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Abstract: A robust fault detection and isolation (FDI) approach for uncertain
constrained nonlinear systems (CNS) is outlined. The FDI scheme is based on a
second order sliding mode observer (SOSMO). First, a closed-loop system is formed
by incorporating the constraint terms into the system’s dynamic equation and then
the observer is designed based on the resulting closed loop system. Stability of the
SOSMO resulting from the utilization of equivalent control concept is then proved
by assuming that the considered uncertain CNS has a single output, and then two
outputs, respectively. An attractive feature of the FDI methodology is that the
diagnostic observer can directly supply the estimate of the faults, hence, making
the fault isolation a simple task. Finally, an example is given to show the effectiveness
of the proposed SOSMO based FDI strategy.

1. INTRODUCTION

The growing need for fault detection and isolation
(FDI) in complex systems such as automotive, man-
ufacturing, autonomous vehicles and robots, has gen-
erated a great deal of research studies in this area
(Cho, 1990; Ge, 1988; Isermann, 1995; Schneider, 1993).
Observer-based FDI methodology is one of the most
commonly used FDI strategies. Amongst various tech-
niques for designing observers one is based on the
theory of variable structure systems (Sreedhar, 1993;
Xiong, 2000a; Xiong, 2000b). Hermans, et al. (Her-
mans, 1996) introduce a sliding mode observer on
the basis of transforming the considered systems into
canonical forms. The effects of faults on the sliding
mode observer is also investigated. Edwards et al. (Ed-
wards, 2000) consider the application of a particular
sliding mode observer to fault detection and isolation
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problems. The novelty of their work lies in the recon-
struction of the fault signals by the equivalent injection
concept. Equivalent control concept is also used in
(Wang, 1997) to prove the convergence of the proposed
sliding mode observer that is used to estimate the states
of nonlinear systems. Sreedhar, et al., 1993 present the
robust detection of a subset of sensor, actuator and
process faults using sliding mode observers. The per-
formance of sliding mode observer-based FDI technique
was shown to be robust to parameter uncertainties in
the system model.
In this paper, a SOSMO is constructed for a class of
uncertain constrained nonlinear systems (CNS). Many
practical systems can be modelled as constrained non-
linear systems. The motion of a mobile robot moving on
a surface, for example, describes a typical constrained
nonlinear system. The constraint here is the specified
surface. The observer is motivated from the second
order sliding mode control (Chang, 1991; Elmali, 1992).
Second order sliding mode concept is employed since
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this kind of second order sliding surface dynamics can
sharply filter unwanted high frequency caused by dis-
turbances and uncertainties, which makes our sliding
mode observer robust to disturbances.

2. PRELIMINARIES

Consider a class of uncertain constrained nonlinear
dynamic systems (CNS) described by

ẋ = f(x) +
m
∑

j=1

gj(x)uj(t) + ω(x)d(t) + E(x)fa(t)

zi = ki(x) = 0, i = 1, . . . , l;

yi = hi(x), i = 1, . . . , p; (1)

where x ∈ U ⊂ Rn, f(x), gi(x), ki(x) and hi(x) are
analytic functions. Signals d(t) ∈ Rn and fa(t) ∈ Rρ

represent disturbance and actuator faults, respectively.
For convenience, we denote G(x) = [g1(x), . . . , gm(x)],
k(x) = [k1(x), . . . , kl(x)]

T , h(x) = [h1(x), . . . , hp(x)]
T ,

and u = [u1, . . . , um]T . Suppose that for all x ∈
U, g1(x), . . . , gm(x) are linearly independent vector
fields, [dk1(x), . . . , dkl(x)] and [dh1(x), . . . , dhp(x)] are
each linearly independent sets of co-vector fields and
m = l + p. Finally, ω(x) ∈ Rn×n and E(x) ∈ Rn×ρ are
distribution matrices of disturbances and faults, and it
is assumed that E(x) is of full rank.
The following notations are used throughout the paper:

• The Lie Derivative of a scalar function φ(x) along
a vector f(x) = [f1(x), . . . , fn(x)]

T is Lfφ(x) =
∂φ
∂x
f(x) =

∑n
i=1

∂φ
∂xi

fi(x) where x = [x1, . . . , xn]
T .

