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Abstract: This paper addresses the development of an autonomous guidance, navigation and 
control system for a flat solid circular parachute. This effort is a part of the Affordable Guided 
Airdrop System (AGAS) that integrates a low-cost guidance and control system into fielded 
cargo air delivery systems. The paper describes the AGAS concept, its architecture and 
components. It further proceeds with the description of the control strategy based on 
Pontrjagin’s principle of optimality. The paper ends with the results of the final AGAS 
demonstration performed at the U.S. Army Yuma Proving Ground in September, 2001. 
Copyright  2002 by IFAC.  
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 I. INTRODUCTION 

As identified in the Summary Report: New World Vistas, 
Air and Space Power for the 21st Century,” United States 
Air Force Science Advisory Board, 1997 there is an urgent 
need to improve the point-of-use delivery; that is, getting 
the materiel where it needs to be, when it needs to be there. 
This statement served as an initial point for the Affordable 
Guided Airdrop System (AGAS) project, initiated by the 
U.S. Army in mid 90s, see (Brown, at al., 1999). 

Currently, high-altitude, low-opening and high altitude, 
high-opening airdropped personnel are the only assets that 
can be released from altitudes above 1500m while still 
realizing an acceptable landing accuracy. Aerial missions 
over Bosnia in 1993 underscored high-altitude airdropped 
payload delivery accuracy concerns during operations 
conducted from above 3000m for re-supply and 
humanitarian purposes (over 50% of all cargo ended up at 
the wrong spots). Humanitarian-relief airdrops over Kosovo 
in 1999 and Afganistan in 2001 demanded that airdrop 
aircraft operate from even higher altitudes, with an 
expected further degradation of payload delivery accuracy. 

These facts have led to the main design goal of the AGAS 
development - to provide Guidance, Navigation, and 
Control (GNC) system that can be placed in-line with 
existing fielded cargo parachute systems (G-12 and G-11) 
and standard delivery containers (A-22). The system was 
required to provide an accuracy of at least 100m with a 
desired goal of 50m. No changes to the parachute or cargo 
system were allowed. 

The key ideas of AGAS concept can be easily understood 
from the following. 

The first step is for the user to broadcast a supply request 
that includes information on where and when it is needed 
on the ground. Upon arrival at the assigned drop zone (DZ) 
the delivery aircraft drops a wind dropsonde. The wind 
profile acquired during this drop allows computation of the 
reference trajectory (RT) and of the Computed Air Release 
Point (CARP). The aircraft will then be navigated to that 
point for air delivery of the materiel (payload). Should the 
wind estimate and calculation of CARP be perfect and the 
aircrew gets the aircraft to this point precisely, then the 
parachute would fly along RT towards the TA with no 
control inputs required. However, wind estimation is not a 

precise science. Furthermore, calculation of the CARP 
relies on less than perfect estimates of parachute 
aerodynamics and the flight crews cannot precisely hit 
CARP for each airdrop mission (especially in case of 
massive (multiple) deliveries). Therefore, the AGAS GNC 
system is used to overcome these potential errors. 

AGAS design concept employs commercial Global 
Positioning System (GPS) receiver and a heading reference 
as navigation sensors, an inexpensive guidance computer to 
determine and activate the desired control inputs, and 
application of Pneumatic Muscle Actuators (PMAs) to 
generate control inputs. The navigation system and 
guidance computer are secured to existing container 
delivery system, while PMAs are attached to each of four 
parachute risers and to the container. Control is affected by 
lengthening one or two adjacent risers. Upon deployment of 
the system from the aircraft, the guidance computer steers 
the system along pre-planned RT. The AGAS concept relies 
on the sufficient control authority to be produced to 
overcome errors in wind estimation and the point of release 
of the system from the aircraft. 

Present paper gives an overall view of the development of 
GNC algorithms for the AGAS project starting with the 
classical synthesis of an optimal control using Pontrjagin’s 
Maximum Principle (Section II), followed by description of 
the practical algorithm implemented in simulations and 
flight test (Section III). Finally Section IV shows the setup 
and results of a final flight test performed at the YPG in 
September 2001, see (PATCAD, 2001). 

