
MONITORING OF BATCH PHARMACEUTICAL

FERMENTATIONS: DATA SYNCHRONIZATION,

LANDMARK ALIGNMENT, AND REAL-TIME

MONITORING
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Abstract: Most batch pharmaceutical fermentations have successive phases of oper-
ation. Detection of process phase landmarks is important for improving the perfor-
mance of process monitoring and control. This study considers techniques for adjust-
ment of batch data lengths to match landmarks of phases during the progress of the
batch. Time synchronization and landmark alignment techniques are presented and
their integration with on-line monitoring is discussed through illustrative examples.
Copyright c© 2002 IFAC.
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1. INTRODUCTION

Batch fermentations of pharmaceuticals usually
have complex reaction mechanisms and non-
linear, time-variant process dynamics that make
their modeling, monitoring and control challeng-
ing. In a batch pharmaceutical fermentation pro-
cess that lasts several days, some organisms may
have generation times that are shorter than one
hour. Slight changes in operating conditions dur-
ing critical periods may have a significant in-
fluence on growth and differentiation of organ-
isms, and impact final product quality and yield.
Changes in raw material quality and impurity
levels in the feed also affect the final product.
Furthermore, most batch fermentations proceed
through a number of production phases. Fluctua-
tions in operation may cause variations in both
temporal occurrence and magnitude of process
events. The landmarks for these phases may shift
in time for various runs and impact the com-
putation of precise reference mean trajectories.
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Consequently, batch fermentation data sets con-
tain unequal and unsynchronized data for various
batch runs that need to be pre-processed prior
to multivariate modeling to prevent inconsistent
statistical results and possibility of false alarms in
multivariate statistical control charts.

In this work, data length equalization and tra-
jectory synchronization techniques are integrated
with on-line multivariate statistical monitoring
framework for monitoring batch fermentations in
the pharmaceutical industry. While the methods
have been used with industrial data, their per-
formance will be illustrated by using simulated
fed-batch penicillin fermentation data. The data
length adjustment and phase landmark alignment
techniques include: (1) indicator variable, (2) dy-
namic time warping (DTW), and (3) curve regis-
tration. Curve registration is based on functional
data analysis where batch trajectory data are in-
terpreted as sampled from continuous functions.
Functional data analysis and curve registration
are discussed and their performance are compared
with indicator variable and DTW methods.
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Multiway principal components analysis (MPCA)
technique is used to develop empirical models
out of time-aligned fermentation data for analyz-
ing completed batches and adaptive hierarchical
PCA (AHPCA) is used for on-line monitoring.
The number of false alarms has been reduced
after time alignment in penicillin fermentation
case studies. Another important ramification of
the integration of time alignment algorithms with
MSPM framework is the availability of informa-
tion about the locations of the important process
events including microbial phases in each batch.
This information can be used to determine the
necessary control actions as well as the required
operating policy changes that apply for different
microbial phases to enhance overall productivity.

Different approaches are found in the literature
for the physiological phase detection in fermenta-
tion processes based on knowledge-based pattern
recognition and fuzzy logic (Konstantinov and
Yoshida, 1992). These solutions rely on the use of
temporal shape libraries and extensive rule bases
to explain physiological alterations.

The presentation will focus on the description of
various landmark detection and alignment tech-
niques, the integration of trajectory alignment
and multivariate statistical process monitoring
(SPM), and the illustration of the proposed uni-
fied framework by monitoring penicillin fermen-
tation by using dynamic models and data gen-
erated by simulations. Case studies illustrate the
advantages of the proposed techniques. Fed-batch
penicillin fermentation is used as a case study.
Process data are simulated using the modified
mechanistic model of Bajpai and Reuss (1980).
Details of the extended process model and the
simulator are reported by Undey et al. (2000).

2. TIME NORMALIZATION TECHNIQUES

Batch fermentation processes are often accompa-
nied by physiological phase changes. The land-
marks of the process reflect physiological transi-
tion points that are to be used both to monitor the
biological evolution of the process and to decide
upon the appropriate control strategy. The occur-
rence times of these transitions represent variabil-
ity due to expected or unexpected alterations in
cell behavior. Some of these landmarks may be
delayed and others are advanced in different batch
runs. For instance, the first landmark of a variable
x from a hypothetical batch run c1 (dashed line)
occurs at t = τ1(c1) and the second at t = τ2(c1)
whereas in another run operated under the same
conditions the occurrence of the first landmark of
x is advanced and the second delayed such that
τ1(c2) > τ1(c1) and τ2(c2) < τ2(c1).
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Fig. 1. Physiological phase differences.

