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Abstract: Welding with laser beams is an innovative technique, which is leads to higher
penetration depth and a narrower seam compared to conventional welding techniques.
One significant criterion of the quality of a junction is the penetration depth. Within this
article a predictive control scheme is presented that optimises the process input laser
power by taking the future welding speed into account. For modelling this non-linear
process an Artificial Neural Network (ANN) is applied. The GPC-algorithm with a linear
model obtained by instantaneous linearization of the network is used. First results of the
application on a real laser welding system are described. Copyright ©2002 IFAC
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1. INTRODUCTION

Welding with laser beams is characterized by high
specific power input into the workpiece. Thereby the
material is not only molten, but also vaporized form-
ing a capillary with plasma in it. The result is a nar-
row seam with a higher penetration depth compared
to conventional welding techniques as the laser beam
can penetrate the material through the capillary eas-
ily. As a result, a minimum of thermal stress of the
workpiece can be maintained. The required energy
density to vaporize the material is achieved by fo-
cussing the laser beam in the vicinity of the workpiece
surface. After reaching a temperature high enough to
vaporize the material a so-called keyhole is built and
the deep welding process starts. From a control engi-
neer’s point of view laser beam welding is a complex
multi-dimensional problem. Besides process parame-
ters (e.g. laser power, welding speed, position of the
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focus, angle of incidence in 3D material processing,
inert gas) also geometry parameters of the joint (e.g.
material thickness, gap, surface properties) influence
the seam quality.

Simple models of the process can be obtained from
energy balances and approximate the static behaviour
of the process. A detailed mathematical description of
the process is extremely difficult as it has to take into
account the sub-processes radiation absorption and
multiple reflections, heat conduction, melting, hydro-
dynamics, evaporation and optical emission of plasma
(Schulz et al. 2001). Analytical modelling of laser
beam welding is a field of intensive research, but so
far no self-contained model of the process covering all
necessary details is found. As the dominating system
input variables are welding speed and laser power,
these are suited for controlling the penetration depth.
In 3D laser beam welding the welding speed depends
on the path planning, the machine dynamics and per-
haps a seam tracking system and can therefore not be
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used for controlling purposes. The laser power, how-
ever, is instantaneously alterable; therefore it can be
used as the manipulated variable. Further input vari-
ables mentioned above can be kept constant. As the
future welding speed is known from the path planning
and definitely has a not negligible influence on the
penetration depth, the use of a predictive controller
which takes future variations of the welding speed into
account seems appropriate.

Model based predictive controllers (MPCs) belong to
a class of model based control schemes that use a
dynamic model of the controlled system to predict the
future behaviour of variables of interest. Thereby the
future impact of the actual system input variable val-
ues is estimated. The future deviation of the controlled
variable is minimized by finding an optimal control
sequence. The first element of that control sequence
is then applied to the process and the optimization is
carried out for the next sample step.

As the penetration depth cannot be measured with-
out destroying the workpiece, the intensity of the
plasma emission is used as the controlled variable
instead. Temporally and spatially resolved observa-
tions of the keyhole are acquired with a CCD-camera
and interpreted using physical insight (Kratzsch et al.
2000),(Schulz et al. 2001). The camera is mounted
directly on the welding head and its optical path goes
coaxial with the laser beam path through the focussing
optic. The design of the system allows an easy adap-
tion to both CO2 and Nd:YAG laser optics. Simple
control loops based on this controlled variable have
already been realized (Kaierle et al. 1998).

In this article, a predictive controller taking the weld-
ing speed into account is introduced. As the fast,
complex, non-linear process cannot be analytically
described in a suitable way for MPC, experimental
system identification is carried out to obtain a model
for the controller.

2. IDENTIFICATION

The reduced data-driven model of the process has the
two input variables laser beam power p and welding
speed v. Its output variable is the (measurable) inten-
sity of the plasma emission I. As the specific energy
applied to the process is p/v, the process is expected
to show non-linear behaviour. Identification of two
linear SISO-models from p to I and v to I, respectively,
will not result in a suitable model for the controller.
To cover the whole operating range, a global non-
linear model is needed. During different experiments
measurements of the laser beam power p, the welding
speed v and the intensity of the plasma emission I were
collected.

Figure (1) shows a composition of different measure-
ments of the static process behaviour as deviations
from an operating point. Using a calibration curve, the
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Fig. 1. Process behaviour

measured intensity can be mapped to the penetration
depth to describe the quasi-steady penetration depth
with time-averaged measurements. As the plasma in
the capillary reacts faster to e.g. changes of the laser
power than the penetration depth does, the dynamics
have to be modelled separately. Like in the penetration
depth estimation scheme presented in (Tu et al. 1997),
where temperature measurements at the bottom sur-
face of the workpiece, weld bead width, laser power
and welding speed are used to estimate the penetration
depth, an experimentally determined lag element is
used to model the dynamics. With this element being
considered to be part of the process, also a noise reduc-
tion is realized due to its low-pass behaviour. As the
neural network is used to identify this element as well
as the static mapping, further improvements of the
measuring device that reveal the penetration depth’s
dynamics clearer will then not affect the controller’s
internal model structure.

