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Abstract: This paper proposes new fundamental limitations on the step response of the
unit y-feedback system based on its transfer function. Using the de�nition of Laplace
transform, it is shown that time-domain integral equalities have to be satis�ed by the
step response of SISO(single-input, single-output) stable system, and shown that the
maximum magnitude of its step response has some low er bounds with respect to the
achiev able settling time of the systems. It is also shown that the closed-loop system
with open-loop RHP(right half plane) poles and/or zeros has some limitations in the
unit y-feedback control scheme. These results can be used to check in advance whether
desired design speci�cations are achievable or not. Copyright c
 2002 IFA C
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1. INTRODUCTION

There are always fundamental limitations in-
volv edwith an y feedback con trol system. Many
w orks have been done to clarify these limitations
imposed by the inherent characteristics of the
ph ysical system. Most of them are formulated
in the frequency domain for linear SISO(single-
input, single-output) systems (Freudenberg and
Looze, 1985; Horowitz and Liao, 1984; Middle-
ton, 1991), and are extended to MIMO(multi-
input, multi-output) systems (Chen, 2000) as well
as nonlinear systems (Seron et al., 1999). Time-
domain limitations which are formulated by the
time-domain integral equalities based on Laplace
transform have been also developed (Goodwin et

al., 1999; Middleton, 1991; Kwon et al., 2001;
Kwon, 2002). As a result, it has been real-
ized that nonminimum phase systems, compared
with minimum phase systems, have more vari-
ous fundamental limitations associated with the
achiev able closed-loop transfer function, closed-
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loop gain margin, loop transfer recovery, sensitiv-
ity or complementary sensitivity function, distur-
bance rejection, etc. (Qiu and Davison, 1993).

The fundamental limitations in linear �ltering de-
signs are also investigated as the counterparts to
con trol theories (Goodwinet al., 1995). A recent
comprehensive survey of inherent design limita-
tions is found in F reudenberg et al. (2000). The
theory of fundamental design limitations provides
the basic scienti�c background in the �eld of feed-
bac kcontrols for all con trolengineers who need
the basic results from this area. These limitations
may be used to check in advance whether desired
design speci�cations are achievable or not.

In many cases, the fundamental limitations on
the achiev ableperformances are to cause trade-
o� relations betw eendesign speci�cations. Only
for a few very special cases are analytic methods
known to �nd the exact form of the trade-o�s,
and these trade-o�s can be mostly computed by
numerical convex problem methods (Barratt and
Boyd, 1989). It has been studied that the limita-
tions of an achievable performance with a linear
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controller can be computed numerically, where the
performance re
ects many practical constraints
and qualities including a fast response to com-
mands without excessive undershoot and over-
shoot phenomena, small and quick reactions to
disturbances or noises, a lower actuator authority,
and certain measures of robustness or insensitivity
to unknown or unmodeled plant dynamics. (Boyd
et al., 1988).

One of the limitations is the step response extrema
such as undershoot and overshoot phenomena.
For a stable system with real poles and zeros,
it is well-known that the step response extrema
are perfectly characterized by the number and
location of poles and zeros (Jayasuriya and Song,
1996; El-Khoury et al., 1993; McWilliams and
Sain, 1989). As a result, RHP(right half plane)
real zeros lead to undershoot and LHP(left half
plane) real zeros located right side of the dominant
pole lead to overshoot in the step response of
the system (Le�on de la Barra, 1994; Kobayashi,
1993; McWilliams and Sain, 1989). In the unity-
feedback control method, it has been shown that
the plant with unstable real poles has overshoot
in its closed-loop step response (Middleton, 1991).
However, these results related with undershoot
and overshoot has been studied for the systems
with only real poles and zeros.

