law for swing up phase is
illustrated further.

2. PRELIMINARIES

We recall the result of (Fantoni et al., 2000) fur-
ther for describing our result in the next section.

With the notation and conventions shown in Fig.
1, from (Spong and Vidyasagar, 1989), (Fantoni et
al., 2000), the equations of motion of the Pendubot
are:

D(q)q̈ + C(q, q̇)q̇ + G(q) = τ (1)

where

q =
[

q1

q2

]
, τ =

[
τ1

0

]
(2)
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Fig. 1. The Pendubot.

D(q) =
[

d11 d12

d21 d22

]

=
[

θ1 + θ2 + 2θ3 cos q2 θ2 + θ3 cos q2

θ2 + θ3 cos q2 θ2

]
(3)

C(q, q̇) = θ3

[−q̇2 −q̇2 − q̇1

q̇1 0

]
sin q2 (4)

G(q) =
[

θ4g cos q1 + θ5g cos(q1 + q2)
θ5g cos(q1 + q2)

]
(5)

with

θ1 = m1l
2
c1 + m2l

2
1 + I1

θ2 = m2l
2
c2 + I2, θ3 = m2l1lc2

θ4 = m1lc1 + m2l1, θ5 = m2lc2

The object of control is to swing the Pendubot up
and balance it to

q1 = π/2, q2 = 0 (6)

with

q̇1 = 0, q̇2 = 0 (7)

where (6) holds in the meaning of modulo 2π.

The total energy of the Pendubot is given by

E =
1
2
q̇T D(q)q̇ + θ4g sin q1 + θ5g sin(q1 + q2) (8)

The total of energy when the Pendubot is at rest
at the vertical, i.e., (6) and (7) hold, is

Etop = θ4g + θ5g (9)

Define the following Lyapunov function candidate

V =
1
2
kEẼ2 +

1
2
kD q̇2

1 +
1
2
kP q̃2

1 (10)

where kE > 0, kD > 0, kP > 0 and

Ẽ = E − Etop, q̃1 = q1 − π/2 (11)



The main result in (Fantoni et al., 2000) is sum-
marized as follows:

LEMMA 1. (Fantoni et al., 2000) Consider the
Pendubot system (1). Take the Lyapunov function
candidate (10) with strictly positive constants kE ,
kD and kP . Provided that for some ε > 0

|Ẽ(0)| < c := min
(

2θ4g, 2θ5g,
kD − ε

kEθ1

)
(12)

V (0) ≤ 1
2
c2kE (13)

hold for initial conditions q(0) and q̇(0). Then the
solution of the closed-loop system with the control
law

τ1 =
−kDF (q, q̇) − (θ1θ2 − θ2

3 cos2 q2)(q̇1 + kP q̃1)
(θ1θ2 − θ2

3 cos2 q2)kEẼ + kDθ2

(14)

where

F (q, q̇) = θ2θ3(q̇1 + q̇2)2 sin q2 + θ2
3 q̇

2
1 cos q2 sin q2

−θ2θ4g cos q1 + θ3θ5g cos q2 cos(q1 + q2) (15)

converges to the invariant set M given by the
homoclinic orbit

1
2
θ2q̇

2
2 = θ5g(1− cos q2) (16)

with (q1, q̇1) = (π/2, 0) and the interval

(q1, q̇1, q2, q̇2) = (π/2 − ε, 0, ε, 0)

where |ε| < ε∗ and ε∗ is arbitrarily small.

REMARK 1. Though the condition that kP is
sufficiently small is not stated explicitly in Lemma
1, such condition is found necessary in the proof of
Lemma 1 which will be explained briefly as follow.

