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Abstract: The paper presents a methodology of designing control logic that is implemented by
industrial programmable logic controllers. The approach is based on discrete-event model of
a plant to be controlled and a set of interlock and sequential specification models. Supervisory
control theory is used to test the controllability of the specifications and in the final stage, to
derive a model of the admissible behaviour of the system which serves as a specification for
the sequential part of the controller. A laboratory scale modular assembly line case study is
presented to illustrate the practical issues of the approach. Copyright ©2002 IFAC
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1. INTRODUCTION

Programmable logic controllers (PLC) are often re-
ferred as a workhorse of industrial automation. They
form one of the most commonly used implementation
platforms and the majority of industrial automation
solutions are currently based on PLCs.

In the search for the more effective methods of pro-
gramming industrial logic controllers most of the re-
cent developments are focused on standardization of
programming languages (IEC, 1993). Less has been
done on the design of the control logic itself. The key
to the success of the controller program lies in the
correctness of the underlying logic. An approach com-
monly used in the computer science is to verify the
correctness of the program code by formal techniques,
while the code is programmed in the usual way.

What is investigated here is a complementary ap-
proach, i.e. a systematic design procedure that would
result in an automatically generated code, correct
by design. The procedure consists of several design
phases, from system modelling, specification of con-
trol requirements to control synthesis and implemen-
tation. The supervisory control theory (Ramadge and
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Wonham, 1987) is applied for the control synthesis
while implementation is performed in the IEC 61131-
3 compliant programming environment.

The control logic design approach used here was first
presented in (Chandra et al., 2001). We introduce
some modifications in implementation stage where
several interlock supervisors and a separate sequenc-
ing controller are implemented in order to accommo-
date to various operating modes. The main specific of
our implementation is that a standard PLC is used in-
stead of a personal computer and a dedicated software.

The paper is organized as follows. In Section 2 the
discrete event modelling and related theory is briefly
reviewed. The control design procedure is described in
Section 3. Different control layers are explained and a
simple application example is given. Some implemen-
tation issues are discussed at the end of the paper.

2. MODELLING

Processes to be controlled are modelled as generators
of formal languages (Kumar and Garg, 1995; Cassan-
dras and Lafortune, 1999). Such a generator may be
represented in a form of a finite automaton with a
partial transition function, i.e., a transition structure
where, in general, only a subset of a total set of events
can occur at each state.
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2.1 Generators and formal languages

A deterministic generator is defined as a five-tuple

G = (X ,Σ,δ,x0,Xm) (1)

where X is a set of states, Σ is a set of symbols,
associated with events in the generator. δ : X ×Σ → X
is a state transition function of G and is in general a
partial function on its domain. x0 is the initial state and
Xm is a subset of states, called a set of marker states.

A generator G may be represented as a directed graph
with a set of nodes X . An arc x → x′, labeled σ exists
whenever x′ = δ(x,σ). The generator G is interpreted
as a device, which enters state x0 when switched on
and changes its state following the graph. A symbol
is generated at every transition. The transitions occur
spontaneously and asynchronously. The model does
not include any event selecting mechanism nor time.

A finite set of generator symbols, e.g. s = σ1σ2σ3σ4

is called a string. An empty string is denoted as ε.
The concatenation of strings: s = s1s2 is the string of
symbols of s1 followed by the string of symbols of s2

(εs = sε = s). The set of all finite strings of elements
of Σ including the empty string ε is denoted by Σ∗.

The language is defined as a subset of Σ∗. If s′t = s,
s,s′, t ∈ Σ∗, then s′ is a prefix of s. A prefix closure
of a language L ⊆ Σ∗ is defined as L = {s ∈ Σ∗; ∃t ∈
Σ∗,st ∈ L}. L is again a language: L ⊆ L. L is prefix
closed if L = L.

