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Abstract: The paper presents an optimization-based approach to compute controllers
for a class of hybrid systems with switched dynamics. The starting point is a
representation as a hybrid automaton which models autonomous switching between
different nonlinear dynamics and includes discrete as well as continuous control inputs.
The automaton is transformed into a linear discrete-time model in equation-based
form. The task of generating an optimal control law to drive the system from an
initial state into a target region (while avoiding forbidden states) is solved by mixed-
integer programming performed in a moving-horizon setting with variable time steps.
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1. INTRODUCTION

Two different discrete phenomena are usually dis-
tinguished in hybrid system behavior: the switch-
ing between different dynamics and jumps in the
state trajectory (Branicky et al., 1998). Particu-
larly switching has been identified as a suitable
approximation of several phenomena in a large
variety of technical applications, as for exam-
ple logic controllers in processing systems. This
contribution considers a class of hybrid systems
with a behavior that is determined by switch-
ing inputs (besides continuous controls) and au-
tonomous changes between different sets of ODEs.
For such a system, the problem of determining the
control trajectories that drive it optimally from
an initial state into a new target point or region
is investigated. Unlike many other approaches in
the context of optimal control and optimization
of hybrid systems (see e. g. (Broucke et al., 2000),
(Gokbayrak and Cassandras, 2000), (Hedlund
and Rantzer, 1999), (Slupphaug et al., 1997),
(Branicky et al., 1998)) the method proposed in

this paper transforms the control task into a set
of discrete-time equations and inequalities. The
latter contain continuous and discrete variables
such that mixed-integer programming (MIP) is
used for the solution.

In difference to the methods published by (Buss et
al., 2000), (Galan and Barton, 1998), (Schweiger
and Floudas, 1998), the optimization is performed
repeatedly on a moving horizon in order to enable
the use for large time horizons. This MPC-like
strategy can be found also in the method intro-
duced by (Bemporad and Morari, 1999) for so-
called MLDs. While the MIP solution on moving
horizons and some parts of the logic formulation
are similar in both approaches, the work in this
paper starts from a different type of model (hy-
brid automata), uses a different objective func-
tion, explicitly considers the exclusion of forbid-
den regions, and treats the switching times as op-
timization parameters (i.e., variable time steps are
used). The latter allows using relatively large time
horizons even if only a small number of sampling
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points can be considered for optimization due to
complexity reasons. As shown for an example,
this can be important in order to find a feasible
path into the target while avoiding to move into
forbidden regions.

2. OPTIMAL CONTROL OF HYBRID
AUTOMATA WITH SWITCHED DYNAMICS

The following definition of hybrid automata for-
mulates the dynamics considered in this paper.
The definition is based on the one in (Stursberg
and Engell, 2001) but it is slightly modified with
respect to the state set and the state transitions:

Definition 2.1. Hybrid Automaton AN,C

The automaton with switched non-linear contin-
uous time dynamics is given by:

AN,C = (X,U , V, E, Z, f, φ) (1)

with the following components: The state vector
x(t), dim(x) = n is defined on the convex state
space X := {x ∈ X | C · x ≤ d,C ∈
Rq×n,d ∈ Rq×1, q ∈ N} and the continuous inputs
u(t), dim(u) = mu on U = [u−1 , u

+
1 ] × . . . ×

[u−mu
, u+

mu
] with u−j , u

+
j ∈ R. The discrete input

v(t) ∈ V = {v1, . . . ,vr}, dim(v) = mv switches
between finitely many options and only finitely
often at times tk in a time interval [t0, tf ]. A set
E = {E1, . . . , EnE

} of hyperplanes Ej := {x ∈
X | cj · x = dj , cj ∈ R1×n, dj ∈ R} partitions
the state space into a set R = {R1, . . . , RnR

} of
convex and disjunct regions Ri := {x ∈ X, Ei ∈
E | J = {1, 2, . . . , nE}, H ⊆ J,∀h ∈ H : ch ·
x ∼h dh,∼h∈ {<,≤}} such that

⋃nR

i=1 Ri = X.
The set of discrete states Z = {z1, . . . , znZ

} is
formed by a mapping ρ : R→ Z that assigns one
discrete state zi ∈ Z to each region Ri.