 

II. SYNTHESIS OF CONTROL ALGORITHMS 

Based on the AGAS concept introduced above, the optimal 
control problem for determination of parachute trajectories 
from an actual release point (RP) to TA can be formulated 
as follows: among all admissible trajectories  that satisfy 
the system of differential equations, given initial and final 
conditions and constraints on control inputs, determine the 
optimal trajectory that minimizes a cost function of state 
variables z

r
 and control inputs u  

r

dtuztfJ
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t
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and compute the corresponding optimal control. 

For the AGAS, the most suitable cost function J is the 
number of PMA activations. Unfortunately this cost 
function cannot be formulated analytically in the form 
given by expression (1). Therefore, we investigated other 
well-known integrable cost functions and used the results 
obtained to determine the most suitable cost function for the 
problem at hand. 

To determine the optimal control strategy we applied 
Pontrjagin’s principle to a simplified kinematic planar (3-
DoF) model of parachute, see (Pontrjagin, et al., 1969). 
Two possible control schemes are considered in the 
following subsections. The first one applies directly to the 
control problem at hand, while the second addresses a 
possible future control configuration. In each case we 
consider a no wind scenario. Therefore, the control 
objective is to steer the parachute to a single stationary 
point onto a horizontal plane. This is a reasonable 
approximation of since the control inputs have a negligible 
effect on the descent rate. 

II.1. Symmetric control 

The simplest model describing parachute kinematics in the 
horizontal plane with four equal on-off controllers may be 
written as follows (Fig.1): 
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This model approximates the impact on the parachute 
velocity in the lateral plane caused by the activation of each 
of the four PMAs: [ ]VVvu ;0;, −∈ . We consider these 
speed components as controls for the task at hand. 

The Hamiltonian for the system (2) can be written in the 
following form: 
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where differential equations for the adjoint variables , 
, and  are given by 
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Fig.1. Projection of the optimization task onto the horizontal plane. 

We consider two cost functionals 

10 ≡f  and  0 vuf +≡            (5) 

usually being used for the minimum-time and minimum 
fuel problems. Note that in this particular application the 
second cost function stands for the momentum or energy 
rather than fuel since AGAS spends gas only to activate 

PMAs (there is no gas expenditure needed to maintain 
PMA filled/vented). 

Note also that in principle we are looking at the optimal 
problem with a fixed time (time of descent). However in 
real life under the actions of atmospheric turbulence and 
disturbances it would be a good idea to steer parachute to 
the TA as soon as possible leaving some extra time to fight 
those disturbances for the rest of the drop. 

According to Pontrjagin’s principle, the optimal control is 
determined as )( uzpargmaxHuopt ,,= . Therefore, for the 
time-minimum problem the optimal control is given by 
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Fig.2 shows the graphical interpretation of these 
expressions. In general, the vector ( )yx pp ,  defines a 
direction towards the TA and establishes a semi-plane 
perpendicular to itself that defines the nature of control 
actions. Specifically, if PMA happens to lie within a certain 
operating angle (OA) ∆  with respect to the vector ( )yx pp ,  
it should be activated. For a time-optimum problem π=∆  
- therefore, two PMAs will always be active. Parachute 
rotation determines which two. (We do not address the case 
of singular control, which in general is possible if the 
parachute is required to satisfy a final condition for 
heading.) 

 
Fig.2. Time-optimal control. 

Fig.3 shows an example of time-optimal trajectory. It 
consists of several arcs and a sequence of actuations. For 
the sake of simplicity s/2°=ψ&  was taken for this 
simulation (as observed in one of the earlier flight-tests).1 
Maximum horizontal velocity of V=3.7m/s was used in this 
example. 

For the ‘fuel’-minimum problem we obtain analogous 
expressions for the optimal control inputs: 
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In this case PMAs will be employed when an appropriate 
dot product is greater than some positive value. Obviously, 
this narrows the OA’s magnitude. In fact, for this particular 
cost function 0→∆ 2. In general any cost function other 

                                                 
1 In principle because of symmetry no rotation should be observed 
unless any kind of asymmetry is introduced. 
2 Note that any control with  may not work at all if 
parachute is not rotating. 

π5.0<∆



than minimum-time will require an operating angle π≤∆  
(Fig.4). 

 

 
Fig.3. Example of the time-optimal trajectory and time-optimal 

controls. 

 
Fig.4. Generalized case of optimal control. 

