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Abstract: In this paper, we study digital control systems with non-uniform updating
and sampling patterns, which include multirate sampled-data systems as special cases.
First, we derive lifted models in the state-space domain, and give a sufficient condition
under which the lifted models preserve controllability and observability. The main
obstacle for generalized predictive control (GPC) design using the lifted models is the
so-called causality constraint. Taking into account this design constraint, we propose a
new GPC algorithm, which results in optimal causal control laws for the non-uniformly
sampled systems and applies immediately to multirate sampled-data systems.
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1. INTRODUCTION

Generalized predictive control (GPC) (Clarke et
al. (1987); Rossiter (1993); Camacho and Bordons
(1999)), has found wide applications in the process
control industry. Most studies on GPC assume a
single-rate sampling scheme, and the main pur-
pose of this paper is to extend GPC algorithms
to more general sampling and updating schemes.
One extension from single-rate systems is the class
of multirate systems. For the sampled-data system
shown in Figure 1, a quite general multirate sys-
tem is obtained by allowing S and H to operate
at different rates, say, the sampling period for S is
mh, and the updating period for H is nh, where
m and n are integers and h is the base period.

The relevance and importance of multirate pro-
cesses in the GPC/MPC (model predictive con-
trol) framework have been recognized by several
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Fig. 1. A sampled-data system

researchers over the last decade, e.g., Lee et al
(1992), and Scattolini and Schiavoni (1995), just
to name a few. Our approach to such problems
is through the use of the lifting technique (Kranc
(1957); Khargonekar et al. (1985)). However, the
obstacle in using the lifting technique is the so-
called causality constraint in the controller design
(Chen and Qiu (1994)). To handle this causality
constraint in the GPC design is one of the objec-
tives of this paper.

Another objective of this paper is to study the
non-uniformly sampled systems. There are three
main reasons for such sampled systems to arise.
First, in task-sharing situations, it is more rea-
sonable and cost-effective to allow non-uniform
sampling and updating operations. Second, the
non-uniformly sampled systems are quite general



and include multirate sampled-data systems as
special cases. Third, there are advantages in non-
uniformly sampled systems over uniformly sam-
pled ones, e.g., the results by Kreisselmeier (1999).

Except the reference by Kreisselmeier (1999), re-
search activities on non-uniformly sampled sys-
tems can also be found in the work by Salt et al.

(1993), and Albertos and Salt (1999).

Briefly, the contributions in this paper are as
follows:

e In Section 2, we derive a state-space lifted
model for the non-uniformly sampled system
in discrete time; a sufficient condition on
sampling is given under which the state-space
model is both controllable and observable.

e In Section 3, we present a causal solution to
the GPC problem for non-uniformly sampled
systems. To our best knowledge, this is the
first causal and optimal solution proposed for
the lifted models.

e Such a causal GPC solution in the lifted do-
main is new even in the special case of multi-
rate systems in which the causality constraint
has been the main difficulty in GPC/MPC
design using the lifting framework, see, e.g.,

the work by Sheng et al. (2001).

For the rest of the paper, an illustrative example
is presented in Section 4, and concluding remarks
is given in Section 5.

2. MODELING OF NON-UNIFORMLY
SAMPLED SYSTEMS

In the following, for the reason of simplicity,
we will focus on the single-input, single-output
(SISO) case. We also assume that the continuous-
time process Y. in Figure 1 has the following
state-space representation:

[ i) = Ax() + Bu(t)
e { y(t) = Ca(t) + Dult), (1)

where z(t) € R is the state, u(t) € R is the
control input, and y(t) € R! is the output.