The continuous dynamics is given such that f :
X ×U ×V ×Z → Rn defines x(t) as the unique
solution of an ODE ẋ(t) = fz(x(t),u(t),v(t)) for
a time interval [tk, tk+1[ between two switching
events. At each point of time t that dynamics f z

is valid which is assigned to the discrete state zi
with Ri = ρ−1(zi), x(t) ∈ Ri. According to the
transition function φ = Z × X × X × R → Z,
a transition z1 → z2 (z1, z2 ∈ Z) occurs at tk,
if: x(t−k ) ∈ R1, ρ(R1) = z1 and x(tk) ∈ R2,
x(tk) /∈ R1, ρ(R2) = z2. Hence, if R1 is left across
Ej , the transition guard is: cj · x(t−k ) = dj ∧
cj · x(tk) > dj (if Ej belongs to R1), or cj ·
x(t−k ) < dj∧cj ·x(tk) = dj (if Ej is assigned to R2)
respectively. It is required that x(t), t ∈ [t0, tf ]
fulfills the continuity condition x+ = x(t∗) for all
discrete transitions and switching events at a time
t∗. (x+ is the time successor of x(t∗).)

Semantics: Let T = {t0, t1, t2, . . . , tN , tf} contain
the initial time t0, the final time tf and all points

of time tk ∈]t0, tf [, at which a transition according
to φ or a switching in v(t) occurs. A valid run
r : T → Z×X of AN,C is then the finite sequence
r(t0), r(t1), r(t2), . . . , r(tN ), r(tf ) of hybrid states
r(tk) = (z(tk),x(tk)) such that:

(a) Initialization: r(t0) = (z(t0),x0) with z(t0) ∈
Z, x0 = x(t0) ∈ X with x0 ∈ R∗ ∈ R,
ρ(R∗) = z(t0).

(b) Progress: r(tk+1) = (z(tk+1),x(tk+1)) fol-
lows from r(tk) by the assignments:
z(tk+1) = φ(z(tk),x(t

−
k+1),x(tk+1), Rj)

with x(t−k+1) ∈ Rj , ρ(Rj) = z(tk) and

x(tk+1) =

t−
k+1
∫

tk

fzk
(x(t),u(t),v(t))dt

with v(t) = vj ∈ V for t ∈ [tk, tk+1[. ¦

For this type of automaton, the following optimal
control problem is posed: Assume that

• a hyperrectangular target region RT ⊂ X

with RT = [x
−
T,1, x

+
T,1] × . . . × [x−T,n, x

+
T,n] and

x−T,j , x
+
T,j ∈ R,

• a set RF = {RF,1, . . . , RF,nF
} of polyhedral

forbidden regions RF,i ⊂ X, and RF,i := {x ∈
RF,i | CF ·x ≤ dF ,CF ∈ RqF×n,dF ∈ RqF×1},
RF,i ∩RT = ∅,

• and an initial state x0 = x(t0) ∈ X with
x0 /∈ RT and x0 /∈ RF,i are given.

The aim is to compute those input trajectories
u(t), v(t) which optimally move the system from
x0 into RT while none of regions in RF is crossed:

min
u(t),v(t)

Ω(t,x(t),u(t),v(t)), (2)

Ω =

tf
∫

t0

(α(t,x) + β(t,u) + γ(t,v) + δ(t))dt,

s.t. x0 = x(t0), x(t) ∈ X, x(tf ) ∈ RT

x(t) /∈ RF,i ∀t ∈ [t0, tf ] ∀RF,i ∈ RF ,

and subject to the dynamics of AN,C .

The terms of the objective function Ω have the
following meaning:

• α(t,x) = µ1(t) · ‖w1 · (x(t) − RT )‖1 denotes
the distance between the current state and (the
nearest boundary) of the target region; µ1(> 0)
and w1 are appropriate weights;

• β(t,u) = µ2(t) · ‖w2 · (u(t) − uS)‖1 measures
the deviation of u(t) from a reference vector us

(again with weights µ2 and w2);

• γ(t,v) = µ3(t)·

{

w3 : if v(t−) 6= v(t)

0 : else
adds the

amount w3 to the costs (weighted by µ3) if input
switching occurs;

• δ(t) =

{

µ4(t) : if x(t) 6= RT

0 : else
is the weighted

sum of the time required to reach the target.