• The derivative of φ(x) taken first along f(x)
and then along a vector g(x) is LgLfφ(x) =
∂(Lfφ)
∂x

g(x).
• If φ(x) is differentiated j times along f(x), the

notation L
j
fφ(x) is used with L0fφ(x) = φ(x).

Consider the following definitions (Li, 1995)

Definition 1. The constrained characteristic index rωi
of disturbances d(t) is defined to be the least positive

integer such that Lωj
L
rω

i −1
f ki(x) 6= 0 for some x ∈ U ⊂

Rn, i = 1, · · · , l, j = 1, · · ·n.

Definition 2. The constrained characteristic index rai
of fault fa(t) is defined to be the least positive integer

such that LEj
L
ra

i −1
f ki(x) 6= 0 for some x ∈ U ⊂ Rn,

i = 1, · · · , l, j = 1, · · · ρ.

Definition 3. The constrained characteristic rci of sys-
tem input u(t) is defined to be the least positive integer

such that Lgj
L
rc

i−1
f ki(x) 6= 0 , i = 1, · · · , l, j = 1, · · ·m.

The following assumptions with respect to system (1)
are used throughout

A1) h(x) = [h1(x), · · · , hp(x)]
T , and k(x) = [k1(x),

· · · , kl(x)]
T are C∞.

A2) The system input u = [u1, · · · , um] is bounded.

A3) The constrained characteristic indices satisfy
rωi > rci , r

a
i > rci .

A4) Matrices ∂h
∂x̂

L1(t) and ∂h
∂x̂

L2(t) are nonsingular.

Here L1(t) and L2(t) are sliding mode observer gains
to be determined later.

A5) Signals d(t) and fa(t) are bounded with bd and
bf , respectively.

Assumption A3) implies that the disturbance and fault
don’t effect the the derivative of constraint term, and
this assures that the d(t) and fa(t) terms do not appear
in derivatives of ki of order r

c
i .

Using assumption A3) and differentiating constraint
term ki(x) as in (Chen, 1992), we get

dzi

dt
= Lfki(x) = 0

...

dr
c
i−1zi

dtr
c
i−1

= L
rc

i−1
f ki(x) = 0

dr
c
i zi

dtr
c
i

= L
rc

i

f ki(x) +

m
∑

j=1

Lgj
L
rc

i−1
f ki(x)uj = 0

(2)

i.e.

ki(x) = Lfki(x) = . . . = L
rc

i−1
f ki(x) = 0

b(x) + A(x)u = 0
(3)

where b(x) = [L
rc
1

f k1(x), . . . , L
rc

l

f kl(x)]
T , A(x) =

[Lgj
L
rc

i−1
f ki(x)]l×m. The solution of (3) can be written

as a feedback law

u = −A+(x)b(x) + (I −A+(x)A(x))ū, ū ∈ Rm(4)

where A+(x) = AT (x)(A(x)AT (x))−1 is the pseudo-
inverse of A(x), I is an identity matrix and ū is a
reference input.
Substituting the feedback law (4) into the uncertain
CNS (1) a closed loop system is formed

ẋ = (f(x)−G(x)A+(x)b(x)) +G(x)(I −A+(x)A(x))ū

+ω(x)d(t) + E(x)fa(t)
(5)

The proposed SOSMO will be designed based on the
above system.

Remark 1. In assumption A3), condition rai > rci guar-
antees that faults would not appear in the feedback law
(4). This allows incorporating the constraint term into
the CNS system equation. In fact, this condition can
be relaxed when the constrained characteristic index
rci = 1. Under this circumstance, feedback law (4)
becomes

u = −A+(x)(b(x) +
∂k

∂x
E(x)fa) + (I −A+(x)A(x))ū (6)

which means that condition rai > rci isn’t needed.
Consequently, the closed-loop system equation (5) has
a new form

ẋ = (f(x)−G(x)A+(x)b(x)) +G(x)(I −A+(x)A(x))ū

+ω(x)d(t) + (I −G(x)A+ ∂k

∂x
)E(x)fa(t).

