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1. INTRODUCTION

An approach to modelling non-linear dynamic
systems is the multiple model representation
(Johansen and Foss, 1993). The basic principle is to
represent the system as an interpolation of simple
local models. Each sub-model describes the
behaviour of the system in a limited part of the
operating space. The local validity of a sub-model is
specified by an associated weighting function.
The identification of a multiple model involves
essentially two tasks: the parameter estimation (local
model and weighting function parameters) and the
structure identification (characterisation of the
operating space, determination of the number of sub-
models, identification of their orders and delays).

In most of papers, the identification task is performed
using an equation error criterion. The reason is that
the criterion is quadratic in the local model
parameters which can be computed using the least
squares method. But, the identified multiple model
may give poor performances when used in
simulation. This is a drawback if the model is built
for control or diagnosis purposes. To overcome the
difficulty, an output error identification is preferable.

The paper deals with the structure optimisation,
knowing that the parameter tuning has been already

addressed in (Boukhris, et al., 1999; Gasso, et al.,
2000). Two complementary techniques are proposed.
The first method deals with the structure optimisation
of the sub-models. An initial multiple model being
identified, the method reduces the complexity of the
sub-models by eliminating the irrelevant parameters.
The method is an extended study of works partly
tackled in (Gasso, et al., 2000). The second method
aims to find the appropriate number of local models
from a multiple model including a "high" number of
sub-models: it consists in merging the neighbouring
compatible sub-models which are arbitrary separated
by the initial decomposition of the operating space.

The paper is organised as follows: section 2 presents
the formulation of the multiple model. Section 3 is
devoted to the parameter estimation issues. Section 4
describes the structure optimisation methods which
are illustrated on simulation examples in section 5.

2. MATHEMATICAL FORMULATION OF THE
MULTIPLE MODEL APPROACH

Consider a non-linear, MISO dynamic system. The
multiple model approach represents the system as:
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fi indicates a sub-model. It depends on a regression
vector ϕ(t) (t stands for the discrete time) and on a
local parameter vector θi. The weighting function ωi
acts as a local validity measure of fi according to the
current operating regime of the system. The
weighting functions are defined over the feature (or
operating) space Z spanned by the vector z ∈� nz .
Their number and position determine the partition of
Z. The vector of feature variables z can include any
variable able to describe the non-linearities of the
process. In the paper, the variables z are delayed
inputs of the system. The weighting functions are
usually bell curve functions (gaussian, sigmoidal
functions). They depend on the parameter vector β.

The sub-models could have different functional
forms and structures but for the proposed methods,
they have necessary the same form. To simplify also
the notation, it is assumed that they share the same
inputs with the same orders. Thus, the local models
are output error models expressed by the relations:
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The vector ϕ(t) includes the delayed inputs ur (r=1,
– , m) of the system and the delayed output y of the
multiple model. ny and nu are the orders and d the
delay; m is the number of inputs. Using a polynomial
notation and according to (3), (2) can be written as:

y t A q y t B q u t di i ir r
r

m

if b f bf b f bf b= − + − +
=
∑
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0θ (4)

Ai and Bir are polynomials in q-1 (delay operator). θi0
is a constant (comparable to a bias term).

3. PARAMETER ESTIMATION

Let θ θ θ θT T T
M
T= [ ]1 2 K , the vector of local model

parameters. The vectors θ and β are estimated by
minimising the following output error criterion:

J y t y ts
t h

N
= −

=
∑ f b f bg d2   h n n dy u= +max ,i e (5)

ys is the measured output of the system. The criterion
J being non-quadratic in θ and β, the optimisation of
θ and β is realised through the Levenberg-Marquardt
(LM) algorithm expressed by the relation:

$ $ $ $Θ Θ Θ Θk k k k k+ −= −1 1f b f b f b f b f bj Lj Lη H G (6)

with Θ θ βT T T= [ ] . The approximated hessian H and
the gradient G are computed from these equations:
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They depend on the derivatives of the multiple model
output y(t) with respect to θ and β. The forms of
these sensitivity functions are specified hereafter.