The different weights (all non-negative) are design
parameters that are chosen such that specific
optimization objectives are met.

3. MODEL TRANSFORMATION AND
SOLUTION BY MIP

The control problem posed in the previous section
is clearly non-trivial since it involves the optimiza-
tion of nonlinear equations depending on logical
decisions. The strategy proposed here transforms
the problem into a linear, discrete-time formula-
tion and uses branch-and-bound optimization to
solve the resulting mixed-integer problem.

3.1 A Discrete-Time Hybrid Automaton

First, a hybrid automaton with linear discrete-
time dynamics is defined. This automaton is then
used to approximate the behavior of AN,C .

Definition 3.1. Hybrid Automaton AL,D

A hybrid automaton with switched linear discrete
time dynamics:

AL,D = (X,U , V, E, Z,fD, φD) (3)

consists of the state spaceX, the continuous input
space U , and the set of discrete inputs V as
for AN,C . The partitioning of X into a set of
polyhedral regions R = {R1, . . . , RnR

} by the set
E of switching planes is also the same. But the
trajectories are now defined on a discrete time
domain tk ∈ T = {t0, t1, . . . , tf}, i.e., the variables
are constant on each time interval [tk, tk+1[. The
discrete state set Z = {z1, . . . , znz

} again results
from an assignment ρ : R → Z of one discrete
state to each region Ri ∈ R.

The continuous state transfer function fD : X ×
U × V × Z → Rn determines a new continuous
state according to the linear, discrete-time equa-
tion xk+1 := x(tk+1) = Az,vk

x(tk)+Bz,vk
u(tk)+

Lz,vk
with matrices Az,vk

∈ Rn×n, Bz,vk
∈

Rn×p, and Lz,vk
∈ Rn×1 depending on the dis-

crete state zk = z(tk) ∈ Z and the current discrete
input vk = v(tk).

The transition function φD : Z×X×X×R→ Z
specifies the current discrete state: For two regions
Ra, Rb ∈ R, a transition zk → zk+1 occurs at
tk+1, if: xk ∈ Ra, ρ(Ra) = zk and xk+1 ∈ Rb,
ρ(Rb) = zk+1, xk+1 /∈ Ra. If Ra is left across
Ej the transition guard is (cj · xk ≤ dj) ∧ (cj ·
xk+1 > dj) if Ej belongs to Ra, or (cj ·xk < dj)∧
(cj · xk+1 ≥ dj) if Ej is assigned to Rb.

Semantics: Transitions and changes in v(t) and
u(t) can occur only at the points of time in T . A
valid run of AL,D is defined by r : T →X ×Z as
the sequence r(t0), r(t1), . . . , r(tf ) of hybrid states
r(t) = (x(t), z(t)) according to:

(a) Initialization: r(t0) = (x0, z(t0)) with x0 =
x(t0) ∈ R∗ ∈ R, ρ(R∗) = z(t0) ∈ Z.

(b) Progress: r(tk) = (xk, zk) for tk ∈ T \ t0
results from:
1. continuous evolution:

xk+1 = fD(xk,uk,vk, zk);
2. discrete transitions:

zk+1 = φ(zk,xk,xk+1, Rj)
with xk ∈ Rj , xk+1 /∈ Rj . ¦

3.2 Reformulation of the Control Problem

The transformation of the AN,C -model into AL,D

comprises the following steps: First, the nonlinear
dynamics is linearized: In the simplest form, the
dynamics f of AN,C is linearized at the center-
point xc

i of each region Ri for a fixed value uc

and each discrete input vector v ∈ V : xk+1 =
Al

z,vk
xl
k + Bl

z,vk
ul
k + Ll

z,vk
with xl

k = xk −

xc
i , ul

k = uk − uc. A more accurate solution is
used for the moving horizon strategy described
in the next subsection: In this case the nonlinear
dynamics is linearized at the initial state xk of
each optimization.