2.1 The sampling and updating scheme

Non-uniformly sampled systems are characterized
by the fact that both the control updating instants
(when wy, occur) and the sampling instants (when
yr occur) need not be equally spaced in time;
however, for tractability we assume that the whole
sampling and updating pattern is periodic over
a larger interval T, known as the frame period
(Salt et al. (1993); Albertos and Salt (1999)). The
notation and arrangement with the sampling and
updating are as follows:

e Over the k-th period [kT, (k + 1)T), we as-
sume the control signal u is updated non-
uniformly m times at time instants 7" + ;,
t=1,2,---,m. Without loss of generality, we
can take t; = 0 and arrange t; < ts < -+ <
tym <T.

e Over the period [KT, (k + 1)T), there are n;
(n; > 0) output samples available within
the time interval [T + ¢;, kT + t;41), @ =
1,2,---,m (denoting t,,41 = T); these n;
output samples occur at time instants k747,
J=1,2,--- n; Without loss of generality,
we arrange these ¢/ in the following order:

t <t <t << < iy,

Thus during each period of 7', the control signal
u 1s updated m times, and the output signal y is
sampled p = ny + ns + - - - + n,, times, all non-
uniformly. Such a sampling and updating scheme
is briefly illustrated in Figure 2. We remark that

Y(K)
yIqT+t)  y(KT+)  y(KT+) y(KT+t)
ukT+)  uKT+E)  uKTH) U(KT+n)
KT (k+1)T
U(k)

Fig. 2. The non-uniform sampling and updating
scheme

the non-uniform sampling and updating scheme
introduced 1s quite general: Compared with the
one used by Albertos and Salt (1999), we do not
assume that the sampling and updating instants
are integer multiples of some based period.

2.2 Lifted models and the causality constraint

Looking at the system discussed earlier in discrete
time, if we group every m input values and every
p output samples together, we will have a p x m
LTT system operating over period T'; this is the
idea of lifting. Let

v:{UOavlaUZa"'}a (2)
Vo Un
v1 Un41
Q: b b 3 (3)
Un—1 Van—1

where v is a discrete-time signal, and v is an n-
fold signal, with n a positive integer. The map
from v to v is defined as the lifting operator L, .
The inverse lifting operation, L1, is from v to v,
defined in the obvious way.



Note that all the lifted signals in this paper
are underlined. The following notation is used
throughout the paper: Continuous-time signals
evolve over time t closed by the round brackets,
e.g., u(t) and y(t) in (1); discrete-time signals
evolve over time k (integer valued) which appears
in subscripts, e.g., vx in (2). This convention
applies to non-uniformly sampled signals, e.g., yx
is y(t) sampled at the k-th sampling instant.

For the discussed non-uniformly sampled system,
lifting uy by L, and y by L,, we get u; and
Yy, , corresponding to inputs and outputs over the

interval [kT, (k + 1)T):

w = [u(kT + 1) w(kT + 1) - (kT + 1) ]

y(kT +t7)
n :
y(kT +171)
Y = :
y(kT +t%)
Nm :
u(kT +127) |

Then the lifted system, ¥, from u; to Yy has
m inputs and p outputs. Furthermore, it admits a
state-space realization in terms of the given model
Y. in (1); hence X is LTT, an advantage of lifting.

See Proposition 1 below.

Proposition 1. A state-pace model for the lifted
system X is given by

 wpg1 = Az + Buy,
u { y, = Cag + Dy, (1)

where zj, := z(kT), and

A=eT, §2[31 BZ"'Bm]a (5)
c Dy
Cy Dy Dj
Q: . I Q: . . . 3 (6)
Chm Dl D ... D™
with
C'eAt}
Bi=[p [l eMBdr, Ci=| |,
CeAt:L’
[ Dj(1)
. . k_
pi=| |, Ditk)= [y ™" CeAT BT+ D,
| Dj(ny)
[ D(1)
i . j _ tf_tj AT
D‘g = E , D‘Z(k’) = ft,;_tjﬂ Ce”" Bdr.
L D} (n;)

Here : = 1,2, -+, m in the definition of B;, C; and
Diii=2 .- m, 1< j<iin the definition of

D‘Z»j; and k = 1,---,n; in the definition of D! and
D

Note that the upper triangular blocks in D in
(6) are zero; this represents the so-called causal-
ity constraint in X;: Certain blocks in the direct
feedthrough term must be zero to satisfy causal-
ity. For model ¥; derived from the continuous-
time model Y., this constraint i1s automatically
satisfied. However, in the lifted controller design,
this constraint on the controller poses a difficult
problem.