The state transition function δ of a generator G is
extended from X ×Σ to X ×Σ∗ in a recursive manner:
δ(x,ε) = x, δ(x,sσ) = δ(δ(x,s),σ), for s ∈ Σ∗ and σ ∈
Σ whenever x′ = δ(x,s) and δ(x′,σ) are defined.

The language generated by the generator G is L(G) =
{s ∈ Σ∗; δ(x0,s) is defined}. The language marked
by G is Lm(G) = {s ∈ L ; δ(x0,s) ∈ Xm}. If G is a
generator, the language L(G) is prefix closed: L(G) =
L(G); which is not always true for Lm(G). L(G) is
interpreted as a set of all finite event sequences that
may occur in the automaton. Lm(G) are the sequences
that end in marker states.

2.2 Composition of generators

Complex models may be built by composing simpler
generators. Two basic composition operations exist:
product, denoted by ×, and parallel composition, de-
noted by ‖ (Cassandras and Lafortune, 1999).

Denote a pair of generators as G1 = (X1,Σ1,δ1,
x01,Xm1) and G2 = (X2,Σ2,δ2,x02,Xm2). In the prod-
uct G1 × G2, transitions in the two generators must
always be synchronised on a common event, that is an
event in Σ1 ∩Σ2. Other events cannot occur at all. In
the parallel composition G1 ‖ G2, the two generators
are only synchronised on common events, while other
events may occur whenever possible. The composed
generator is

G1 ‖ G2 =

= Ac(X1 ×X2,Σ1 ∪Σ2,δ,(x01,x02),Xm1 ×Xm2)

where Ac denotes the accessible part of the generator.
When Σ1 = Σ2, all events must occur synchronously
therefore Σ1 = Σ2 ⇒ G1 ‖ G2 = G1 ×G2.

2.3 Modelling for logic control

When modelling a process for the purpose of con-
trolling it by a logic controller the observable events
are related to controller input and output signals. Two
events may be assigned to every binary input/output
signal, denoting changes of the signal from ’off’ to
’on’ (0 to 1) and vice versa.

A model of the process should capture all possible sig-
nal changes related to it. In general, there is no phys-
ical limitation on changes of the signals driving the
actuators of the process. Although there is a common
request that certain actuating signals are not allowed in
a particular state of the process this may be treated as
a part of a control specification and not a property of
the process. On the other hand, possible changes of the
sensor signals depend on the process state, i.e., on the
past sequence of the input/output signal changes. E.g.,
a pneumatic piston equipped with two limit switches
at both ends and an electro-pneumatic valve on the
pressure supply may not generate a sequence of two
switch state changes without a change of the state of
the valve in between.

Due to physical setup of the system, only a subset of
all sensors and actuators are directly related. Accord-
ing to this relation the process is decomposed into a set
of subsystems that are called process devices. Every
device is modelled independently as a generator. The
complete model of the process may be obtained by
parallel composition of device models. The number of
states in such a model increases exponentially with the
number of devices so modular approach to the control
design is preferred.

2.4 Modelling example

The modelling approach is illustrated by modelling
a part of a modular assembly line. The system con-
sists of five working stations, controlled by five
programmable logic controllers (Mušič and Matko,
1999). Two of the stations are shown in Fig. 1.

We focus on the arm of the manipulator, which moves
the workpieces between the two stations. The arm is
equipped with a gripping device, consisting of a vac-
cum holder, electro-magnetic valve and a low pressure
sensor. The valve is operated by two binary signals,
one for opening and one for closing the valve. In case
both signals are ’on’, the state of the valve corresponds
to the signal that has been switched on first. The sensor
detects when a grip is firm enough to carry a work-
piece. In case the workpiece falls during the transport,
the sensor detects the fall.
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Fig. 1. Part of the modular production system
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Fig. 2. Model of the gripping device

The gripping device is modelled as a generator shown
in Fig. 2. Events are labelled by the label of the related
sensor/actuator (sg - grip sensor, ag1 - vacuum on, ag0
- vacuum off) followed by the number indicating the
transition direction of the corresponding signal (1 -
transition from 0 to 1; 0 - transition from 1 to 0). The
initial state is designated by arrow pointing to the state
while no marker states are designated. At this point we
assume all states are marked. The language generated
and marked by the device is prefix-closed.