The second step of the transformation is time
discretization: Variable time steps are used in
order to treat the switching times as optimization
parameters and to achieve that the optimization
horizon can cover a larger time range. The time
step 4tk = tk − tk−1, tk ∈ T \ {t0} is defined as:

4tk =

p
∑

i=1

δi · 4tmin · bi,k ∈ 4T (4)

with a minimum time step 4tmin ∈ R, a set of
constant parameters δi, and finitely many binary
variables bi,k ∈ {0, 1}. The values of the latter is
computed by the optimization and determines the
progress in time.

Since x(t), u(t), and v(t) are constant on the
interval [tk, tk+1[, the dynamics obtained from
linearization can be rewritten into:

xk+1 = eAl
z,vk

·4tk · xl
k+1+ (5)

∫ 4tk

0

eAl
z,vk

·4tk−τdτ · (Bl
z,vk

· ul
k +Ll

z,vk
)

=: Az,vk
· xl

k +Bz,vk
· ul

k +Lz,vk
.

Hence, the matrices in the dynamics of AL,D do
not only depend on Ri and vk but also on the
time step 4tk. The choice between these different
discrete options makes the formulation nonlin-
ear. In order to obtain a linear representation
in equation-based form the following formulations
are introduced:

• Rewriting the model in (5) into:

λz,vk,4tk
:= xk+1−Az,vk

·xl
k−Bz,vk

·ul
k−Lz,vk

,
(6)



the activation of a specific model follows from:
∑

z∈Z

∑

vk∈V

∑

4tk∈4T

bzk,vk,4tk
· λz,vk,4tk

= 0,

∑

z∈Z

∑

vk∈V

∑

4tk∈4T

bzk,vk,4tk
= 1 (7)

where the binary variable bzk,vk,4tk
stands for

a specific combination of region, discrete input,
and time step.

• To linearize the products of binary and contin-
uous variables (contained in (7)), the so-called
Big-M-approach (Glover, 1975; Williams, 1978)
is employed. The product r = b · x between a
binary variable b and a continuous variable x is
replaced by:

r ≥ b · xmin, r ≤ b · xmax, (8)

r ≤ x− (1− b) · xmin, r ≥ x− (1− b) · xmax.

The constants xmin, xmax ∈ R denote the min-
imum and maximum values of x. (The same
equations are chosen for b · u.)

• In each point of time, it has to be checked
in which region Ri the current state xk lies,
i.e., if Cixk ≤ di is fulfilled. Similar as in
(Williams, 1978; Bemporad and Morari, 1998),
the following formulation is used:

Ci · x(tk) ≤ di + (1− b) · smax, (9)

Ci · x(tk) > di + b · smin

where the binary variable b ∈ {0, 1} is 1
if xk is in Ri, and 0 otherwise. The vec-
tors smin, smax ∈ Rq×1 denote the bounds of
Cix(tk) − di in X. While (9) applies for the
case that all bounding hyperplanes belong to
Ri, the symbols < and ≥ have to be used for
hyperplanes that do not belong to Ri. The test,
whether a forbidden region is reached, can be
modelled in the same manner. If the binary
variable assigned to a forbidden region is explic-
itly set to zero, control inputs that would lead
into this region are eliminated from the set of
feasible solutions of the optimization problem.

• The objective function Ω in (2) has to be rewrit-
ten in a discrete time form, i.e. the integral is
replaced by a sum over the discrete points of
time. Furthermore, the term α(x) contains the
logical decision whether xk is in RT or not. This
can be implemented according to (9) also.

The linearization of (7) and the test on region
containment (9) can alternatively be modelled
by disjunctive formulations, which reduce the re-
quired number of binary variables (Stursberg and
Panek, 2002).