To develop a more sound SPM framework, those
unsynchronized curves should be aligned. This
will provide a consistent comparison of process
observations since the time axis difference are
minimized. Another important benefit of this pre-
processing will be the equalization of the batch
lengths to a common duration that is necessary
prior to matrix and vector calculations used in
empirical model development for SPM.

Indicator Variable Technique (IVT) is based
on selecting a process variable to indicate the
progress of the batch instead of time. This variable
should be chosen such that it also shows the ma-

turity or percent completion of each batch. Some
candidates are percent conversion or percent of a
component fed to the fermenter. A measure of the
maturity of a batch is provided by the percentage
of its final value attained by the indicator vari-
able at the current point in time. Observations
about the progress of all other variables are taken
relative to the progress of the indicator variable
(IV). The indicator variable should be smooth,
continuous, monotonic and spanning the range of
all other process variables within the batch data
set (i.e. iv(tk) > iv(tk−1) for monotonic increase,
where iv denotes the indicator variable). Linear
interpolation techniques are used to transform
batch-time dimension into indicator variable di-
mension. For monitoring new batches, data are
collected from all process variables and adjusted
with respect to the indicator variable such that
x→ x(tk), where x denotes process variables and
tk the corresponding time stamp of the indicator
variable sampling instance. This technique has
been used for batch/semi-batch polymerization
and batch fermentation processes, where reaction
extent or percent of a component fed are used as
indicator variable (Kourti et al., 1996; Neogi and
Schlags, 1998; Rothwell et al., 1998). IVT is ap-
pealing because of its ease of implementation, but
it does not account for the locations and the align-
ment of physiological landmarks. Another likely
problem with IVT is the lack of an appropriate
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Fig. 2. Equalized batch lengths using mixed-IVT.
Indicator variable 1: Substrate concentration
decrease during batch operation (upper fig-
ures), 2: percent substrate added during fed-
batch operation (lower figures)

candidate for a single indicator variable for all
phases of a batch. In such cases, further processing
is required to apply the technique such as dividing
process phases so that an indicator variable can be
identified in each phase. This mixed approach was
applied in the penicillin case study for IVT based
SPM. The difficulty with the batch/fed-batch op-
eration is the lack of an appropriate variable that
spans the whole range of process variables. Pro-
cess data from 55 successful batches were divided
into two parts representing batch operation and
followed by the fed-batch operation. Two different
IVs are chosen for each operation phase in peni-
cillin fermentation and results are shown for vari-
ables 7, 9 and 12, biomass concentration, culture
volume and fermenter temperature, respectively.
For the batch operation, substrate concentration
decrease is found to be the best candidate as
an indicator variable (upper figures in Figure 2).
Percent addition of substrate into the fermenter
is selected as indicator variable for the fed-batch
operation (lower figures in Figure 2).

Dynamic Time Warping (DTW) has its ori-
gins in speech recognition and is a flexible, deter-
ministic, pattern matching scheme which works
with pairs of patterns. It is able to locally trans-
late, compress, and expand the patterns so that
similar features in the patterns are matched.
DTW nonlinearly warps two trajectories in such
a way that similar events are aligned and a min-
imum distance between them is obtained. Basic
description of DTW and different algorithms are
given by Sakoe and Chiba (1978) and Rabiner et

al. (1978). Gollmer and Posten (1996) have im-
plemented this technique to detect process phase
changes and faults in fed-batch E. coli fermenta-
tions. A recent application of DTW for monitoring

and diagnosis in a batch polymerization process
has been reported by Kassidas et al. (1998).