3. CONTROL LOGIC DESIGN

A design procedure leading to control logic for a
single device has been presented in (Mušič and
Matko, 2001). It is based on the approach reported in
(Chandra et al., 2001) where the logic controller is de-
signed using the supervisory control theory (Ramadge
and Wonham, 1987). The theory enables to calculate
the model of the admissible behaviour of a process
and a control mechanism that will guarantee such a
behaviour. In the presented approach a subset of the
admissible behaviour is extracted to derive a model of
a logic controller. Here the idea is further developed
to tackle the problem of interacting devices. Modular
approach (Wonham and Ramadge, 1988) is used to
reduce computational complexity.

3.1 Supervisory control

The supervisory control concept deals with a dis-
crete event system whose behaviour is restricted by an
external controller called supervisor. The supervisor
(Fig. 3) does not uniquely determine the next event to
occur in the system; it merely monitors events gener-
ated by the system and determines the set of allowable
events that can occur at any instant (γi in Fig. 3). In this
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Fig. 3. Supervisory control

way the supervisor actually intervenes only in cases
when some undesired process behaviour is about to
take place. The supervisor is computed based on the
’open-loop’ system model.

Supervisory controller action is to define a set of
enabled events that are permitted to occur with regard
to the sequence of the past events. The events that are
not included in the set of enabled events are disabled.
The set of events in the system is divided into a subset
of controllable and a subset of uncontrollable events:
Σ = Σc ∪Σu, Σc ∩Σu = /0. The uncontrollable events
are either generated by the process itself and cannot
be controlled or must not be blocked by an external
agent due to the safety of other requirements.

Supervisory control synthesis methods enable the
computation of the supervisor that is maximally per-
missive. That means the resulting closed-loop system
meets the demands about the system behavioural re-
strictions, while the supervisor never tries to block an
uncontrollable event and at the same time does not
restrict the system more than necessary. The key issues
are the concept of controllability (Ramadge and Won-
ham, 1987) and the concept of supremal controllable
sublanguage (Wonham and Ramadge, 1987).

3.2 Control design

The proposed control structure is presented in Fig. 4.
One of the key points of the approach is that the
specifications are split up in two parts. The first part
involves prevention of undesired behaviour. It is com-
posed of the so-called interlocks that implement mea-
sures to assure safety, co-ordinate subprocesses, etc.

The second part deals with the sequential specification
and defines prescribed order of tasks. It is related to
desired system operation. The sequencing part of the
control logic is only synthesized after the interlock
part has been designed. This increases the flexibility of
the proposed solution since only the upper layer has to
be redesigned when changes in the system operation
are required.

3.2.1. Base interlock layer In the first layer, ev-
ery device is supervised by a local supervisor, which
imposes device’s own interlock specifications. These
include various rules about switching the actuator sig-
nals that are independent of other devices. The main
reason to introduce this supervisory layer is a higher
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Fig. 4. Proposed control structure

modularity of resulting control logic. Local supervi-
sors, when implemented, may be re-used, whenever a
device of the same type appears in the system. When
the system is in operation the local supervisors are
always active, irrespective of the operating mode.

3.2.2. Interlock layer Next layer is composed of the
co-ordinating supervisors that control the interactions
among devices. In order to prevent deadlocks the non-
blocking property of the composed system must be
maintained. In supervisory control theory the non-
blocking property of the supervisor is expressed by the
requirement that the nonempty specification language
K ⊆ Lm(G) is relative-closed (Lm(G) closed):

K ∩Lm(G) = K (2)

As in (Chandra et al., 2001) we assume the set of
marked states is determined by the sequential spec-
ification only. All the interlock specifications Kspec

are prefix-closed (Kspec = Kspec). Specification lan-
guage K is obtained by intersection K = Kspec∩Lm(G)
(product of related generators) and since Lm(G) =
Lm(G) = L(G) we have K = K and relative-closure
property trivially holds for a single specification.