From (1) and (2), the derivative ∂y(t)/∂β is deduced:
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Using the polynomial form (4), ∂yi(t)/∂β  is given by:
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Combining the two latest equations yields the
expression of the sensitive function ∂y(t)/∂β:
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A(q,t) is a time dependant polynomial defined as the
weighting sum of the local model polynomials Ai(q).
Similarly, the derivative ∂y(t)/∂θ is derived from (1):
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As the delayed outputs of the multiple model are not
considered as feature variables z(t), the derivative
∂ωi/∂θ is null. Therefore, it can be shown using the
equations (2), (3) and (4) that ∂y(t)/∂θ becomes:
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with A(q,t) defined by (8-b). The relations (8) and (9)
provide the dynamic evolution of the sensitivity
functions. Notice that the stability of these functions
is related to the stability of [1+A(q,t)] i.e. the stability
of the multiple model according to (1) and (4).

Using the derivatives, the estimation of θ and β is
achieved by a two-level algorithm (Boukhris, et al.,
1999; Gasso, et al., 2000) because the size of Θ is
often huge. It consists in computing β by a LM
algorithm for θ fixed and estimating θ by another LM
algorithm for β previously determined. The
procedure is repeated until convergence. Separating
the estimation of β and θ simplifies the calculation of
the inverse of the hessian matrices (which have
consequently a reduced size) and permits to adjust
independently the relaxation coefficient η and the
regularisation parameter λ for θ and β.

4. STRUCTURE IDENTIFICATION

It concerns the choice of the structure of the sub-
models, the choice of the feature variables z and the
partition of the feature space which determines the
number of models. In the sequel, the variables z are
assumed known. The problem treated is twofold:
simplification of the structure of the sub-models and
optimisation of their number.



4.1. Simplification of the local model structure

In the multiple model representation, simultaneous
determination of the structure and the number of
local models is difficult because a trade-off must be
achieved between the number and the complexity of
the local models. Indeed, few complex sub-models
are needed to approximate adequately a system and
conversely. Therefore, this interdependency forces to
proceed sequentially. An elegant way to solve the
problem is to fix an initial and common structure for
all local models and to identify their appropriate
number and position in the operating space (Tanaka,
et al., 1995). But after the parameter estimation step,
the local models can include superfluous parameters.
The reason is that the same structure has been
considered for all sub-models whereas it is probable
that the regression variables will have different
degrees of explanation of the system according to the
operating regimes. To fulfil the parsimony principle,
the irrelevant parameters can be discarded without
altering the generalisation ability of the multiple
model. The proposed method is based on a 2nd order
development of the criterion J around $θ , that is:

J J T Tθ θ θ θ θ θ θ θ θ θf b≈ + +− − −( ) ( ) ( ) ( ) ( )( )$ $ $ $ $ $G 1
2

H  (10)

with $θ  the estimation of the vector of local model
parameters after the parameter tuning. Let
∆θ θ θ= −( )$  and ∆J =  J - J( ) ( ) ( )∆θ θ θ$ . Noting that
G( )$θ = 0 , the preceding relation becomes:

∆J T∆θ ∆θ ∆θθf b≈
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2
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Simultaneous elimination of v parameters of the local
models is equivalent to minimise ∆J subject to v
constraints described by the matrix relation:
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with nθ = dim(θ). The positions of the elements 1 in
the constraint matrix Cv indicate the parameters to
discard. The minimisation of the resultant lagrangian
with respect to ∆θ provides the solution:

∆θ θ≈ − − − −
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whereof the constrained vector $ ( )θ v
c  is deduced:
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Notice that to simplify the notation, the hessian H( )$θ
has been replaced by H. The increase of the criterion
after the elimination of these v parameters is
evaluated using the expression:
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The deletion of a supplementary parameter (for
example the ith element of θ) is equivalent to add a
new constraint to Cv. This yields:

C Cv v
T

i
T T

+ =1 C

with: Ci

position

n= ∈ ×[ 0 ]0 1 0 1L 123 L

ith

� θ (14)