To begin with, we explain the derivation of control
law (14) in (Fantoni et al., 2000). Since the time
derivative of V in (10) along (1) under control law
(14) satisfies

V̇ = q̇1(kEẼτ1 + kD q̈1 + kP q̃1) (17)

τ1 is chosen (if possible) such that

−q̇1 = kEẼτ1 + kD q̈1 + kP q̃1 (18)

which yields

V̇ = −q̇2
1 (19)

To obtain τ1 in (14), one just needs to put the
formula of q̈1 calculated from (1) as

q̈1 =
θ2τ1 + F (q, q̇)

θ1θ2 − θ2
3 cos2 q2

(20)

into (18).

Next, note that under conditions (12) and (13),
the denominator of the control law (14) is not zero
for all time. Indeed, together with (19), we have
V (t) ≤ V (0) and |Ẽ(t)| < c. Thus,

|kEẼ(t)| < kEc <
kD

θ1
≤ kDθ2

θ1θ2 − θ2
3 cos2 q2

(21)

Again under these two conditions, the Pendubot
can not get stuck at any equilibrium other than
(q1, q2, q̇1, q̇2) = (π/2, 0, 0, 0).

Now, it follows from (19) that V̇ (t) = 0 and
q̇1(t) = 0 holds as t → ∞. In this case,

q̃1 = constant, Ẽ = constant (22)

Finally, the following two cases are discussed in
(Fantoni et al., 2000) separately.

Case 1 Ẽ = 0

From (22) and (18), we obtain q̃1 = 0, i.e., q1 =
π/2. Together with q̇1 = 0, it follows from (8),
(9) and (11) that Ẽ = 0 is equivalent to (16). In
this case, the solution of the closed-loop system
converges to q̃1 = 0 and the homoclinic orbit (16).

Case 2 Ẽ �= 0

Owing to (22), (18) is reduced to be

kEẼτ1 + kP q̃1 = 0 (23)

Since q̃1 is constant, (Fantoni et al., 2000) (p. 728)
points out that if one chooses kP close to zero
and kE not too small, then |Ẽτ1| will be small.
Under the Case 2, (Fantoni et al., 2000) concludes
that if kP is small, τ1 will be small. Furthermore,
(Fantoni et al., 2000) shows that sufficiently small
kP implies that q2 and q̃1 are both arbitrarily close
to zero.

However, for a given initial condition of the Pen-
dubot and given parameters in the control law,
(Fantoni et al., 2000) does not show which of Case
1 and Case 2 will occur. Also, for Case 2, (Fantoni
et al., 2000) does not make clear how small one
should choose kP . If kP the parameter is too
small, the solution of the closed-loop systems will
convergent slowly. Hence, Case 2 is undesirable
from this respect. Therefore, due to incapability
of determination of occurence of Case 1 or Case
2, it is not easy to choose kP appropriately for
goal of bringing the Pendubot closely to the top
equilibrium.

In what follows, we will show that how to choose
the control parameters in (14) such that only Case
1 will occur and Case 2 will not occur at all.



3. CHOICE OF CONTROL PARAMETERS
FOR SWING UP PHASE

Suppose that the solution of the closed-loop sys-
tem of the Pendubot converges to Case 2. Then
we can obtain the following result.

LEMMA 2. Consider the Pendubot system (1).
Let t0 > 0 be sufficiently large. Suppose that for
t > t0, q1 and Ẽ are constant with Ẽ �= 0, and q̇2 is
bounded, and (23) holds. Then q2 is also constant,
and

τ1 = θ4g cos q1 (24)

cos(q1 + q2) = 0 (25)

Furthermore,

Ẽ = θ4g(sin q1 − 1) (26)

for sin(q1 + q2) = 1, and

Ẽ = θ4g(sin q1 − 1) − 2θ5g (27)

for sin(q1 + q2) = −1

Proof. Since q1 and Ẽ are constant with Ẽ �= 0,
from (23) we know that τ1 is constant too. Using
the fact that q1 is constant, we obtain the following
relations from (1)

(θ2 + θ3 cos q2)q̈2 − θ3q̇
2
2 sin q2

= τ1 − θ4g cos q1 − θ5 cos(q1 + q2) (28)

θ2q̈2 = −θ5 cos(q1 + q2) (29)