3.3 Optimization on Moving Horizons

The reformulation gives a linear representation of
the optimal control problem for AL,D. This allows

using mixed integer linear programming (MILP)
to compute the control trajectories. The simplest
way is to perform the optimization at once for the
complete horizon T . But even with very efficient
MILP-solvers this approach is only applicable for
short horizons (wrt. the number of points in T ),
since the complexity grows exponentially with |T |.
Instead the moving horizon approach illustrated
in Fig. 1 is used: The original automaton AN,C

and the approximating automaton AL,D are pro-
vided, the first for simulation and the second as
the optimization model. After initialization, AL,D

is optimized for a prediction horizon with only
a small number of points P = {t1, t2, . . . , tnP

},
P ⊂ T with usually nP << |T |. The first time
step 4t1 within P is set to 4tmin and, in order
to cover a large time period for the prediction, the
time steps increase over P .

The optimization result for the first step is applied
to the simulation model which is then simulated
for the interval 4t1. The exact new state xk+1 is
returned to the optimizer and the optimization is
repeated with a horizon that is shifted one time
step ahead. This alternating procedure is repeated
until the target region RT (or a maximum number
of steps) is reached. Besides the applicability to
larger time horizons, the approach has the advan-
tage that deviations between AL,D and AN,C are
corrected in each step.

Nonlinear
Hybrid Automaton

AN,C

Simulation MILP-Solution

Linear, Discrete-Time
Hybrid Automaton

AL,D

Approximation

Initialization

alternating

t , x , R0 0 T

t ,v , x
*

k+k k ku , 1

if xk+1 1Î or =R t tT k+ f

xk+1

manually

tool-supported

x t , v t , u t( ) ( ) ( )

Fig. 1. Scheme of the moving horizon approach.

4. EXAMPLE: TANK SYSTEM

The approach is illustrated using a laboratory
plant consisting of two tanks (Fig. 2): Tank T1 is
filled by the flow F1 that can be controlled through
the valve V1. It represents a scalar continuous
control which can be varied within the interval u ∈
[F1,min, F1,max]. The liquid is transferred from T1
into a second tank T2 through a connecting pipe.
The valve V2, which can be switched between
two settings {V2,1, V2,2}, allows to adjust the flow
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Fig. 2. The tank system.

F2 discretely. In the same way, the outflow F3

of tank T2 is discretely controlled by another
valve with two settings V3 ∈ {V3,1, V3,2}. In the
following it is assumed that only the combinations
v1 = (V2,1, V3,1) and v2 = (V2,2, V3,2) can occur,
i. e., the discrete input set is V = {v1,v2}. When
modelling the behavior of the system, it has to be
considered that the dynamics of the liquid levels
x1 and x2 in both tanks changes autonomously
when x2 crosses the value L (the height of the
connecting pipe). Fig. 3 shows a corresponding
AN,C model with distinct flows F2 for two regions
R1, R2 and constant parameters k1 to k4 . (The
dynamics changes also at x2 = L+ x1 because of
a reversed flow direction through the pipe – this
fact is neglected since the region x2 ≥ L + x1 is
completely contained in a forbidden region, see
below).

The following control problem is investigated:
Those trajectories v(t) and u(t) have to be deter-
mined which drive the tank system from an initial
state x0 = (0.01, 0.01) to a target region RT such
that an objective function Ω is minimized and that
forbidden regions RF,1 and RF,2 are not reached,
i.e.:

min
v(t),u(t)

Ω(t,x(t)), (10)

Ω =

∫ tf

0

µ1(t) · ‖x(t)−RT ‖1 · dt+ µ4 · tf ,

s.t. x0 = (0.01, 0.01),

x(tf ) ∈ RT = [0.3, 0.5]× [0.5, 0.6],

x(t) ∈ X = [0, 0.6]× [0, 0.6],∀t ∈ [t0, tf ],

x(t) /∈ RF,1 = [0.2, 0.6]× [0, 0.2],

x(t) /∈ RF,2 = [0, 0.3]× [0.3, 0.6],

for the dynamics given in Fig. 3.