The minimisation of ∆J subject to the constraints
defined in Cv+1 gives the new constrained vector:
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The new increase of criterion is deduced as:
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The relations (16) and (17) show that the projection
matrix and the variation of criterion after the deletion
of v+1 parameters can be deduced by recurrence
from the deletion of v parameters. Hence, an iterative
procedure can be applied to discard the irrelevant
parameters. But an important feature must be
emphasised: there is no guarantee that the parameter
variation ∆θ calculated after the constrained
minimisation conserves the validity of the 2nd order
approximation (10) after some iterations. Normally,
after the deletion of one parameter, the remaining
parameters of the sub-models must be optimised until
convergence. Then, the approximation (10) is written
again and the deletion of an another parameter is
tested. As this basic solution is time consuming, an
improvement is proposed as follows: at each iteration
v, the estimated criterion increase ∆Jv is compared to
the true criterion variation ∆J J Jreal v

c= −( ) ( )$ $( )θ θ

where J v
c( )$ ( )θ  is computed by simulating the multiple

model using the estimation $ ( )θ v
c . A large discrepancy

between ∆Jv and  ∆Jreal means that the 2nd order
approximation is no longer valid. Thus, an
optimisation of the remaining parameters can be
carried out and the elimination procedure is repeated
until a stopping criterion is satisfied. This reduces the
computational effort. The algorithm for structure
refinement of the local models is presented below.

Algorithm 1: parameter elimination
1. Compute the hessian H( )$θ  from (7) and (9). Set

v=0, P Iv n=
θ
, ∆Jv=0. Let S, the set of non-

discarded parameter index.
2. For each parameter θ ifb (i S∈ ), generate the

constraint vector Ci and compute the variation of
criterion ∆Jv+1 using eq. (16) and (17).

3. Find the parameter θ(j) which deletion produces
the minimum increase of criterion noted ∆Jv+1, min.

4. Compute the constrained parameter vector $ ( )θ v
c

using eq. (15) and (16). Compute the true
variation of criterion ∆Jreal by simulating the
resultant multiple model using $ ( )θ v

c .
Test if the stopping criterion based on the true
criterion J v

c( )$ ( )θ  is satisfied. If yes, go to step 6.



5. Test the validity of the 2nd order approximation
by comparing ∆Jv+1 and ∆Jreal. If an optimisation
is necessary, adjust the remaining parameters of
the sub-models by a LM algorithm. Go to step 1.
Otherwise, calculate the projection matrix Pv+1

using eq. (16). Update: ∆Jv+1 = ∆Jv+1,min;
S S j= − pl. Increase v. Go to step 2.

6. Optimise the remaining parameters of the local
models by the LM algorithm.

The end of the algorithm is decided on the evolution
of a MDL criterion:

MDL ( )
( )( )+= log $ log( )

$ ( )J n
N

v
c

v
c

N
θ

θ
(18)

The degree of freedom of this criterion is the current
number of retained parameters i.e. n n v

v
c$ ( )θ θ= − .

4.2. Optimisation of the number of local models

The number of local models is related to the partition
of the operating space. Different techniques of
decomposition can be applied, for example grid
partition or k-d partition. But, the drawback of the
grid is the curse of dimensionality problem for high
dimensional systems. The k-d partition permits to
avoid this problem but examples in literature (Nelles,
et al., 1999) show that it generates more local models
than necessary. Thus, a reduction of the number of
sub-models can be realised by merging the models
which have been arbitrary separated by the initial
partition. The proposed technique is an extension to
output error case of a technique developed for serie-
parallel models (Gasso, et al., 2001).

Merging two neighbouring sub-models f ti i( )( ),ϕ θ$

and f tj j( )( ),ϕ θ$  is realised by constraining them to
have the same behaviour i.e. the same vector of
parameters (Gasso, et al., 2001). As the local models
have the same structure, the merging consists in
determining two vectors ∆θi and ∆θj such as:

$ $θ ∆θ θ ∆θi i j j+ = + (19)

This constraint can be written in matrix form:

Ci j,
$θ ∆θ+ =j L0 (20-a)
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(20-b)
In×n and 0n×n represent respectively the identity matrix
and the null matrix of size n = dim(θi). The parameter
variation ∆θ is calculated by minimising the criterion
increase (11) subject to the constraint (20-a). Hence,
the merging problem is converted into a least squares
optimisation under equality constraint. This is the
situation studied in section 4.1. Similarly, the validity
of the 2nd order approximation (10) could be lost
during the iterations. This must be detected and the
parameters of the remaining sub-models optimised.

Algorithm 2: sub-models merging
1. Compute the hessian matrix H( )$θ . Generate all

candidate pairs (fi, fj) of neighbouring sub-
models. Let Spairs the set of these pairs. Set v=0,
∆Jv=0 and P Iv n=

θ
.