(7)



3. MAIN RESULTS

To achieve robust fault detection for the uncertain
constrained nonlinear systems despite the existence
of uncertainties and disturbances, consider a SOSMO
(Chang, 1991; Elmali, 92):

˙̂x = (f(x̂)−G(x̂)A+(x̂)b(x̂)) +G(x̂)(I −A+(x̂)A(x̂))ū

−L1(t)(
∂h

∂x̂
L1(t))

−1v + L2(t)(
∂h

∂x̂
L2(t))

−1Df̂a

ŷ = h(x̂)

v = (D − ΓT )f̂a − ce+ z0Ṡ − wS − κsgn(Ṡ)
˙̂
fa = ΓṠ

(8)

where D and Γ are p× ρ and ρ× p matrices, and L1(t)
and L2(t) are n×p observer gain matrices, respectively.

w, c and z0 are some constants, Ṡ(t) ∈ Rp is the
sliding surface vector, sgn is a sign function and κ is a
switching gain to be determined. The estimate of the

fault is denoted by f̂a, v is the discontinuous term, and
finally, e(t) = y − ŷ, is the output error. The output
error dynamics can be obtained by differentiating (5)
and (8)

ė = (
∂h

∂x
f −

∂h

∂x
GA+b) +

∂h

∂x
G(I −A+A)ū+

∂h

∂x
ω(x)d(t)

+
∂h

∂x
E(x)fa(t)− (

∂h

∂x̂
f(x̂)−

∂h

∂x̂
G(x̂)A+(x̂)b(x̂))

−
∂h

∂x̂
G(x̂)(I −A+(x̂)A(x̂))ū+ v −Df̂a

= ∆A+
∂h

∂x
ω(x)d(t) +

∂h

∂x
E(x)fa(t) + v −Df̂a

(9)

where

∂h

∂x

∆
=









∂h1

∂x1

∂h1

∂x2
· · · ∂h1

∂xn

∂h2

∂x1

∂h2

∂x2
· · · ∂h2

∂xn

· · · · · · · · ·
∂hp

∂x1

∂hp

∂x2
· · ·

∂hp

∂xn









, (10)

∆A = (
∂h

∂x
f −

∂h

∂x
GA+b) +

∂h

∂x
G(I −A+A)ū

−(
∂h

∂x̂
f(x̂)−

∂h

∂x̂
G(x̂)A+(x̂)b(x̂))

−
∂h

∂x̂
G(x̂)(I −A+(x̂)A(x̂))ū

(11)

The relationship between sliding surface dynamics and
output error can be taken as:

S̈ + z0Ṡ = ė+ ce (12)

where S = col[s1, s2, · · · , sp], the sliding surface. Sub-
stituting (9) into (12),

S̈ + z0Ṡ = ė+ ce (13)

= ∆A+
∂h

∂x
ω(x)d(t) +

∂h

∂x
E(x)fa(t) + v −Df̂a + ce.

Now a Lyapunov function candidate can be chosen to
create the attractivity condition as follows:

V =
1

2
(ṠT Ṡ + STΩS) +

1

2
f̂a

T
f̂a, Ω = Diag(w). (14)

The time derivative of Lyapunov function is

V̇ = ṠT (S̈ + wS) +
˙̂
fa

T

f̂a. (15)

To ensure attractivity condition for the sliding mode,
the following inequality should hold:

ṠT (S̈ + wS) +
˙̂
fa

T

f̂a ≤ 0. (16)

Substituting equation (13) into above equation, we
have:

ṠT [∆A+
∂h

∂x
ω(x)d(t) +

∂h

∂x
E(x)fa(t) + v −Df̂a

+ce− z0Ṡ + wS + ΓT f̂a] ≤ 0.
(17)

Substituting discontinuous term v from equation (8)
into equation(17) yields:

ṠT [∆A+
∂h

∂x
ω(x)d(t) +

∂h

∂x
E(x)fa(t)− κsgn(Ṡ)] ≤ 0. (18)

Noticing that ṠT sgn(Ṡ) ≥ ‖Ṡ‖ and consequently
−κṠT sgn(Ṡ) ≤ −κ‖Ṡ‖, therefore using this inequality,
equation (18) can be further derived by using vector
norms

V̇ ≤ ‖Ṡ‖(‖∆A‖+ ‖
∂h

∂x
ω(x)‖‖d(t)‖

+‖
∂h

∂x
E(x)‖‖fa(t)‖ − κ) ≤ 0

(19)

therefore, if

κ ≥ ‖∆A‖+ ‖
∂h

∂x
ω(x)‖bd + ‖

∂h

∂x
E(x)‖bf , (20)

then, V̇ ≤ 0, which means that output error is kept
sliding on the sliding surface if switching gain κ is
selected according to equation (20).
As we can see from equation (13) that v(t) is discon-
tinuous across Ṡ = 0, the sliding surface Ṡ accordingly
is discontinuous, which leads chattering. If we use Ṡ as
a residual, the chattering is not desirable. To smooth
out the discontinuity, a boundary layer φ neighboring
the switching surface Ṡ is introduced (Chang, 1991).
A Saturation function (sat) is used to replace signum
function, the saturation function is defined as

sat(
Ṡ

φ
) =

[

sat(
ṡ1

φ
), sat(

ṡ2

φ
) · · · , sat(

ṡp

φ
)

]T

(21)

and

sat(
ṡi

φ
) =











sign(
ṡi

φ
), when |ṡi| ≥ φ

ṡi

φ
, when |ṡi| < φ

(22)

The S dynamics outside the boundary layer can be
obtained by substituting v into equation (13) as

S̈ + wS + κsign(Ṡ) = ∆A+
∂h

∂x
ω(x)d(t)

+
∂h

∂x
E(x)fa(t)− ΓT f̂a

(23)

Within the boundary layer, the S dynamics have the
form of

S̈ + wS + κ
Ṡ

φ
= ∆A+

∂h

∂x
ω(x)d(t) +

∂h

∂x
E(x)fa(t)− ΓT f̂a. (24)



Equation (24) represents a low-pass filter (Chang,1991;
Chirlian,1994). So, as long as the fault is not a high-
frequency signal, it will have impact on sliding surface
Ṡ. Therefore, sliding surface Ṡ can be selected as a
residual.

Remark 2. The proposed observer maintains sliding
motion even in the presence of faults, which is quite dif-
ferent from the approaches of (Ge,1988;Hermans, 1996;
Sreedhar, 1993), in which fault detection is based on the
requirement that sliding motion should cease to exist
once a fault occurs. When disturbances or uncertainties
are present in the system, it is in general difficult to
appropriately design the gain of these observers to
accomplish their intended task.

Remark 3. At present, there does not exist a system-
atic methodology to design the parameters w, c and z0
(Elmali, 92) and additional research in this direction is
desirable.

Remark 4. Based on equation (20), one can observe
that the selection of switching gain κ is only related
to some norm bounds. Therefore, one can claim that if
these norm bounds are known, then κ can be chosen
easily.

3.1 Stability Analysis of the Second-Order Sliding Mode
Observer with A Single Output

In this subsection, we assume that y = Cx(t), where C
is a constant row vector. Without loss of generality, we
will assume y = x1(t).
We start this stability analysis with expanding the
sliding observer (8) according to each observer state
variable

˙̂x1 = f1(x̂)− k11(t)v + k12Df̂a
˙̂x2 = f2(x̂)− k21(t)v + k22Df̂a

...
˙̂xn = fn(x̂)− kn1(t)v + kn2Df̂a

(25)

where [k11(t), k21(t), · · · , kn1(t)]T = L1(t)[
∂h
∂x̂
L1(t)]−1,

[k12(t), k22(t), · · · , kn2(t)]T = L2(t)[
∂h
∂x̂
L2(t)]−1,

v is the discontinuous term in the sliding mode observer
and

[f1(x̂), f2(x̂), · · · , fn(x̂)]
T = (f(x̂)−G(x̂)A+(x̂)b(x̂))