For simplicity, the chosen function Ω does not
involve switching costs but only terms for the final
time tf and for the distance between x(t) and
the target region. To assign a higher priority to
the distance term, µ1(t) >> µ4 is chosen. The
transformation of AN,C into an approximating
automaton AL,D is based on linearizations in one
(centered) point of R1 and R2, and the time
discretization considers the following set of time-

Region :

= ( )

R

x L

F k  V x

2

2

2 1 2 1

£

× ×
0.5
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Fig. 3. The nonlinear hybrid model of the example

steps: 4T = {2, 4, 6, 10, 14}. Fig. 4 shows the
trajectory obtained for a single optimization of
AL,D over the full horizon {t1, . . . , tH}. The case
I refers to a test with a horizon |T | = 5, for which
the sequence 4t1,...,4 = (14, 10, 10, 10) of time-
steps was determined to be optimal (computed
in 24 CPU-sec on a SPARC II workstation). The
switching points for AL,D lie close to RF,1 and
RF,2 such that the simulation of AN,C with the
optimal input trajectories crosses the forbidden
regions. To avoid this problem, two of the time-
steps were manually fixed to 4t1 = 4t2 = 10 and
the horizon increased to |T | = 6. The resulting
state trajectory for AL,D, denoted by xII(t) in
Fig. 4, is far enough away from the forbidden
regions to avoid that the corresponding state
trajectory of AN,C crosses RF,1 or RF,2

1 .

x1

x tII( )

x tI( )

R
F, 1

R1

R2

Start

R
T

R
F, 2

x2

0.1

0.1

0
0

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

Fig. 4. Optimal state trajectories of AL,D for two
cases (I: |T | = 5, II: |T | = 6).

The trajectories generated with the moving hori-
zon approach are shown in Fig. 5: The state tra-
jectory x(t) is the simulation result for AN,C ob-
tained from the alternating procedure explained
in Sec. 3.3. In each step the optimization was
performed with a relatively short prediction hori-
zon nP = 3, and the target region is reached
in 12 steps overall. The first time-step for each
optimization was fixed to 4t1 = 2 while the pa-
rameters4t2 and4t3 are chosen by the optimiza-

1 A more sophisticated approach to ensure that the tra-

jectory of AN,C lies outside of RF is to determine an

upper bound on the model deviation f̂i = ||fi − fD
i

||∞
(i ∈ {1, . . . , n}) and to enlarge the forbidden regions by
moving their hyperplanes outside by f̂ · 4tmax.



tion algorithm from the set {2, 4, 6, 10, 14}. Due to
the distance term in Ω, large values are assigned
to 4t2 and 4t3 in most of the steps such that
the prediction covers a relatively large time range
despite of the small value of nP . This enables that
the optimizer can find a way around the forbidden
regions, and in the last seven steps the target
region RT is reached within the prediction. The
computation for this setting took 106 CPU-sec for
the total number of 12 steps.

x1

x t( )

x0

R
F, 1

R1

R2

R
T

R
F, 2

x2

0.1

0.1

0
0

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

v t( )

t (sec)

u t( )

v1

v2

0.5e-4

1.0e-4

1.5e-4

0
0

10 20 30 40 50

Fig. 5. State and input trajectories of AN,C for
the moving horizon setting.

5. CONCLUSION

The paper presents a pragmatic approach to solve
optimal control problems for systems with switch-
ing dynamics and discrete as well as continuous
controls. Of course the reformulation of AN,C into
AL,D is an approximation, but often the optimal
input trajectories obtained for AL,D lead to state
trajectories of AN,C which are sufficiently close
to the optimal one. A drawback of the equation-
based form of AL,D is the fact that the logical
part of the model leads to a large number of
binary variables, and the number of discrete op-
tions grows exponentially with the number of con-
sidered time points. While for a moving horizon
strategy with a ‘small’ horizon nP the complexity
grows only linear with |T |, the short look-ahead
horizon can lead to large deviations from the opti-
mal solution. The approach of using variable time
steps (which grow within the horizon P ) allows
covering larger time periods and thus enhances the
chance to find a path around forbidden regions.

Recent work is focused on developing a tool sup-
port for the part marked as manual procedure in
Fig. 1, and on investigating alternative methods
to formulate the optimization model in order to
improve the efficiency of the MIP solution.

The work presented is financially supported by the
German Research foundation (DFG).
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