Proposition 2. The direct feedthrough terms in
the lifted controllers are m x p matrices mapping
y, touy, and must satisfy the causality constraint,
which takes the following block lower triangular
structure:

i X o0 X Uy ... ]
Here the upper triangular blocks are all zero, x
means a designable element (no restriction). If
t} =t;, a; = x; otherwise, a; = 0.

This causality constraint must be satisfied by all
lifted controllers. We will handle this constraint
in the GPC design for non-uniformly sampled
systems later in this paper.

2.3 Controllability and observability

For the lifted model ¥; in Section 2.2, a natu-
ral question is: Under what condition this model
is controllable and observable? To answer this
problem, we first assume controllability and ob-
servability of the continuous-time model Y. in
(1). Then we will give a sufficient condition for
model ¥; to preserve the two properties. See the
following Theorem.

Theorem 3. In the discretization process from X,
in (1) to ¥; in Proposition 1, assume the frame
period T is non-pathological (Chen and Francis
(1995)). Then

(1) (A, B) is controllable if (A4, B) is controllable;
(2) (C, A) is observable if (C, A) is observable.

Note that this sufficient condition also guarantees
that the uniformly sampled system with period



T is controllable and observable. A question may
arise: Do non-uniformly sampled systems have
any advantage over uniformly sampled systems
in preserving controllability and observability?
The answer 1s positive. Looking at controllability,
for example, model . is controllable with A =
[7?_ —071'] , B = [é] If the frame period T is
taken to be 3 sec, and m = 3. It can be verified
that this 7' is pathological. Under the uniform
updating pattern, i.e.,t; = 0, t3 = 1, and t3 = 2,
the lifted pair (A4, B) is clearly uncontrollable by
Proposition 1. However, if we keep 7' = 3 and
m = 3 and use a non-uniform updating pattern,
say, t1 = 0, t2 = 0.8, and ¢35 = 1.2, then (4, B)
turns out to be controllable.

3. GPC ALGORITHM FOR
NON-UNIFORMLY SAMPLED SYSTEMS

In this section, we study the GPC design problem
for the non-uniformly sampled systems discussed
in the preceding section. We will see that con-
ventional GPC algorithms fail to provide causal
control laws; thus we propose a new GPC solution,
taking into account the causality constraint in (7).

In view of the lifted model in (4), the GPC design
1s to minimize a cost function of the form

i=1
+AZA@£+Z»_1A@;¢+Z'_1, (8)
i=1

by computing the incremental control moves
Auyy; fori=0,1,--+,ny — 1, subject to the con-
dition that Awy, , = 0 fori = ny,ny +1,---,ny.
Here A =1—¢~1, and ¢! is the backward shift
operator. The vector sequence wyy; is the out-
put tracking reference; gk+i|k is the i-step ahead

prediction of the future lifted output at present
time k. The minimum and maximum prediction
horizons are 1 and ny, respectively; n, is the
control horizon. The weighting for the error signal
between w and y 1s an identity matrix, and for the
lifted incremental control signal is a constant di-
agonal matrix Al. For simplicity, in the following,
we assume ny = ny, = n.

To avoid estimating the state vector, we will adopt
the input-output GPC design as that by Rossiter
(1993). Including an integrator 1/A to the lifted
model in (4), we can obtain a transfer function
representation from Au to y:

_ NG
O A

A@ka (9)

where d(¢~!) is the common denominator of the
form

dlgY) =1+dig" 4+ +dig™"  (10)

(assuming the order of the system involved is [);
N(g™') is a p x m matrix polynomial of the form

Ni(g™h) - Nim(e™h)
N = : : : (11)
Npi(g™?) -+ Npm(g™?)

with each element being an [-th order polynomial:
—1y _ as0 1 -1 I -
Nij(¢7") = Nij + Nijg~ + -+ Nja' . (12)

1

In the following, we will omit ¢~* in the polyno-

mials, if no confusion will arise.