In this paper, the e�ects of open-loop unstable
poles and RHP zeros in the unity-feedback system
are investigated. It has derived new time-domain
integral equalities on the step response of the
closed-loop system, and it is shown that SISO
stable systems have some lower bounds between
the maximum magnitude of its step response and
the achievable settling time. Moreover, it is shown
that open-loop unstable real poles necessarily im-
ply overshoot and RHP zeros necessarily imply
undershoot in its step response.

The layout of this paper is organized as follows:
In Section 2, we present the unity-feedback control
system structure, and de�ne some notations used
in this paper. In Section 3, it is shown that there
are new integral equalities on the time-domain
representation of the step response. Based on
these equalities, the fundamental limitations on
the step response of unity-feedback system are
formulated in Section 4. The concluding remarks
are given in Section 5.

2. PRELIMINARIES

Let us consider the unity-feedback control system
as shown in Fig. 1. It is the most commonly used
system con�guration with the controller placed in
series with the controlled plant (Kuo, 1995). In
Fig. 1, the symbols have the following meaning:

)(sK )(sP)(tr )(ty
)(te )(tu

�
�

Fig. 1. The unity-feedback system.

P (s) : plant transfer function,
K(s) : controller transfer function,
r(t) : reference input,
e(t) : error signal,
u(t) : controller output or plant input,
y(t) : plant output.

Also, let us de�ne the complementary sensitivity
function by

T (s) ,
K(s)P (s)

1 +K(s)P (s)
; (1)

which is also the closed-loop transfer function
from the reference input r(t) to the plant output
y(t). Hence, the output Y (s), which is the Laplace
transform of y(t), can be written by

Y (s) = T (s)R(s); (2)

where R(s) is the Laplace transform of r(t).
Moreover, if p is an open-loop pole of the unity-
feedback system, the closed-loop transfer function
T (s) always satis�es

T (p) = 1; (3)

and equivalently, the unit step response yields

Y (p) =
1

p
: (4)

Without loss of generality, we can restrict T (s) on
satisfying Assumption 1:

Assumption 1. Assume that T (s) satisfy the con-
ditions as follows:

(1) All poles of T (s) have the real part less than

 < 0.

(2) T (s) is relaxed at time 0.
(3) The DC gain of T (s) is normalized by 1.
(4) There is no pole-zero cancellation.

Also, we will investigate some conditions such
that the step response has the overshoot and
undershoot in the sense of De�nitions 1 and 2,
respectively.

De�nition 1. The step response is said to have
overshoot if there is an open interval (a; b) such
that

y(t) > 1; 8t 2 (a; b); (5)

where y(t) is the step response of T (s).



De�nition 2. The step response is said to have
undershoot if there is an open interval (c; d) such
that

y(t) < 0; 8t 2 (c; d); (6)

where y(t) is the step response of T (s).

Note that De�nition 2 includes Type A under-
shoot, i.e., the initial undershoot, as well as Type
B undershoot (Mita and Yoshida, 1981).

3. TIME-DOMAIN INTEGRAL EQUALITIES

This section is to investigate some equalities on
the time-domain representation of the step re-
sponse based on its Laplace transform. We will
consider a closed-loop transfer function T (s) as in
Fig. 1, which satis�es Assumption 1.

Lemma 1 states new integral equalities related to
the unit step response of T (s).

Lemma 1. For Re [�] > 0, the Laplace transform
pair, y(t) and T (s)=s, meets integral equalities as
follows:Z 1

0

e��t cos(!t)y(t)dt = Re

�
T (�)

�

�
; (7)

andZ 1

0

e��t sin(!t)y(t)dt = �Im

�
T (�)

�

�
; (8)

where � = � + j!.

Proof. See in Kwon et al. (2002). �

Equations (7) and (8) in Lemma 1 have to be
satis�ed by the unit step response y(t) for all
complex value � with a positive real part. In the
sequel, we will mainly use the Eq. (7) in Lemma
1 since Eq. (8) is trivial when ! = 0. However,
Eq. (8) will imply that it has the undershoot or
overshoot to the system satisfying some conditions
in its step response.