The objective of DTW is to find the nonlin-
ear mapping function C(k) = [i(k), j(k)], k =
1, . . . ,K between two multivariate observation
sets, the reference setR (m×p) and the test set T
(n× p), where p denotes the number of variables,
and m and n the number of observations on each
set. This is done subject to a set of path and
end point constraints to minimize the following
accumulated distance

D∗(C) =
1

N(w)
min
C

K
∑

k=1

d[i(k), j(k)]w(k) (1)

where w(k) denotes a weighting function that is
used to impose local continuity constraints. A
symmetric and smoothed version of this function
is used in this work because it gave better per-
formance. While the choice of w(k) is arbitrary,
it depends on the degree of allowable warping
for a particular application. Neither too steep,
nor too gentle local moves on the warping path
should be allowed. N(w) is a normalization factor.
d[i(k), j(k)] is the distance between the two points
in test and reference sets. Mahalanobis distance
can be used as a measure of local similarity be-
tween the point in signal T(i, p) and the reference
point R(j, p) as follows

d[C(k)] = [T(i(k), :)−R(j(k), :)]W[T(i(k), :)−R(j(k), :)]T

where a (p × p) positive definite matrix W is
reflecting the relative importance of the variables
preferably based on their resemblance to time
axis. Multivariate DTW is applied to batch tra-
jectories iteratively so thatW is updated at each
iteration to align patterns more precisely. After
each iterationW is adjusted so that variables that
show smaller deviations from the mean profiles are
given higher weights. Figure 3(b) shows % variable
contributions toW after 10th iteration. Variables
7 (biomass concentration) and 13 (generated heat
by biomass production) received the highest con-
tributions since their profiles are smoother, mono-
tonically increasing and continuous hence resem-
bling the time axis to some degree than the rest
of the variables.

Curve Registration casts the landmark align-
ment problem in the functional data analysis
(FDA) framework (Ramsay and Silverman, 1997).
FDA involves the estimation of mth order linear
differential operators L = w0I + w1D + . . . +
wm−1D

m−1+Dm where Lx = 0, Dm denotes the
mth derivative, and the weights w are functions
of the independent variable t. Let N functions xi
be defined on closed real interval [0, T0] and hi(t)
be a transform of t for the case i with domain
[0, T0]. The time of events must remain in the same
order regardless of the time scale, hi(t1) > hi(t2)
for t1 > t2. Define y(t) to be a fixed (reference)
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Fig. 3. Multivariate DTW example

function defined over [0, T0] to act as a template
(for example a reference batch trajectory) for in-
dividual curves xi such that after registration, the
features of xi will be aligned with the features of
y. In discrete values yi, k = 1, . . . ,K,

yi = xi [hi(tk)] + εik (2)

where εik is a small residual relative to xi and
roughly centered about 0 (Ramsay and Silverman,
1997). The curve registration task is to determine
the time warping functions hi so that trajectories
xi[hi(tk)] can be interpreted more accurately. The
hi can be determined by using a smooth monotone
transformation family consisting of functions that
are strictly increasing (monotone) and have an
integrable second derivative (Ramsay, 1998):

D2h = qDh (3)

A strictly increasing function has a nonzero
derivative and consequently the weight function
q = D2h/Dh or the curvature of h. h can be
estimated by minimizing a measure of the fit Υη

of xi[hi(tk)] to y. A penalty term in Υη based on
q permits the adjustment of the smoothness of hi
(Ramsay and Silverman, 1997). To estimate the
warping function hi, one minimizes

Υη(y, x|h) =
L
∑

`=0

∫

α`(t) ‖D
`y(t)−D`x [h(t)]‖2` dt

+η

∫

q2(t)dt (4)

where α`(t)’s are weight functions, and L denotes
the highest order of the derivative

‖D`y(t)−D`x [h(t)]‖2` =

(D`y(t)−D`x [h(t)])TW`(D
`y(t)−D`x [h(t)]). (5)

The weight matrices W`’s allow for general
weighting of the elements and the weight func-
tions α`(t)’s permit unequal weighting of the fit
to a certain target over time (Ramsay and Silver-
man, 1997). η adjusts the penalty on the degree

of smoothness. B-splines q(u) =
∑P

p=0 cpBp(u)
are used in this study as the polynomial basis
for performing the curve registration because cal-
culating the coefficients of the polynomial is well
defined. In addition, when estimating the solution
to transforming particular waveforms into the B-
spline domain, the required number of calcula-
tions increases linearly with the number of data
points (Ramsay, 1998). The derivative of Υη with
respect to the B-spline coefficient vector c is

∂Υη(y, x|h)

∂c
= −2

L
∑

`=0

α`(t)
∂h(t)

∂c

[

∂D`x(h)

∂h

]T

W`

×(D`y(t)−D`x[h(t)])dt+ η

∫

(

∂q(t)

∂c

)2

dt (6)

The derivative [∂D`x(h)/∂h] must be estimated
with a smoothing technique to ensure monotonic
increasing (Ramsay and Silverman, 1997).