+G(x̂)(I −A+(x̂)A(x̂))ū
. (26)

Let x̃i = xi−x̂i, i = 1, · · · , n, subtracting (25) from (5),

˙̃x1 = ∆f1 + ω1d(t) + E1fa + k11(t)v − k12Df̂a
˙̃x2 = ∆f2 + ω2d(t) + E2fa + k21(t)v − k22Df̂a

.

.

.
˙̃xn = ∆fn + ωnd(t) + Enfa + kn1(t)v − kn2Df̂a

(27)

where

[∆f1,∆f2, · · ·∆fn]
T

= (f(x)−G(x)A+(x)b(x))− (f(x̂)−G(x̂)A+(x̂)b(x̂))

+G(x)(I −A+(x)A(x))ū−G(x̂)(I −A+(x̂)A(x̂))ū,

(28)

and ωi and Ei are ith rows of ω and E, respectively.

Lemma 1. The coefficients k11(t) and k12 in error dy-
namics equation (27) are equal to 1.

The proof is omitted because of the space limitation.
Recall that inequality (20) guarantees that the output
estimation error will reach the sliding surface and
once there keeps sliding on it, i.e. output estimation
error x̃1 is zero on this surface. Applying the concept
of equivalent dynamics in accordance with (Utkin,
1992; Wang, 1997), we have the reduced sliding mode
observer error dynamics in the form of
˙̃x2 = ∆f2 + ω2d(t) + E2fa −

l12

l11
(∆f1 + ω1d(t) + E1fa)

+(
l12

l11
−
l22

l21
)Df̂a

˙̃x3 = ∆f3 + ω3d(t) + E3fa −
l13

l11
(∆f1 + ω1d(t) + E1fa)

+(
l13

l11
−
l23

l21
)Df̂a

..

.

˙̃xn = ∆fn + ωnd(t) + Enfa −
l1n

l11
(∆f1 + ω1d(t) + E1fa)

+(
l1n

l11
−
l2n

l21
)Df̂a.

(29)

By expanding ∆f1,∆f2, · · · ,∆fn into power series, we
get the following differential form of the above equation:

˙̃x2 = [
∂f2

∂x2

−
l12

l11

∂f1

∂x2

]x̃2 + · · ·+ [
∂f2

∂xn
−
l12

l11

∂f1

∂xn
]x̃n + φ2

+(
l12

l11
−
l22

l21
)Df̂a + ((ω2 −

l12

l11
ω1)d(t) + (E2 −

l12

l11
E1)fa)

˙̃x3 = [
∂f3

∂x2

−
l13

l11

∂f1

∂x2

]x̃2 + · · ·+ [
∂f3

∂xn
−
l13

l11

∂f1

∂xn
]x̃n + φ3

+(
l13

l11
−
l23

l21
)Df̂a + ((ω3 −

l13

l11
ω1)d(t) + (E3 −

l13

l11
E1)fa)

.

.

.

˙̃xn = [
∂fn

∂x2

−
l1n

l11

∂f1

∂x2

]x̃2 + · · ·+ [
∂fn

∂xn
−
l1n

l11

∂f1

∂xn
]x̃n + φn

+(
l1n

l11
−
l2n

l21
)Df̂a + ((ωn −

l1n

l11
ω1)d(t) + (En −

l1n

l11
E1)fa)

(30)

where φi, i = 2, · · · , n, are the terms of second and
higher orders in (xi − x̂i). Let x̃ = [x̃2, x̃3, · · · , x̃n]

T ,
we have:

˙̃x = A(t)x̃+Φ+ δF + ΛDf̂a (31)

where

δF =















(ω2 −
l12
l1
1

ω1)d(t) + (E2 −
l12
l1
1

E1)fa

(ω3 −
l13
l1
1

ω1)d(t) + (E3 −
l13
l1
1

E1)fa

.