Putting (29) into (28) yields

θ3q̈2 cos q2 − θ3q̇
2
2 sin q2 = τ1 − θ4g cos q1 =: α1(30)

which follows that

θ3
d(q̇2 cos q2)

dt
= α1 (31)

Since α1 is constant, integrating the above equa-
tion with respect to time t yields

θ3q̇2 cos q2 = α1t + α2, t > t0 (32)

where α2 is a constant to be determined. Rewrit-
ing (32) as

α1 =
θ3q̇2 cos q2 − α2

t
, t > t0 (33)

Since (33) holds for ∀t > t0 and q̇2 is bounded,
then

α1 = lim
t→∞

θ3q̇2 cos q2 − α2

t
= 0 (34)

which follows from (30) that (24) holds.

Rewriting (32) with α1 = 0, we have

q̇2 cos q2 =
d(sin q2)

dt
= α2/θ3 (35)

which follows that

sin q2 =
α2

θ3
t + α3, t > t0 (36)

where α3 is a constant.

α2 =
θ3(sin q2 − α3)

t
, t > t0

Similar to the proof of α1 = 0, we obtain

α2 = lim
t→∞

θ3(sin q2 − α3)
t

= 0 (37)

Thus,

sin q2 = α3 (38)

which is a constant. Therefore, q2 is constant.

Finally, it follows directly from (28) and (29) that
(24) and (25) hold. Then, sin(q1 + q2) = ±1.
Consequently, (26) or (27) holds owing to

− Ẽ = θ4g(sin q1 − 1) + θ5g(sin(q1 + q2) − 1)(39)

for q̇1 = q̇2 = 0.

Now we are ready to present the main result of
this paper.

THEOREM 1. Consider the Pendubot system
(1). Take the Lyapunov function candidate (10)
with strictly positive constants kE , kD and kP .
Provided that

V (0) ≤ 1
2
kEc2

1 (40)

holds for initial conditions q(0) and q̇(0), where

c1 := min
(

2θ5g,
kD − ε

kEθ1

)
(41)

for some ε > 0. Define

η(x) =
(cosx − 1) sinx

x
(42)

and

η∗ = max
x∈[π 3π/2]

η(x) (43)

Under the control law given in (14), if

kP > η∗kEθ2
4g

2 (44)

then,



(i) the following relations hold:

lim
t→∞ Ẽ(t) = 0, lim

t→∞ q̃1(t) = 0, lim
t→∞V (t) = 0(45)

(ii) the solution of the closed-loop system con-
verges to the invariant set M given by the homo-
clinic orbit (16) with (q1, q̇1) = (π/2, 0).

Proof. (i) According to the analysis of Case
1 given in Section 2, it suffices to show that Ẽ
will converge to 0 under initial condition (40) and
control law given in (14).

On the contrary, assume that Ẽ will converge
to a nonzero constant, i.e., Ẽ �= 0. We can use
Lemma 2. Note that from (40) |Ẽ(t)| < c1 holds
for ∀t ≥ 0. If sin(q1 + q2) = −1, we have |Ẽ| =
|θ4g(sin q1 − 1) − 2θ5g| ≥ 2θ5g which contradicts
|Ẽ(0)| < c1.Therefore, sin(q1 + q2) = 1. It yields
that (26) holds.

Putting (24) and (26) into (23), and letting

∆(q1) := kEθ2
4g

2(sin q1 − 1) cos q1 + kP (q1 − π/2)(46)

we have

∆(q1) = 0 (47)

It is obvious that q1 = π/2 is a root of equation
∆(q1) = 0. In what follows, we will show that
q1 = π/2 is the unique root of ∆(q1) = 0 under the
condition (44). To begin with, define x = q̃1 = q1−
π/2 and

f(x) = k0x − (cosx − 1) sinx (48)

with k0 = kP /(kEθ2
4g

2) > 0. It is easy to see that
q1 = π/2 is the unique root of ∆(q1) = 0 if and
only if x = 0 is the unique root of f(x) = 0. Now,
since f(−x) = −f (x) holds, it suffices to consider
x > 0. First, we consider x ∈ (0 2π] as followings.