To determine the number of landmarks and their
locations from a set of trajectories, process knowl-
edge and/or numerical techniques can be used.
The challenge of implementing multivariate land-
marking is that landmarks may be different (in
number and location) for different process vari-
ables. Critical issues are the selection of land-
marks among the process variables that define the
phase phenomena of the process, and the number
of landmarks to define clearly the progress of the
batch. One solution to these issues is to use an
iterative approach which will reconcile the iden-
tification of process landmarks with respect to
particular trajectory landmarks. This procedure
could be implemented as follows:

(1) Find the landmarks (`m) of the most impor-
tant variable trajectory `m1. Align all other
variable trajectories with respect to the land-
marks `m1.

(2) Calculate the principal components of the
aligned set of process variables. Determine
the landmarks of the first principal compo-
nent `mPCA.

(3) Realign the process trajectories with respect
to `mPCA.

(4) Recalculate the principal components of the
realigned set of process variables. Determine
the landmarks of the first principal compo-
nent `mPCAnew.

(5) Determine if `mPCAnew are reasonably close
to `mPCA. If so, the process landmarks are
defined by `mPCAnew. If not, then return to
Step 3.



The implementation of this procedure will also
depend upon the interpretation of the results.
Once `mPCAnew has converged, one may proceed
with statistical analysis using the data warped
with respect to `mPCAnew. As an alternative, only
the data identified as “most significant” (either
by user or principal components) may be warped
with respect to `mPCAnew, and other process data
may be warped with respect to its own optimal
landmarks.

When landmarking a test trajectory with respect
to a reference trajectory, two distinct cases occur.
The first case is called uniform landmark case be-
cause all the landmarks are delayed (or advanced)
by a constant time. The second is the mixed
case that represents a more general framework
where some landmarks are delayed and others are
advanced yielding a more challenging landmark
detection problem (Figure 1). Furthermore, the
time shifts of the landmarks will vary, preventing
the use of an assumption of a constant time shift
τ between calculated and mean-value landmarks.
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Fig. 4. Comparison of alignments of several pro-
files in the reference set using DTW (upper
figures) and curve registration (lower figures).

3. INTEGRATION AND DEPLOYMENT OF
TIME ALIGNMENT TECHNIQUES IN

ON-LINE SPM FRAMEWORK

Once the batch trajectories are equalized and syn-
chronized using one of the techniques explained
in Section 2, an on-line real time SPM frame-
work can be developed upon integration of these
techniques into monitoring methods. Since batch
processes generate three-dimensional arrays (Fig-
ure 5), equalized and synchronized data from the
batches are arranged into a three-dimensional ar-
rayX (I×J×K) where I is the number of batches,
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Fig. 5. Batch data representation, unfolding pro-
cess and adaptive hierarchical PCA technique

J is the number of variables and the K is the
number of sampling times in a given batch.

The on-line monitoring method used in this work
is based on a variation of MPCA technique called
adaptive hierarchical PCA (AHPCA) recently
suggested by Rannar et al. (1998). This technique
also works with the unfolded and properly scaled
three-way array of normal operation (NOC) data
except one important difference that it does not
require the estimates of the future values.

The integration of time alignment techniques with
AHPCA is performed in two stages. In model
development stage, the reference set (NOC data)
is equalized/synchronized and an AHPCA model
is developed using these preprocessed data (Figure
5). The monitoring stage differs depending on the
synchronization technique used. If an indicator
variable is used for time alignment, each vari-
able is sampled whenever sampling is made on
the indicator variable. DTW is implemented by
using an expanding window. As new data become
available, DTW aligns new points with the ref-
erence trajectory. It will produce more accurate
results as the batch progresses. Both IVT and
DTW techniques are implemented regardless of
the landmarks. Curve registration technique how-
ever, aligns the new observations based on the
landmarks. Details on MPCA and AHPCA can
be found elsewhere (Wold et al., 1987; Rannar et

al., 1998).

Both DTW and curve registration techniques
align the reference batches successfully to a uni-
form batch length (Figure 4). The DTW aligned
curves for variables 7 (biomass) and 9 (volume)
are not smooth, whereas the curve registration
aligned curves show smooth behavior during all
process phases. This is because DTW batch length
reconciliation is completed by skipping or repeat-
ing points. The more abrupt curve alignment of
DTW also affects the precise monitoring of new
batches.