3.1 Conventional GPC design

First, following the work by Rossiter (1993), we
review how the GPC solution is derived for model
(9), without considering the causality constraint.

Rewrite (9) as follows:
l l
Yy, :ZNjAgk—j_Zngk—j' (13)
7=0 j=1

Here, based on (11) and (10), we have

Niy -+ Nip, d;
N; = o , Dy = .
NZZﬂ NZZW” d; pXp

Then for the MIMO system in (13), we can write
out the ¢-step ahead prediction of future output at

current time &, namely, Letting ¢ vary from

Yrtiln
1 to m; minimizing Ji with respect to the future
control sequence AU = [Agg Agﬁm_l]T
we can obtain the optimal solution AU. While
in the frame period [kT, (k + 1)T), only the first

element, i.e.; Au,, will be implemented:

bl

Au, = K(W — P,AU, — P3Y,).  (14)

Here we have defined

K= [lnxm 0--- 0] (PLP +AI)7LPT,

T T 7
W:[wk_l_lwk._l_n] ;
T T T
AU, = [A@k—1 A@k—l+1] )
T
—_ T e T
S AR

and Py, P, P35 are big matrices in terms of N;, D;
or linear combinations of them.

Since the first element of Y, is Yy the direct
feedthrough term from y, to Auwy,, say, D, is thus



the first p columns of matrix K Ps. Clearly, this D,
is a general m X p matrix. There is no guarantee
that it has the block lower triangular structure as
shown in (7). So such a conventional GPC solution
is not implementable in real time.

3.2 Proposed GPC design

To obtain causal GPC control law, the idea we
adopt is as follows: During every frame period T,
construct a chain of new lifted signals and models,
corresponding to the control moves; then apply
the conventional GPC design to every one of them.

In our proposed algorithm, during the k-th frame
period [kT, (k + 1)T), each control move will
be calculated separately; at each time instant
t = kT + t;, we will construct a corresponding
lifted output gé, consisting of the most recent p
X3

measurements (some elements in y! are in fact

measured in the last frame period),_where all the
elements are listed in their order of occurrence. It
is relatively easy to derive a model from Aw, to
QZ (denoted by M?). Thus, in one frame period 7,

a chain of m models are obtained.

Then we can solve the standard GPC problem
using each model M? and a similar cost function as
in (8) to get the optimal Au!, while implementing
Au'(kT+t;) only. As time goes (i increases from 1
to m), the actual lifted incremental control signal
implemented in the k-th frame period is

Aul(k’T + tl)
Au? (kT + t5)
Auf = ,

| (15)
Au” (KT + t)

It is clear from the discussions that the proposed
GPC control law is causal because of the way
the chain of new lifted output signals and new
models are constructed, and therefore can be
implemented in real time. Furthermore, closed-
loop expression for the optimal and causal control
in (15) can be derived.

Consider the frame interval [T, (k+ 1)T), based

n (14), Au*(kT + ¢;) in (15) has the following

form
Au' (KT +1;) = KiW + KAU, + K5Y)(16)

where V! = yiT coy " Ki Ki, and

P Zk Zk—i+41 D D
K& are 1 x pn, 1 x m(l — 1), and 1 x pl matrices,
respectively, all depending on the i-th model M?.

Assume that the future reference signal is a con-
stant w along the horizon, then equation (16) can
be written as

Au (KT +t;) = Flw + G'Auf + H'yl

where F?, G, and H' all are matrices in terms of
K}, K and K}, respectively.