2. For each pair of sub-models belonging to Spairs,
• generate the constraint matrix Ci,j  (20-b).
• compute the increase of criterion ∆Jv+1 using

eq. (16) and (17) where the matrix Ci,j is
substituted to the vector Ci.

3. Find the pair (fa, fb) of sub-models which merged
yields the minimum increase of the criterion. Let
Fa b,  the resultant sub-model.

4. Compute the constrained parameter vector $ ( )θ v
c

using eq. (15) and (16) where Ci is replaced by
Ci,j. Compute the true variation of criterion ∆Jreal
by simulating the resultant multiple model.
Test if the stopping criterion based on J v

c( )$ ( )θ  is
satisfied. If yes, go to step 6.

5. Test the validity of the 2nd order approximation
by comparing ∆Jv+1 to ∆Jreal. If an optimisation is
necessary, adjust the remaining parameters of the
local models using a LM algorithm. Go to step 1.
Otherwise, update the projection matrix Pv+1
using eq. (16) where Ci,j is substituted to Ci.
Update ∆Jv+1. Increase v.
Remove (fa, fb) from Spairs. Substitute Fa b,  to the
sub-models fa and fb in any pair where these local
models appear. Go to step 2.

6. Optimise the parameters θ and β of the reduced
multiple model by the LM algorithm.

The stopping condition is based on the evolution of a
MDL criterion. The degree of freedom considered is
Mv×n with Mv the current number of sub-models.
The merging of two sub-models fi and fj with
respectively the weighting functions ωi and ωj yields
a sub-model Fi j,  which weighting function is:

ω ω ωi j i j, = +

During the merging process, a local model Fi j,  can be
combined with a sub-model fl or with a model Fa b, .
To simplify the notation, all the sub-models are noted
Fi . To each Fi , corresponds a set ℑi  that includes the
index of the initial local models. For instance, a sub-
model Fi  related to a set ℑ =i p q r, ,q c results from the
merging of fp, fq and fr. Its weighting function is
given by:

ω ω ω ω ωi p q= +l
l

r
i∈ℑ

∑ = + (21)

A singleton set ℑi  indicates that the corresponding
local model is not merged with another sub-model.
The merging algorithm requires also the
determination of the neighbouring sub-models. The
solution to this problem has been developed in
(Gasso, et al., 2001) where the reader is referred to.



5. ILLUSTRATIVE EXAMPLES

Two simulation examples are presented to illustrate
the proposed methods of structure optimisation.
Example 1: simplification of the structure of the

local models
Let the system described by the non-linear equation:

y t =
y t - . u t - - . u t -

+ y t -

t - t - t

s
s 1 2

s
2f b f b f b f b

f b
f b f b f b

1 0 5 1 0 3 1
1 1

0 3 1 0 5 11
2

2
2+ − +. .u u e

(22)

where e(t) is an additive noise. The inputs of the
systems u1 and u2 are formed by the concatenation of
piecewise constant signals with variable amplitudes
and duration. A set of 1500 data points is used to
build the multiple model. The local models are output
error types with the initial structure chosen as:

y t a y t b u t b u ti
i i i

if b f b f b f b= − − + − + − +1 11 1 21 2 01 1 1( ) ( ) ( ) θ

Each sub-model has 4 parameters. The vector of
feature variables is zT t u t u t( ) [ ( ) ( )]= − −1 21 1 . The
resultant feature space is decomposed in a grid. For
this sake, 3 and 2 modalities are defined respectively
on the support of z1 and z2, leading to 6 sub-models.
Notice that these choices correspond to the optimal
solution obtained using a trial-error technique. At
each modality of a feature variable zj(t) is affected an
individual validity function. The validity functions
defined on the support of zj(t) are built such as they
sum to 1. They are given by the formulas:
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(23-a)
Kj is the number of modalities of zj and ρ l, j  is a
sigmoidal function defined as:

ρ
σl j j

j l j

l j
z t

z t c
,

,

,
tanhf bi e f b
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GI
K
Jk1 2 2 (23-b)

cl,j and σl,j are the centre and the dispersion of ρ l, j  .
A weighting function ωi is expressed by the equation:

ω µi j j
j
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=
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with the vector β defined as β T
l j l j l K

j n
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=

=
, , , ,

, ,
σ

1

1

K

K
.