For a system with RHP zeros, let us take the value
of � for those zeros in Lemma 1, then another
integral equality on the relationship between RHP
zeros and the step response of the system are
formulated as follows:

Lemma 2. Let T (s) have r1 RHP real zeros at
s = zi for i = 1; 2; � � � ; r1 and 2r2 RHP complex
conjugate zeros at s = ak�jbk for k = 1; 2; � � � ; r2.
Then y(t) has to satisfyZ 1

0

[Er(t) +Ec(t)�c(t)] y(t)dt = 0; (9)

where Er(t) is a linear combination of e
�zit, Ec(t)

is a linear combination of e�akt, and �c(t) is a
linear combination of cos(bkt) and/or sin(bkt).

Proof. See in Kwon et al. (2002). �

Similarly to Lemma 2, it can be derived to the
other integral equalities imposed by open-loop
unstable poles as follows:

Lemma 3. If Y (s) has open-loop unstable com-
plex conjugate poles at s = ��j� on the complex
plane, y(t) has to satisfy

Z 1

0

e��t cos(�t)y(t)dt =
�

�2 + �2
; (10)

and Z 1

0

e��t sin(�t)y(t)dt =
�

�2 + �2
: (11)

Proof. Let us take � = �+ j� in Lemma 1, and
the result immediately follows from Eqs. (7) and
(8) since T (p) = 1, which completes the proof. �

If Y (s) has an open-loop RHP real pole at s = p

in the complex plane, Eq. (10) can be rewritten
by Z 1

0

e�pty(t)dt =
1

p
; (12)

which means that if the open-loop RHP real pole
is close to the origin, the maximum overshoot has
to be very large (Middleton, 1991).

4. FUNDAMENTAL LIMITATIONS ON THE
STEP RESPONSE

Based on the results of the previous section, the
performance limitations on the step response of
the closed-loop system as shown in Fig. 1 are
established in this section. Let us consider a sit-
uation in which the step response is equal to the
DC gain after a �nite time period, which is pre-
viously used in Goodwin et al. (1999). Although
this assumption of an exact settling time would be
unrealistic, corresponding results presented in this
paper can be extended so that similar limitations
hold under the less restrictive set of assumptions.

De�nition 3. Let us de�ne the exact settling time
of the system as follows:

ts = inf
�
� : y(t) = 1; 8t � �

	
; (13)

where y(t) is the step response of T (s).

Let us �rstly derive the condition under which
the system has the undershoot phenomena in the
sense of De�nition 2.



Lemma 4. For the stable system with RHP com-
plex conjugate zeros at s = a� jb on the complex
plane, the step response has the undershoot if

bts �
�

2
+ tan�1

a

b
; (14)

where ts is the exact settling time.

Proof. Let Er(t) = 0, Ec(t) = e�at and �c(t) =
sin(bt) in Lemma 2, and the step response y(t) has
to satisfy

0 =

Z 1

0

e�at sin(bt)y(t)dt

=

Z
ts

0

e�at sin(bt)y(t)dt+

Z 1

ts

e�at sin(bt)dt:

(15)

since the system has RHP complex conjugate
zeros at s = a� jb. From Eq. (15), we can obtain
the relationZ

ts

0

e�at sin(bt)y(t)dt

= �
e�ats

a2 + b2
[a sin(bts) + b cos(bts)]

= �
e�ats

a2 + b2
cos

�
bts � tan�1

a

b

�
:

(16)

Hence, if bts � �=2 + tan�1(a=b), then y(t) will
take both positive and negative signs since the
right side of Eq. (16) is always negative, and
e�at sin(bt) > 0 for all t 2 [0; ts], which completes
the proof. �

It is noted that the value of tan�1(a=b) is given
by

0 � tan�1
a

b
�

�

2
(17)

since a > 0 and b > 0. If a � b, Eq. (14) leads to
the result

bts �
3

4
�: (18)

Corollary 4 also implies that the system with RHP
real zeros, i.e., the case of b = 0, always has
the undershoot in the step response without any
relation with the settling time. As a matter of
fact, it is well-known that SISO LTI continuous-
time systems with an odd number of RHP real
zeros have the initial undershoot on the step type
reference input (Le�on de la Barra, 1994; Mita
and Yoshida, 1981). However, the corresponding
result has not presented for the system with RHP
complex conjugate zeros related to the undershoot
phenomena in the step response.