In an instance where there is a ramp decrease in
the substrate feed rate at 150 hours (Figure 6), the
T 2 chart using DTW generates many large false
alarms with large T 2 values before the occurrence
of the fault, whereas the T 2 values based on curve



registration yield fewer smaller false alarms in the
initial 100 hours, before the fault occurs. Both
methods detect correctly the fault around 200
hours, when the drift of substrate feed rate reaches
values outside of normal operation. In new batch
runs where the batch length is significantly dif-
ferent than the mean batch length, regularization
method reduces significantly the number of false
alarms. When phase detection is implemented,
smooth phase transitions produce aligned multi-
variable batch runs so that SPM will not give false
alarms.
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Fig. 6. MSPM charts for a faulty batch run
aligned using DTW (upper frames) and curve
registration (lower frames).

4. CONCLUSIONS

The emergence of batch process operations in
many high value-added manufacturing operations
increased the importance of rapid and accurate
monitoring of batch process operations. A num-
ber of time alignment techniques have been in-
tegrated into on-line real time statistical process
monitoring framework. Given the on-line monitor-
ing techniques, the process should be monitored
while equalizing the different batch lengths on-line
by implementing a unified monitoring framework.
We propose a regularization procedure based on
mixed landmarking to be implemented along with
an AHPCA structure. Such monitoring systems
can handle phase landmarks and fault detection
as well as fault diagnosis activities. Integration
of landmark detection and time alignment tech-
niques provides more effective process supervision.
This information can be used to determine the
necessary control actions and operating policy
changes for different microbial phases to enhance
overall productivity in pharmaceutical processes.

Acknowledgement. Financial support provided
by NSF (BES-0084749) is gratefully acknowl-
edged.

5. REFERENCES

Bajpai, R.K. and M. Reuss (1980). A mechanistic
model for penicillin production. J. Chem.

Technol. Biotechnol. 30, 332–344.
Gollmer, K. and C. Posten (1996). Supervision

of bioprocesses using a dynamic time warp-
ing algorithm. Control Engineering Practice

4(9), 1287–1295.
Kassidas, A., J.F. MacGregor and P.A. Taylor

(1998). Synchronization of batch trajectories
using dynamic time warping. AIChE Journal

44(4), 864–875.
Konstantinov, K. B. and T. Yoshida (1992). Real-

time qualitative analysis of the temporal
shapes of (bio)process variables. AIChE Jour-

nal 38(11), 1703–1715.
Kourti, T., J. Lee and J.F. MacGregor (1996).

Experiences with industrial applications of
projection methods for multivariate statisti-
cal process control. Comp. and Chem. Engng.

20(Suppl. A), 745.
Neogi, D. and C. Schlags (1998). Multivariate sta-

tistical analysis of an emulsion batch process.
Ind. Eng. Chem. Res. 37(10), 3971–3979.

Rabiner, L.R., A.E. Rosenberg and S.E. Levinson
(1978). Consideration in dynamic time warp-
ing algorithms for discrete word recognition.
IEEE Trans. on Acoustics, Speech and Signal

Process. 6(26), 575.
Ramsay, J.O. (1998). Estimating smooth mono-

tone functions. Journal of the Royal Statisti-

cal Society - Series B 60, 365–375.
Ramsay, J.O. and B.W. Silverman (1997). Func-

tional Data Analysis. Springer-Verlag.
Rannar, S., J.F. MacGregor and S. Wold (1998).

Adaptive batch monitoring using hierarchical
PCA. Chemometrics Intell. Lab. Syst. 41, 73–
81.

Rothwell, S.G., E.B. Martin and A.J. Morris
(1998). Comparison of methods for handling
unequal length batches. In: IFAC DYCOPS5.
Corfu, Greece. pp. 66–71.

Sakoe, H. and S. Chiba (1978). Dynamic pro-
gramming algorithm optimization for spoken
word recognition. IEEE Trans. on Acoustics,

Speech and Signal Process. 2(26), 43–49.
Undey, C., G. Birol, I. Birol and A. Cinar (2000).

An educational simulation package for peni-
cillin fermentation. In: AIChE Annual Meet-

ing. Los Angeles, CA.
Wold, S., P. Geladi, K. Esbensen and J. Ohman

(1987). Multi-way principal component and
PLS analysis. Journal of Chemometrics

1, 41–56.