..

(ωn −
l1n
l1
1

ω1)d(t) + (En −
l1n
l1
1

E1)fa















, Λ =















l12
l1
1

−
l22
l2
1

l13
l1
1

−
l23
l2
1

.

..
l1n
l1
1

−
l2n
l2
1















A(t) =











∂f2
∂x2

−
l12
l1
1

∂f1
∂x2

· · · ∂f2
∂xn

−
l12
l1
1

∂f1
∂xn

∂f3
∂x2

−
l13
l1
1

∂f1
∂x2

· · · ∂f3
∂xn

−
l13
l1
1

∂f1
∂xn

· · · · · · · · ·
∂fn

∂x2
−

l1n
l1
1

∂f1
∂x2

· · · ∂fn

∂xn
−

l1n
l1
1

∂f1
∂xn











. (32)

Let us choose gains l1i (t), i = 1, · · · , n such that matrix
A(t) is Hurwitz and there exists a positive define
symmetric matrix P (t) such that

P (t)A(t) +AT (t)P (t) + Ṗ (t) = −Q (33)



where Q is a positive define matrix.
Consider now a Lyapunov function candidate of the
form

V = x̃TPx̃. (34)

Differentiating V , we get:

V̇ = ˙̃x
T
P x̃+ x̃TP ˙̃x+ x̃T Ṗ x̃ = x̃T (ATP + PA+ Ṗ )x̃

+ΦTP x̃+ δFTP x̃+ x̃TPΦ+ x̃TPδF + x̃TPΛDf̂a

+f̂a
T
DTΛTP x̃.

(35)

Considering (33), the above can be further extended as

V̇ ≤ −λmin(Q)‖x̃‖2 + 2γφ‖P‖‖x̃‖
2 + 2γδF ‖P‖‖x̃‖

+2‖x̃‖‖PΛD‖‖f̂a‖

≤ ((−λmin(Q) + 2γφλmax(P ))‖x̃‖+ 2γδFλmax(P )

+2λmax(P )‖ΛD‖‖f̂a‖)‖x̃‖.

(36)

where λmin and λmax are minimum and maximum
eigenvalues, respectively, γδF is the norm bound of
δF . In the derivation process above, inequality ‖Φ‖ ≤
γφ‖x̃‖ is used. Therefore, if inequality

‖x̃‖ ≥
2γδFλmax(P ) + 2λmax(P )‖ΛD‖‖f̂a‖

(λmin(Q)− 2γφλmax(P ))

holds, then V̇ ≤ 0, which means that the reduced
SOSMO is stable. In a similar fashion to (Wang, 1997),
the observer’s gain L1(t) can be directly calculated.
The following theorem summarizes the results pre-
sented above.

Theorem 1. Consider constrained uncertain nonlinear
system (5) with a single output and its SOSMO defined
in equation (8), if inequality (20) and equation (33)
hold, then the proposed SOSMO is stable.

Remark 5. As a result, the coefficient of v in the
first error equation of equation (25) is 1 , which is
due to the special structure of the proposed observer
L1(t)[

∂h
∂x̂
L1(t)]

−1. From this special structure, we can
also conclude that if y = xi(t), i = 1, · · · , n, then the
coefficient of v in the i-th error equation would be 1.

3.2 Stability Analysis of the Second-Order Sliding Mode
Observer with Multiple Outputs.

A similar stability analysis for the multiple output case
is omitted due to the space limitation.

3.3 FDI Strategy

In this paper, faults are directly estimated in the sliding
mode observer. As soon as any of the components of the
estimate of faults is greater than zero, then the alarm
for corresponding fault component will be activated.
The following algorithm summarizes the FDI process
by sliding mode observer.

Step 1: Impose constraint into system equation by dif-
ferentiating constraint term k(x) under assumption
A3) to form a closed-loop system.