Fig.5 shows the effect of OA’s magnitude on the flight 
time, ‘fuel’ and number of PMA activations (from ‘vented’ 
to ‘filled’ state). It is clearly seen that the nature of the 
dependence of the number of actuations on OA is the same 
as that of the time of flight. This implies that by solving the 
time-minimum problem we automatically ensure a 
minimum number of actuations. Moreover, it is also seen 
that the slope of these two curves in the interval 

 is flat. This implies that small changes of OA 
from its optimal value will result in negligible impact on 
the number of actuations. Therefore, changing the OA to 
account for the realistic PMA model, as is done on AGAS, 
will not change the number of actuations significantly. 

[ ππ ;5.0∈∆ ]

Fig.6 demonstrates the influence of constant yaw rate on 
different OA’s. The results were obtained for the time 
optimal control problem illustrated in Fig.3. Obviously, the 
smaller the yaw rate is, the smaller the number of 
activations. Decreasing OA for the same yaw rate leads to 
an increase in the number of PMA activations. 

Fig.7 includes simulation results for the case where yaw 
angle from a flight test was used to drive the first two 
equations in (2) while optimal control was computed using 
(6).  As can be seen the flight test heading is not smooth. 
Neither is it monotonic. Although a synthesized optimal 
control drives the model of the parachute towards TA, 
because of the erratic yaw the number of PMA actuations 
increases to 35 (versus 12 with the monotonic 2°/s yaw rate 
as seen from Fig.5). For this particular simulation OA was 
equal to 2.5. This example illustrates sensitivity of the 
optimal control algorithm to uncertainties in heading. 
Therefore, flight control algorithm must be more robust to 

these uncertainties to prevent a significant increase in the 
number of PMA actuations. 

 
Fig.5. Influence of OA’s magnitude. 

 
Fig.6. Influence of a constant yaw rate. 

II.2. Asymmetric control 

We now consider another kinematic model of a parachute 
in the horizontal plane with the different control 
architecture. Suppose that after initial deployment and 
filling of all four PMAs one of them is vented and remains 
vented throughout the drop. This provides a constant glide 
ratio (similar to parafoils). Furthermore, suppose that two 
adjacent PMAs can be half-filled (that means their length 
could be set as an average between filled and full-vented 
states). The resulting artificially introduced asymmetry 
allows us to control parachute’s yaw rate. Mathematically, 
this is expressed by the following simplified equations: 

ψcosVx =& ,  ψsinVy =& ,  )(tv ζψ +=& , (8) 

where [ ]ΞΞ−∈ ;0;v  is now the only control (in practice for 
G-12 based AGAS Ξ  would be equal to about 6°/s). 

The Hamiltonian for the system (8) can now be written as: 
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where equations for adjoint variables ,  and  are 
given by 
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The optimal control for the time-minimum problem now is 
given by 

( )ψpsignv Ξ= .   (11) 

By differentiating last expression in (10) and combining it 
with Hamiltonian (9) for both cases when  and 0>ψp

0<ψp  we can get a set of equations for  ψp

02 =ΞΞ+ m&& ψψ pp            (12) 



giving two sinusoids (shifted with respect to abscise axis by 
) as solutions for the general (non-singular) case 1−Ξ±

1
21 )sin( −Ξ±+Ξ= CtCpψ .  (13) 

 

 
Fig.7. Flight path computed with usage of a real heading profile. 

If  the parachute model moves along a descending 

spiral. It takes  seconds to make a full turn with a 
radius of V  (that gives ~60s and ~40m in case of 
‘modified’ AGAS respectively). If C  there exists a 
possibility of singular control. This is caused by the fact 
that there exists a point in time where both  and  are 
zero as can be seen in (13). 

1
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Consider singular control for this model. By definition it 
means that . For the time-optimal problem from the 
Hamiltonian (9) and third equation in (10) (of course 
keeping in mind the first two) it follows that for a singular 
control case 

0≡ψp

ψcos1−=Vpx ,  ,  ψsin1−=Vpy const=ψ ,   (14) 

Expressions (14) imply that singular control corresponds to 
motion with constant heading ( ). It may not however 
be realized. Instead, the parachute model may switch from 
right-handed spiral to a left-handed one or vice versa. 
Planar projections of possible trajectories are shown on 
Fig.8. 

0≡v

 
Fig.8. Possible types of AGAS trajectories in case of potential 

asymmetric control. 

The time-optimal trajectories for this case are shown in 
Fig.9 (trajectories differ by initial orientation of the model). 
The only PMA actuation is needed in this case to turn 
parachute velocity vector towards TA at the start. 