Also, let us de�ne the maximum magnitude of the
step response using the L1 norm as follows:

De�nition 4. De�ne the L1 norm by

kyk1 = ess sup jy(t)j; 8t � 0; (19)

where y(t) is the step response.

Under this de�nition, the lower bounds of kyk1
derived by using Lemma 1 can be formulated as
follows:

Theorem 1. If !ts � �=2, the maximum magni-
tude of the unit step response y(t) has a lower
bound as follows:

kyk1 � max
�2R+;!2R

�
A(�)

M(�)

�
(20)

with

A(�) = Re

�
T (�)

�

�
�H(�); (21)

M(�) =
�

�2 + !2
�H(�); (22)

where ts is the exact settling time, � = � + j!

and

H(�) =
e��ts

�2 + !2
[� cos(!ts)� ! sin(!ts)] : (23)

Moreover, if !ts � �, the maximum magnitude of
y(t) has a lower bound as follows:

kyk1 � max
�2R+;!2R

�
B(�)

N (�)

�
(24)

with

B(�) = Im

�
T (��)

��

�
� I(�); (25)

N (�) =
!

�2 + !2
� I(�); (26)

where �� = � � j! and

I(�) =
e��ts

�2 + !2
[� sin(!ts) + ! cos(!ts)] : (27)

Proof. If !ts � �=2, Eq. (7) in Lemma 1 can be
modi�ed as follows:

Re

�
T (�)

�

�

=

Z
ts

0

e��t cos(!t)y(t)dt+

Z 1

ts

e��t cos(!t)dt

� kyk1

Z
ts

0

e��t cos(!t)dt

+
e��ts

�2 + !2
[� cos(!ts)� ! sin(!ts)] ;

(28)

which implies Eq. (20). Equation (24) can be also
derived from Eq. (8) in Lemma 1 when !ts � �,
which completes the proof. �

Theorem 1 states the trade-o� relations between
the maximum magnitude of the step response
and the achievable settling time. Although it is



diÆcult to compute the lower bounds in Theorem
1 by analytic methods, they can be easily changed
to simple form (Kwon et al., 2002). For example,
if we take the imaginary part of � for 0, we can
obtain the lower bound without any relation with
! as follows:

kyk1 � max
�2R+

�
T (�)� e��ts

1� e��ts

�
: (29)

When the exact settling time ts approaches1, it
is obvious that Eq. (29) becomes

kyk1 � max
�2R+

[T (�)] : (30)

It can be seen that as � goes to 0, the lower bound
of Eq. (29) goes to the DC gain and as � goes
to 1, it goes to 0 for strictly proper systems.
Hence, all unity-feedback systems have some lower
bounds such as Eqs. (29) and (30) as well as Eqs.
(20) and (24) in Theorem 1. Note that the lower
bound of Eq. (30) does not concern with the exact
settling time ts.

Theorem 1 has very important information related
to the overshoot on the unit step response of the
unity feedback system. It can be summarized as
follows:

Corollary 1. A stable unity-feedback system T (s)
must have the overshoot in its unit step response
if there exists � = � + j! satisfying one of two
conditions as follows:

(1) Re

�
T (�)

�

�
>

�

�2 + !2
and !ts � �=2,

(2) Im

�
T (��)

��

�
>

!

�2 + !2
and !ts � �,

where ts is the exact settling time.