Because of their approximation capabilities Artificial
Neural Networks are well suited for system identifi-
cation when a black-box model of a non-linear dy-
namic process is to be derived from measured data. In
1990, Narenda and Parathasarathy proposed the use of
neural networks for system identification and control
(Narenda and Parathasarathy 1990). Nowadays, neural
networks are established as approximators in many
fields. A widely-used type of network is a Multi-Layer
Perceptron network (MLP) with one hidden layer of
neurons with non-linear activation functions and one
output layer with linear neurons. For the hidden layer
neurons with the hyperbolic tangent activation func-
tion are frequently used. Non-linear time discrete dy-
namic systems can often be represented by non-linear
difference equations. Therefore a tapped delay line
TDL for nb by at least d samples delayed system input
variables and na by at least one sample delayed out-
put variables is used. These so-called NARX-structures
(Non-linear AutoRegressive, eXogenous input) are in-
tuitively deduced from linear system identification
(Sjöberg et al. 1995), (Nelles 2001) and with neural
networks often used to represent non-linear dynamic
systems besides more complex structures with internal
dynamics. Examples from various fields show their
overall ability to approximate non-linear dynamic sys-
tems, e.g. (Previdi et al. 1999), (Lightbody and Irwin
1996).



Using neural networks in this framework means that
two problems have to be dealt with: finding the right
regression vector for the mapping (which means deter-
mining the system order) and finding a sufficient num-
ber of hidden neurons and determine optimal weights.
The first problem is also known in linear system iden-
tification theory, the latter is a typical neural network
training task. Starting with a considerably higher sys-
tem order than the applied filter has, time series of p,
v and I were arranged as regressors and presented to
the network as training patterns. Using a Levenberg-
Marquardt algorithm to adjust the network parame-
ters, the one-step-ahead-prediction error was mini-
mized (also referred to as Prediction Error Method
and corresponds to figure (2), a), NARX). A number
of S1 = 10 neurons in the hidden layer gave good
results during the training. To obtain a parsimonious
model which does not tend to overfitting, the last delay
terms were successively pruned and the network was
retrained until a remaining system order of na = 2,
nb = 3 and d = 1 for both system inputs was left.
Further pruning of network inputs decreased consid-
erably the network performance. For further hints see
e.g. (Nørgaard et al. 2000) and (Gomm et al. 1997).

Fig. 2. Serial-parallel (a) and parallel (b) model

For predicting more than one step ahead, this NARX-
structure cannot be used, and so for use in the con-
troller the parallel model (cp. figure (2), b)), also
called NOE (Non-linear Output Error), is mainly used.
The resulting neural network has the structure de-
picted in figure (3).

Fig. 3. MLP-network with external dynamics

The mapping of the network at discrete time t can be
described by

Î(t) =
S1

∑
j=1

w2
1 j · tanh

(
na+2nb

∑
i=1

w1
jiϕi(t)+b1

j

)
+b2

1 (1)

with the output of the hidden layer neurons

o1
j(t) = tanh

(
na+2nb

∑
i=1

w1
jiϕi(t)+b1

j

)
, (2)

where the network inputs for the prediction of time
instant t+ k are given as a regression vector

ϕ(t+ k) = [ p(t+ k−d) . . .
p(t+ k−d−nb+1)
v(t+ k−d) . . .
v(t+ k−d−nb+1)
Ĩ(t+ k−1) . . .

Ĩ(t+ k−na) ]T

(3)

in which the signals Ĩ are measurements for time
arguments negative with respect to t and predictions
otherwise. The weight wk

i j denotes the connection of
the ith neuron in the kth layer to its jth input.

The validation of the network’s performance as a 25-
step-ahead predictor is shown in figure (4) with a sam-
ple time of 2.5 ms. The predictor starts in the serial-
parallel mode and switches subsequently to the par-
allel mode approaching the upper prediction horizon
N2. Besides the dynamics of the applied filter, further
low-pass behaviour is shown by the network.
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Fig. 4. Validation of the 25-step-ahead predictor

The non-linear network is able to predict the process
output with sufficient accuracy in spite of the measure-
ment noise.