To conclude this subsection it worth noting that control 
algorithms for parafoils (since their control options are 
quite similar to the discussed above) suggest the same logic 
consisting of spiral motion in the beginning immediately 
after deployment followed straight-line gliding towards TA. 

 
III. FLIGHT CONTROL ALGORITHM 

The actuation box for PMA’s developed by Vertigo is 
capable of only bang-bang control. Optimal control analysis 
of a simplified parachute model discussed in Section II 
suggested that bang-bang is also the optimal control 
strategy and produced an important concept of an operating 
angle. This motivated the following basic control concept 
for AGAS. Since the time-optimal control strategy was 
shown to minimize the number of actuations for a planar 
model this strategy was employed to get the parachute to 
within a predefined altitude-dependent TA (defined by 
inner and outer cones discussed next) and then for the 
remainder of descent to stay within this area. In addition, 
this basic strategy must be robust to uncertainties in yaw 
motion. These considerations were used to develop the 
flight control algorithm for AGAS and are detailed next. 

III.1.Basic control architecture 

Considering the relatively low glide ratio demonstrated in 
flight test AGAS can only overcome less than 4m/s wind. It 
is therefore imperative that the control system steers the 
parachute along a pre-specified RT obtained from most 
recent wind prediction. This can be done by comparing the 
current GPS position of the parachute with the desired one 
on RT at a given altitude to obtain the position error 
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This position error )(hPe

r
 is computed in inertial (LTP) 

coordinate system with an origin in the TA and is then 
converted to the body axis using an Euler angle rotation 

 (computed using yaw angle only). The resulting body-
axis error vector 
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is then used to identify error angle (EA) 
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In turn EA is then used to define what PMA ( 4,...,1=i ) 
must be activated: 
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(by definition EA is counted from PMA #3 
counterclockwise, i.e. in the situation shown as example on 
Fig.10 PMAs #2 and #3 would be activated (vented). 



 
Fig.9. Modified AGAS model trajectories. 

 
Fig.10. Control-activation rule. 

In order to account for the refill time and sensors errors the 
operating angle was set to 5.2≈∆  instead of π=∆ 3. This 
still allows the activation of a single control input or two 
simultaneous control inputs without significant degradation 
of AGAS performance (see Fig.5). 

III.2. Outer and inner cones 

First of all the initial error after deployment should not 
exceed a certain value because of AGAS’ limited control 
authority. This area of attraction has the radius  around 
RT that can be roughly estimated by a simple formula 

AR

hGRkhRA max8.0)( ∆= , where . (19) 1−
∆ ∆≈ πk

Coefficient  is approximated by using the data of Fig.5, 
and coefficient 0.8 accounts for real-world yaw profile. 

∆k

To eliminate unnecessary actuations of PMAs a tolerance 
(outer) cone was established. Its radius at CARP (at an 
altitude of 3000m) is ℜ  and decreases 
linearly to ℜ  at the TA (at ground level). 
Should the magnitude of the position error in the lateral 
plane 
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a control is activated to steer the system back to the planned 
RT. 

When the system is within the inner cone ℜ  inner

innerB hP ℜ<)(
r

,  (21) 

(which is set to 60m-radius regardless of altitude) the 
control is disabled and the parachute drifts with the wind 
(  was selected to account for the refill time) until 
outer cone is reached and control is activated again.  

innerℜ

The basic control strategy uses the following activation 
rule: both the tolerance cone and the operating angle 
constraints must be active for a given PMA to be actuated. 

III.3. Robustness issues 

The control algorithm outlined above was flight tested at 
YPG. As expected the number of PMA actuations was 
unacceptably high. This resulted in a premature emptying 

of PCS tanks. Analysis of flight test data indicated that this 
was caused by frequent heading changes and that that these 
changes occurred when one of the adjacent PMAs was 
actuated while the other one was in transition from vent to 
full or vice versa.   

                                                 
3 On the earliest AGAS versions refill time was not constant and 
was equal to about 20s at the end, that for the yaw rate of 2°/s gives 
around 40°. 

Fig.11 explains this phenomenon. If one PMA is activated 
(vented) and adjacent PMA is performing a transition from 
one state to another this causes a yaw moment 

r
. This 

moment can be ‘useful’ (when the direction of rotation of 
the vector 

cM

BP
r

 is opposite to the direction of M c

r
), or 

harmful (vise versa). In the latter case the rotation of the 
parachute under the action of 

r
 causes a deactivation 

command to the PMA that was just activated. Moreover 
during this deactivation the ‘useful’ moment in turn makes 
situation even worse. This case is shown on Fig.12a. 

cM

 
Fig.11. ‘Positive’ (left) and negative effect of PMA transition 

moment. 