Proof. It follows from Theorem 1 since the unit
step response has the overshoot if and only if
kyk1 > 1. �

Another result related to the overshoot can be
induced by Eq. (29) as follows:

Corollary 2. A stable unity-feedback system with
open-loop RHP real poles must have overshoot in
the unit step response.

Proof. Since the unit step response has the over-
shoot if and only if kyk1 is larger than 1, it can
be seen from Eq. (29) that kyk1 > 1 if and only if
T (�) > 1 for some � > 0, where T (s) is given by
Eq. (1). Without loss of generality, let us denote
K(s) = N(s)=D(s) and P (s) = B(s)=A(s). Then
T (�) is larger than 1 if and only if A(�)D(�) < 0
since A(�)D(�) +B(�)N(�) > 0 for some � > 0.
If T (s) has open-loop RHP real poles, there exist
� > 0 such that A(�)D(�) < 0, and equivalently,

its step response must have the overshoot, which
completes the proof. �

As a matter of fact, Corollary 2 is the special case
of Corollary 1 with ! = 0. As a result, if the plant
P (s) has unstable real poles, any controller does
not make the step response without the overshoot
in the unity-feedback scheme as shown in Fig. 1.

Finally, let us consider that T (s) has open-loop
unstable real poles and RHP zeros. In this case, we
can obtain another lower bound of the maximum
magnitude of the step response imposed by those
poles and zeros in the unity-feedback system.

Theorem 2. Let T (s) have RHP complex conju-
gate zeros at s = a�jb and an open-loop unstable
real pole at s = p on the complex plane. If a > p,
the maximum magnitude of the unit step response
has a lower bound as follows:

kyk1 � max

�
a2 + b2

a2 + b2 � ap
;

a2 + b2

a2 + b2 � bp

�
: (31)

Proof. From Theorem 1, the unit step response
y(t) has to satisfyZ 1

0

e�at cos(bt)y(t)dt = 0; (32)

since T (s) has RHP complex zeros at s = a �
jb. Moreover, y(t) has to also satisfy Eq. (12)
since T (s) has the RHP real pole at s = p. The
di�erence of Eq. (12) and Eq. (32) is given byZ 1

0

�
e�pt � e�at cos(bt)

�
y(t)dt =

1

p
: (33)

If a > p, it can be rewritten by

1

p
� kyk1

Z 1

0

�
e�pt � e�at cos(bt)

�
dt

= kyk1

�
1

p
�

a

a2 + b2

�
;

(34)

which implies a lower bound as follows:

kyk1 �
a2 + b2

a2 + b2 � ap
: (35)

The di�erence of Eq. (12) andZ 1

0

e�at sin(bt)y(t)dt = 0; (36)

yields another lower bound as follows:

kyk1 �
a2 + b2

a2 + b2 � bp
: (37)

Finally, Eq. (31) follows from the Eqs. (35) and
(37), which completes the proof. �

When T (s) has an RHP real zero at s = z and
open-loop unstable real pole at s = p, the lower
bound of Eq. (31) can be rewritten by

kyk1 �
z

z � p
; (38)



provided that z > p. It means that the overshoot
is extremely large when T (s) has the open-loop
real pole located in the left vicinity of the RHP
real zero.

5. CONCLUSION

This paper has presented some new results on
time-domain integral equalities related to the step
response of SISO stable system, which are formu-
lated by the complex value � having a real part
larger than 0. Based on these equalities, it has
shown that the unity-feedback system as shown
in Fig. 1 has some lower bounds on the maximum
magnitude of its step response with respect to the
achievable settling time, which is given by The-
orem 1. Moreover, it has shown that RHP zeros
necessarily imply the undershoot and open-loop
unstable real poles necessarily imply the overshoot
in the step response, which are given Corollaries
4 and 2, respectively.

The results presented in this paper are formulate
on the time-domain, which are the counterparts
of the fundamental limitations on the frequency-
domain. The results will provide some guidelines
for designing the feedback controller of any sys-
tem.
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