Let ¢ vary from 1 to m, and note that

QZ:Oigk, (17)

. y _1 .. _1

o = [0 |diagta™ T Raa | g
Tyxy| 0

where y = ng + ny + -+ n;_1 with ng = 1,
x = p—y; and we have assumed that ¢} = ¢;,
i.e., the output signal is available right at the time
instant k7 +1t;, when the control input is updated.
Thus we obtain the closed-loop expression for the
optimal control in (15):

Auf =0t {®w+5gk}, (19)

where ¥, ©, and Z are matrices in terms of G, F’
and H'O', respectively. The result 1s summarized
in the Theorem below.

Theorem 4. Assume that the future reference sig-
nal is a constant w along the horizon. The optimal
lifted control law is given by its closed-loop form
in (19), where the term from y, to Auf, VTIE|
always satisfies the causality structure in (7).

4. EXAMPLE

In this section, we illustrate our proposed GPC
algorithm by an example. For a SISO continuous-
time model G(s) with a minimal realization

—0.075 —0.0003 1
A=1100 o ]’B—[o]’
C = [0.0039 0.0028], D =0,

we assume that the control signal is updated every
8 sec, while the output signal is sampled every
12 sec; thus the frame period 18 T = 24 sec.
Such a multirate system is a special case of the
non-uniformly sampled systems discussed in this
paper, so all the results in Sections 2 and 3 are
directly applicable.

First, by applying Proposition 1, it is easy to
check that the lifted pair (A, B) is controllable
and (C, A) is observable. This is also true by The-
orem 3, because T' = 24 sec is non-pathological.

Next we will design a multirate GPC controller
for the uniformly sampled system. Notice here
that in one frame period T" = 24 sec, the control
input is updated 3 times, and according to the
results in Section 3.2, a chain of 3 lifted models
should be defined. However, in this example (and
many industrial processes), the output is sampled
at a slower rate: The first sample is taken at
t = kT, and the next is not available until time



instant ¢ = k7" + 12. Thus the first two incremen-
tal control moves, Au(kT) and Au(kT + 8), can
be computed together in one time; so only two
lifted models: M! and MzTneed to be used. And
v = [y(kT - 12) y(kT) )",

y? = [y(kT) y(kT +12)]",

Auf = [ Au'(kT) Au' (kT +8) Au(kT +16)]".

The purpose of the GPC design is to minimize the
cost function in (8), where the tuning parameters
are ny, n, and A. If we choose ny, = 6, n, =
5, A = 0.1, the tracking performance of the
closed loop with the multirate GPC controller
can be simulated, see the solid lines in Figure 3.
The simulation time is 800 sec, and the setpoint

Tracking performance of the closed-loop under the multirate GPC controller

output

control input
|
E - -
T T T
/

Fig. 3. Tracking performance of the closed-loop
with the multirate GPC controller

changes from 0 to 1 at £ = 0, from 1 to 0 at
t = 203, and from 0 to 3 at ¢ = 600.

Tuning the parameters ny, n, and A can affect
tracking performance and control effort. For ex-
ample, increasing A — the weighting factor on the
control signal — from 0.1 to 5 will result in decrease
in the maximum value of the control input, but
the price paid is that the tracking becomes more
sluggish, see the dash-dot lines in Figure 3.

Finally, with the tuning parameters ny, = 6, n, =
5, and A = 0.1, we can compute the closed-loop
form of the multirate GPC controller. According
to (16) to (19), the direct feedthrough term from

y, to Auj, W=1Z is computed to be
1.1321 0
U—1Z = | 0.0369 0

—1.5729 1.4937

This matrix is block lower triangular, satisfying
the causality constraint in this case.

5. CONCLUSIONS

In this paper, we studied non-uniformly sampled
systems, which are characterized by non-uniform

but periodic updating and sampling patterns.
Lifted and LTI model were derived, and a suf-
ficient condition was given for the lifted models
to inherit controllability and observability from
continuous time.

We also dealt with the GPC problems for non-
uniformly sampled systems. Starting from the
conventional GPC design for MIMO systems, we
proposed an algorithm which can handle the so-
called causality constraint on lifted controllers in

the GPC design.
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