Step 2: Construct a sliding mode observer for this
closed-loop system.
step 2.1 Select switching gain κ from equation (20)

under assumptions A4) and A5).
step 2.2 Choose gain matrices L1(t) and L2(t),
L1(t) must make A(t) or B(t) stable, then solve
equation (33) to get P or Π. If equation (3.1) holds,
then go to step 3, otherwise, reselect gain matrices
L1(t), L2(t) and Q or R to solve P or Π

Step 3: Monitor the estimated fault vector to detect
and isolate faults.

4. AN ILLUSTRATIVE EXAMPLE

In this section, we shall illustrate the proposed FDI
strategy on a simple nonlinear system. As compared to
the SOSMO, a standard SMO will also be presented for
comparison purposes. Consider the system

ẋ =

[

−x1x
2
2

x3

x1

]

+

[

0 0
1 0
0 1

]

u+

[

x3d1(t)
0
0

]

+

[

−1 0
0 1
0 0

]

[

f1
a

f2
a

]

y = x1 + x3

k = x2 + x3 − const. = 0 (37)

where const. is a constant, and the disturbance d1(t) is
a random function. Obviously, the constrained charac-
teristic index rc=1, after calculation of b(x) and A(x),
we form a feedback law as in the equation (6)

u = −

( 1
2
(x1 + x3)

1
2
(x1 + x3)

)

+

( 1
2

− 1
2

− 1
2

1
2

)(

ū1

ū2

)

−

( 1
2
1
2

)

f2
a (38)

Substituting equation (38) into system equation (37),
we obtain the closed-loop system with constraint incor-
porated into it

ẋ =

[

−x1x
2
2

1
2
x3 −

1
2
x1 + 1

2
ū1 −

1
2
ū2

− 1
2
x3 + 1

2
x1 −

1
2
ū1 + 1

2
ū2

]

+

[

x3d1(t)

0

0

]

+

[

−f1
a

1
2
f2
a

− 1
2
f2
a

]

(39)

Based on equation (39), the SOSMO is constructed as
follows:

˙̂x =

[

−x̂1x̂
2
2

1
2
x̂3 −

1
2
x̂1 + 1

2
ū1 −

1
2
ū2

− 1
2
x̂3 + 1

2
x̂1 −

1
2
ū1 + 1

2
ū2

]

− L1(t)(
∂h

∂x̂
L1(t))

−1v

+L2(t)(
∂h

∂x̂
L2(t))

−1Df̂a

ŷ = x̂1 + x̂3

v = (D − ΓT )f̂a − ce+ z0Ṡ − wS − κsat(Ṡ)

(40)

The sliding mode observer will detect and estimate the
actuator fault when f1a occurs. Output estimation error
or sliding surface dynamics Ṡ(t) can be taken as a
residual. When a fault occurs, Ṡ(t) will deviate from
zero and recover to zero because the switching gain κ

has been properly selected. The simulation results are
shown in Figure 1. Note that either the residual or the
estimated fault signal could be used for fault detection
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Fig. 2. Residual by First order sliding mode observer .

purposes.Finally, a first order sliding mode observer is
constructed according to (Ali,1999; Wang,1997)

˙̂x =

[

−x̂1x̂
2
2

1
2
x̂3 −

1
2
x̂1 + 1

2
ū1 −

1
2
ū2

− 1
2
x̂3 + 1

2
x̂1 −

1
2
ū1 + 1

2
ū2

]

+

[

k1sign(y − ŷ)
k2sign(y − ŷ)
k3sign(y − ŷ)

]

(41)

Note here that when the sliding surface is selected as
a residual, small faults can’t be efficiently detected due
to the chattering as shown in Figure 2.

5. CONCLUSIONS

This paper explored use of a SOSMO scheme for
fault detection and isolation in uncertain constrained
nonlinear systems. It is demonstrated that while being
robust to uncertainties and disturbances the SOSMO
can be used to detect and estimate actuator faults
with certain benefits over the standard SMOs. The
ability to estimate the faults directly is very desirable
for fault detection, especially isolation, and perhaps
accommodation purposes.
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