To eliminate unnecessary activations a delay logic in each 
PMA channel was introduced. Any new command that 
requires change in the PMA state triggers the delay timer. 
While the delay timer is active no command is executed 
including the triggering command. At the end of the delay 
the timer is reset and the first available command is 
executed until the next command that requires change in the 
PMA state triggers the delay timer again. 

The number of unnecessary actuations can also be reduced 
by introducing hysteresis as shown on Fig.12c. 
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Fig.12. Two ways of decreasing the influence of yaw oscillations. 

Both delay and hysteresis angle values can be adjusted as a 
function of system dynamics and in principle achieve the 
same result. 

Finally, Fig.13 summarizes the previous discussion and 
shows the decrease of total number of PMA activations 
when more sophisticated control logic is employed. 
 

IV. FLIGHT TEST 

A total of about 15 controlled drops were made at YPG to 
test the AGAS concept. The final demonstration took place 
at YPG during Precision Airdrop Technology Conference 
and Demonstration (PARCAD) on September 13th and 14th 
2001. 



During preliminary tests a ground station was used to 
control AGAS via a wireless modem. The AGAS sent its 
current position and heading to the ground station, the 
ground station processed the data using the flight control 
algorithm and then issued appropriate commands to the 
AGAS GNC. 

 
Fig.13. Number of PMAs activations decrease. 

For the final drops all GNC algorithms were executed 
aboard AGAS. The downlink message was used real-time 
monitoring during the drop. 

The rest of the paper describes a pre-flight procedure, flight 
test setup and the results of two successful drops of four 
AGAS performed during final Precision Airdrop 
Technology Conference and Demonstration (PATCAD) 
demonstration. 

IV.1. Flight test setup 

According to the general procedure after AGAS had been 
rigged, pressurized, and charged, it was taken to the scales 
to be weighed, and a communication link check was also 
performed. Next, the system was loaded onto the aircraft 
and the main valve was opened. 

When the aircraft was at a drop altitude and before it started 
its cold pass over the DZ, the main power switch was 
turned on and the GNC hardware was armed. As the plane 
arrived at the CARP, the AGAS system was deployed, as 
well as a door-deployed wind-pack bundle that was 
weighted to descend at the same rate as the AGAS system 
(to provide real wind profile during the drop for the future 
analysis). 

Fig.14 shows the sequence of deployment during PATCAD 
demonstration. To make the difference between non-
controlled and controlled parachute more clear two standard 
G-12 and two AGAS (followed by the wind-pack) were 
deployed simultaneously. 

 
Fig.14. Deployment sequence. 

IV.2. Flight data analysis 

Several same-weight category systems including both 
circular parachutes and parafoils were demonstrated at 
PATCAD. AGAS performed better than others. The miss 
for the four AGAS systems released was less than 78m as 
oppose to 140-1370m for uncontrolled parachutes (see 
Table 14). 

Table 1. PATCAD results. 

Date Test Item Weight (kg) IP miss (m) 
WindPack 21 515.1 
STD G-12 724 512.2 
STD G-12 773 141.9 
AGAS-1 726 76 Se

pt
. 

13
th
 

AGAS-2 726 78 
WindPack 21 1048.6 
STD G-12 726 1371.6 
AGAS-3 726 347.3 Se

pt
. 

14
th
 

AGAS-4 726 55.5 

Fig.15 demonstrates the integral data for two first-day drops 
from the altitude of 3000m. The 30-minute old wind data 
was used to compute the RT. It is seen that regardless a 
large initial error both AGAS steered to the TA fairly well, 
17 and 18 PMA activations were needed to hit the target 
with approximately the same miss distance. 

 
Fig.15. September 13th 3000m drops. 
 

V. CONCLUSIONS 

Results presented in this paper showed feasibility of the 
AGAS concept. A bang-bang control strategy imposed by 
the PMA hardware was developed to successfully drive 
AGAS to TA within prescribed circular error in flight 
tests at YPG. The key to the success of this strategy were 
concepts of operating angle motivated by optimal control 
analysis as well as inner and outer cones and hysteresis 
included to improve performance robustness. 
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