3. PREDICTIVE CONTROL

Having an internal controller’s model capable of mod-
elling non-linear dynamic processes allows on one
hand a wider operating range of the controller, on
the other hand a demanding non-linear, perhaps con-
strained optimization problem has to be solved at
every time instant. In e.g. (Sørensen et al. 1999) non-
linear optimization is used with a neural network
model applying a quasi-Newton algorithm, in (Botto
and da Costa 1998), also feedback linearization is used
to ease the optimization problem. In (Wang and Wan
2001) and (Galván and Zaldivar 1998), respectively,
neural networks were also applied to learn the optimal
solution instead of computing it analytically. As the
computational burden is still high for those approaches
and the time behaviour might even be not determin-
istic, a quite intuitive way, described in (Nørgaard et
al. 2000) as approximate predictive control (APC) is
followed for this application as short sample times of
2.5 ms are required due to the fast process dynamics.
The approximate predictive controller uses a linear



predictor. By instantaneous linearization at each sam-
ple step the good approximation capabilities of the
neural network and the deterministic behaviour of a
linear optimization are then combined.

By Taylor series expansion at time t = τ one receives
as a linear approximation of eq. (1)

Î(t)≈ Î(τ)+
∂ Î(t)

∂ϕ1(t)

∣∣∣∣
t=τ
(ϕ1(t)−ϕ1(τ))

+
∂ Î(t)

∂ϕ2(t)

∣∣∣∣
t=τ
(ϕ2(t)−ϕ2(τ))+ . . . . (4)

The partial derivatives are

∂ Î(t)
∂ϕk(t)

=
S1

∑
j=1

w2
1 j ·
(

1−
(
o1

j(t)
)2)
·w1

jk (5)

easily calculated from the non-linear prediction at
time instant t = τ (cp. eq. (2)) and one obtains

bi =
S1

∑
j=1

w2
1 j ·
(
1− (o1

j(t))
2) ·w1

j,i+1

=
∂ Î(t)

∂ p(t−d− i)
, i= 0 . . .nb−1, (6)
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and
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as coefficients for a linear ARX model and thereby

Î(t)≈−
na

∑
i=1

aiĨ(t− i)+
nb−1

∑
i=0

bi p(t−d− i)

+
nb−1

∑
i=0

civ(t−d− i)+ e(τ) (9)

approximates eq. (1) with

e(τ) = Î(τ)+
na

∑
i=1

aiĨ(τ− i)−
nb−1

∑
i=0

bi p(τ−d− i)

−
nb−1

∑
i=0

civ(τ−d− i) (10)

being the difference between non-linear and linearized
model at τ resulting from the bias values of the net-
work which is constant within the prediction horizon.
The static non-linear behaviour will be covered quite

exactly by the linearized model, while depending on
the degree of nonlinearity transients will only be ap-
proximated. Therefore, care has to be taken in trust-
ing the ’optimal’ solution that can only be valid for
the linear model. Setting the weighting factor ρ of
future control changes in eq. (25) to a relative high
value ensures a smoother control action that is not
that strongly dependent on the properties of a single
linearized model during one sample step.

The coefficients of the linearized model can be written
in polynomial form

A
(
q−1)= [1+a1q−1 . . .+anaq−na] (11)

B
(
q−1)= [b0+b1q−1 . . .+bnb−1q−nb+1

]
(12)

C
(
q−1)= [c0+ c1q−1 . . .+ cnb−1q−nb+1

]
(13)

in the time shift operator q and one obtains

A
(
q−1) Î(t) = q−dB

(
q−1) p(t)

+ q−dC
(
q−1)v(t)+ e(τ). (14)

Using ∆=
(
1−q−1

)
on eq. (14) to achieve offset-free

control action gives

∆A
(
q−1) Î(t) = q−dB

(
q−1)∆p(t)

+ q−dC
(
q−1)∆v(t)+∆e(τ) ,

(15)

and the GPC-algorithm (Clarke et al. 1987) for this
ARIX-model (integrated ARX) can be executed for
N1= d, which will be briefly outlined in the following.
The first task is to rewrite the predictor in such a way
that the contributions of the single future input signals
to the predictions can be separated.