For x ∈ (0 π), since (cosx − 1) sinx < 0,
f(x) ≥ k0x > 0, f(x) = 0 has no solution.

For x ∈ [π 3π/2], since (cos x − 1) sin x ≥ 0, it
is possible that f(x) = 0 has solution(s). It is
straightforward to see that f(x) has no solution
in x ∈ [π 3π/2] if and only if k0 > η∗, i.e., (44)
holds.

For x ∈ [3π/2 2π], since (cosx− 1) sinx ≥ 0, it is
possible that f(x) = 0 has solution(s). Note that
f(x) has no solution in x ∈ [π 3π/2] if and only
if

k0 > η∗
s := max

x∈[3π/2 2π]
η(x).

Since η∗
s < η∗, f(x) has no solution in x ∈

[3π/2 2π] if (44) holds.

Next, as to x > 2π, via a similar analysis, we can
show that f(x) has no solution in x ∈ [3π/2 2π]
if (44) holds.

Therefore, ∆(q1) = 0 has the unique root q1 = π/2
under (44). It yields from (26) that Ẽ = 0 which
contradicts the assumption that Ẽ �= 0.

Therefore, we can conclude that Ẽ = 0. It follows
from (23) and (10) that the rest equations in (45)
hold.

Consequently, (ii) holds. This completes the proof
of Theorem 1.

REMARK 2. Direct numerical calculation of η∗

yields that η∗ = 0.3146.

From the above discussion, we have found that
the Pendubot cannot get stuck at the equilibrium
(−π/2, 0, π, 0). Note that condition (41) is weaker
than condition (12) owing to the fact c1 ≥ c.

4. SIMULATION RESULTS

We simulated the Pendubot using the same pa-
rameters as those given in (Block, 1996), i.e.,

θ1 = 0.0799, θ2 = 0.0244, θ3 = 0.0205

θ4 = 0.42126, θ5 = 0.10630, g = 9.8

According to (40) and (44), for an initial condition

q1(0) =
π

3
, q2(0) = −π

8
, q̇1(0) = 0, q̇2(0) = 0

we choose ke = 1, kp = 5.5 > η∗keθ
2
4g

2 = 5.3618
and kd = 0.5. The simulation results under (14)
with the above control parameters are depicted in
Fig. 2 and Fig. 3.

From Fig. 2, we know that the first link converges
to q1 = π/2 and the second link remains swinging
while approaching closer and closer to the vertical.
From Fig. 3, we can observe that the Lyapunov
function V and Ẽ converges to zero, while τ1 does
not converge. Also, from Fig. 3, the second link
converges to homoclinic orbit (16).

In contrast to implicit condition that kp should be
chosen sufficient small, we can determine kp easier
according to (44) together with (40).

5. CONCLUSIONS

This paper has studied the swing up control for the
pendubot based on energy based control approach.
It has given an answer to the unsolved issue in
(Fantoni et al., 2000) whether the total energy of



the Pendubot will converge to the potential energy
of its top upright position.

After having investigated the characteristics of
the closed-loop systems with the energy based
control law (Fantoni et al., 2000) for swinging the
Pendubot up, this paper has proposed a sufficient
condition about parameters in the control law
such that the total energy of the Pendubot will
converge to the potential energy of its top upright
position. It guarantees the solution to closed-loop
systems converges to be that link 1 is at rest at the
vertical and link 2 moves according to the homo-
clinic orbit. In this way, the characteristics of the
closed-loop systems with the energy based control
law has been illustrated clearer. Moreover, with
the aid of the proposed condition, the parameters
in the control law are easy to be chosen.
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Fig. 2. Time response of states of the Pendubot.
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Fig. 3. Time responses of V , τ1, Ẽ, and phase plot
of q2.