Initially, the validity functions are fixed such as they
are evenly spaced. The 24 parameters of the local
models are optimised using the LM algorithm. At the
convergence, the pruning method is applied. But
during the evaluation of the algorithm, the 2nd order
validity test is ignored. Fig. 1-a compares the true
criterion obtained by simulating the reduced multiple
model with the estimated criterion suggested by the
2nd order approximation (10). To make the graphic
more legible, a zoom on the first values has been
done, giving the graphic of fig. 1-b.
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Fig. 1: Comparison between the true criterion and the
estimated one using the 2nd order approximation

It can be noticed that the estimated and the true
criteria are very close for the first ten iterations. This
confirms the fact that an optimisation of the
remaining parameters is not needed at each iteration:
it is a time-saving. A significant difference between
the criteria occurs from the 12th parameter suggested
for deletion. Using the MDL criterion, the algorithm
has suggested the elimination of 6 parameters.

Example 2: Reduction of the number of local models

The example illustrates the merging algorithm
integrated in a complete procedure of structure
optimisation. The procedure can be summarised as:
1. Generate an initial partition of the feature space.
2. Merge the compatible local models using

algorithm 2.
3. Optimise the parameters θ of the remaining local

models Fi  and the parameters β of the weighting
functions in order to improve the approximation
abilities of the reduced multiple model.

4. Return to step 2 until satisfaction of a
termination criterion.

The end of this procedure is decided by analysing the
evolution of a cross-validation criterion (using testing
data) or a generalisation criterion like the MDL. In
this case, the degree of freedom is dim( )β + ×n M2

(total number of parameters involved in the multiple
model). M2  is the current number of sub-models.
To test this complete procedure, consider the system
described by the non-linear differential equation:

&& &y t y t y t y t u ts s s sf b f b f b f b f b+ + + =3 (25)

The system has been sampled at a period of 0.2s. A
white noise has been added to the sampled output ys.
1500 data points are used for the identification of the
multiple model. The feature variable is z(t)=u(t-2).
The regression vector is chosen as



ϕ T t y t y t u t u tf b= − − − −[- ( ) - ( ) ( ) ( ) 1]1 2 1 2 . The
initial multiple model includes 12 sub-models with
the corresponding validity functions defined from eq.
(23). Notice that as the feature space is mono-
dimensional, the validity functions coincide with the
weighting functions. Their initial position on the
support of z(t) is shown on fig. 2-a.
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Fig. 2: Plots of the weighting functions
The parameters of the local models are optimised by
the LM algorithm. The merging method is applied
next. The neighbours of a sub-model are the models
located on its left (if any) and/or its right (if any).
Table 1 summarises the results. It shows that after the
first iteration, 6 sub-models are obtained. The form
and position of the resultant validity functions are
plotted on fig. 2-b. The parameters of these functions
and those of the resultant sub-models are optimised.
The performance of the obtained multiple model is
evaluated by computing the MDL criterion. This
reduced structure is used as the beginning point for
the merging algorithm. By repeating the procedure,
the minimum of the MDL is reached for a structure
containing 4 sub-models. The validity functions
associated to the final structure are shown on fig. 2-c.

Table 1: Results of the structure optimisation method
based on the merging algorithm

Iteration
Number of

local
models

MDL
criterion

Identification
criterion
( J v

c( )$ ( )θ )

0 12 1.98 4.90

1 6 1.83 5.15

2 5 1.81 5.24

3 4 1.80 5.35

4 3 1.82 5.67

The identified structure is tested on validation data in
order to evaluate its generalisation ability. The mean

square error J on these data is 2.05 against 2.47 for
the structure with 12 sub-models. The reason is an
over-learning phenomenon as the multiple model
with 12 sub-models is over-parameterised. The
output of the reduced multiple model and the system
output are plotted on fig. 3. One can notice the good
adequacy of the reduced multiple model.
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0.5
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Fig. 3: Performance of the reduced multiple model on
the validation data

6. CONCLUSION

In the paper, two techniques are presented for the
structure optimisation of a multiple model,
considering an output error criterion. The first
method concerns the pruning of superfluous
parameters of the sub-models whereas the second
deals with the optimisation of the number of sub-
models using a merging approach. Illustrative
examples are provided to show the capacity of the
methods. Nevertheless, further investigations must be
carried out in order to integrate the two methods in a
complete and global procedure of identification.
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