For the time instant t+ k applies for the predictor

∆A
(
q−1) Î(t+ k) = q−dB

(
q−1)∆p(t+ k)

+ q−dC
(
q−1)∆v(t+ k) (16)

and by introduction of a diophantine equation

1= ∆A
(
q−1)Ek

(
q−1)+q−kFk

(
q−1) (17)

with

degEk
(
q−1)= k−1 degFk

(
q−1)= na (18)

the predictions for the time instants t+d . . .t+N2 can
be written as

Î = Γ1P̃+Γ2Ṽ +Φ , (19)

where



Î =
[
Î(t+d) Î(t+d+1) . . . Î(t+N2)

]T
(20)

P̃= [∆p(t)∆p(t+1) . . .∆p(t+Nu−1)]T (21)

Ṽ = [∆v(t)∆v(t+1) . . .∆v(t+N2−d)]T (22)

Φ= [ϕ(t+d)ϕ(t+d+1) . . .ϕ(t+N2)]
T . (23)

The components of the ’free’ controlled variable are
given by

ϕ(t+ k) = Fk
(
q−1) Ĩ(t)

+
d+nb−2

∑
i=1

g1
k−d+i∆p(t− i)

+
d+nb−2

∑
i=1

g2
k−d+i∆v(t− i) (24)

where Γ1 and Γ2 are matrices of the size (N2− d+
1)×Nu and (N2−d+1)× (N2−d+1), respectively,
containing the coefficients gi

j of the respective step
responses which result with the polynomial Fk from
the recursion of the diophantine equation described in
(Clarke et al. 1987). The ’free’ controlled variable de-
scribes the prediction of the plasma intensity assuming
constant future input variables. The expressions Γ1P̃
and Γ2Ṽ show the impact of future changes in laser
power and welding speed, respectively, and by defin-
ing a quadratic functional which contains the future
reference values r(t + i) and the predicted values of
the plasma intensity

J(t, P̃,Ṽ ,R) =
N2

∑
i=N1

[r(t+ i)− Î(t+ i)]2

+ ρ
Nu

∑
i=1
[∆p(t+ i−1)]2 (25)

the laser power can be optimized. By collecting the
reference values in the vector R and minimizing the
functional by calculating

∂J(t, P̃,Ṽ ,R)

∂ P̃
!
= 0 (26)

one obtains the optimal solution for the future laser
power

P̃opt. =
[
ΓT

1 Γ1+ρINu

]−1 ΓT
1 (R−Φ−Γ2Ṽ ) . (27)

With this approach for the predictive controller, the
following scheme results for the closed control loop.
The motion planning provides reference trajectories
for the welding speed and the desired penetration
depth. The latter is mapped to a desired intensity. The
motion control loop of the welding system contains
the drive dynamics and shows first order lagging be-
haviour. This is also considered by a prefilter to ∆Ṽ
in the MPC. The MPC calculates the optimal laser
power taking the future welding speed into account
and passes pref. as the first element of P̃opt. in eq.(27)
as actual command value to the cascaded laser power
control loop.

Fig. 5. Predictive control scheme

For practical application, a conservatively tuned PI-
controller is operated in parallel to the predictive con-
troller and is switched on if the process is leaving the
domain covered by the training data.

4. APPLICATION

The described predictive control scheme has been im-
plemented using a dSpace® DSP-system and Matlab®/
Simulink®, where the control scheme has been im-
plemented graphically and the MPC-core being pro-
grammed in ’C’. A CCD-Camera (Kratzsch et al.
2000) was used to observe the plasma. A PC-system
is processing the images from the camera and calcu-
lating the intensity value corresponding to the actual
penetration depth. This intensity value, the welding
speed and the desired penetration depth is then fed into
the dSpace system to perform the control task. Various
experiments have been conducted to investigate the
predictive controller’s performance. As one example
the compensation of a step-like change of the welding
speed by 1.6 m/min is shown. Figure (6) shows the
change of the filtered measured intensity I, the weld-
ing speed v and the laser power p without controller.
The longitudinal section of the weld shows the change
in the penetration depth.

Fig. 6. Plasma intensity and penetration depth for an
uncontrolled weld with constant laser power and
change in welding speed

Figure (7) shows the filtered measured intensity, weld-
ing speed, laser power and a longitudinal section for
an experiment with controller. Note that the penetra-
tion depth is almost constant as well as at a different



level, as the reference value for the intensity was set
to be lower than the resulting values in the experiment
depicted in figure (6).

Fig. 7. Plasma intensity and penetration depth for a
controlled weld with change in welding speed

5. SUMMARY

Welding with laser beams is an innovative technique
for joining materials which experiences a strong in-
crease in a wide variety of industrial applications (e.g.
manufacturing car bodies) because of high welding
speed and the good quality of the seam. As it is in fact
a complex process, means and ways for monitoring
and closed loop control have to be applied. Within
this article, a predictive control scheme using a dy-
namic neural network as process model is introduced.
The laser power is used to affect the process, taking
the welding speed into consideration. For monitor-
ing purposes a CCD-camera is used, calculating the
penetration depth from the intensity of the spatially
and temporally resolved emission of the plasma. A
NARX-MLP-network with external dynamics is used
to identify the process and provide parameters for the
linear predictor of the controller. Thereby a non-linear
neural network model and a well-known linear predic-
tive control scheme are combined and used to control
a very fast, non-linear process.
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