It remains to check the controllability (Ramadge and
Wonham, 1987) of the specification, i.e., the specifica-
tion language K must satisfy the following condition:

KΣu ∩L(G) ⊆ K (3)

Next, the effect of the composition of the designed su-
pervisors has to be examined. According to (Wonham
and Ramadge, 1988) a conjunct of two controllable
and relative-closed specifications K1 and K2 is con-
trollable and relative-closed whenever the two specifi-
cations are non-conflicting:

K1 ∩K2 = K1 ∩K2 (4)

Again, when both specifications are prefix-closed, the
non-conflicting property always holds. This allows to
implement the interlock supervisors modularly and to
conjunct their outputs, i.e., an event σi is enabled, if it
is enabled in all supervisors. In case a supervisor deals

with a subset Σi of a total set of events Σ it is assumed
that it always enables all events in the set Σ−Σi.

During the system operation the co-ordinating super-
visors are normally active both in manual and auto-
matic mode to ensure safe operation. In some spe-
cific operating modes, e.g., maintenance mode the co-
ordinating supervisors may be disabled.

3.2.3. Sequencing layer The sequencing controller
plays a different role than the interlock supervisors.
Instead of permitting or disabling the occurrence of
events in the system it has to actively trigger events
that result in the state change of the actuating elements
of the process. The controller actively drives the pro-
cess through a desired event sequence. We implement
the controller as a subset of the admissible behaviour
satisfying the global sequential specification of the
system. This brings us back to the original setup of
Ramadge and Wonham (Fig. 3) but with the different
interpretation of the controller S - a logic controller.

Note that this does not present any contradiction with
the original supervisory control framework. In the
closed loop of the supervisory control there is no
implication on the causal order of events or about the
event triggering mechanism. The only requirement is
that the events in the process and the controller must
be synchronised.

As in previous cases the specification has to be
controllable and relative-closed. The admissible be-
haviour model is obtained by product of the plant
model and the specification. In case the specification
is not controllable a supremal controllable sublan-
guage is calculated. The ’closed-loop’ model is used
as the plant model for checking the controllability
and relative-closure of the sequential specification.
The model incorporates the actual plant and all the
interlock supervisors. The computing effort to perform
controllability check and the calculation of supre-
mal controllable sublanguage depends on the state
space size of the model. With the careful selection
of the interlock specifications the number of states of
the ’closed-loop’ model may be significantly reduced
comparing to ’open-loop’ model of the plant.

The sequencing controller is extracted by inspecting
the state transition graph of the generator of the ad-
missible behaviour. In every node of the graph, a set
of enabled events is determined. One of them is cho-
sen as the preferred event, which may be controllable
or uncontrollable. Transitions related to controllable
events (except the eventually chosen preferred event)
are deleted from the graph while all transitions related
to uncontrollable events are retained in the graph. The
criteria the preferred event is chosen upon depend
on the designer. One criterion may be, e.g., to try
to complete the tasks (reach the marker states) in a
minimal number of steps. Finally, inaccessible states
and related transitions are removed from the graph.
This way a new generator is obtained - the controller.



3.3 Example

To illustrate the approach a simple control logic is de-
signed that operates the manipulator, shown in Fig. 1.
The arm of the manipulator is equipped with a grip-
ping device, model of which was described in the pre-
vious section (Fig. 2). Next we model the arm itself. It
consists of a bidirectional pneumatic gear that moves
the arm, two electro-pneumatic valves to control the
movement, and two limit switches to signal the left
(sl) and right (sr) position. Each valve is operated by a
binary signal (ar - movement right, al - movement left)
and is opened, when the signal is ’on’. If both valves
are closed or opened, the arm holds its position. Model
of the arm is shown in Fig. 5. Events are labelled in the
same way as in Fig. 2, all states are marked.
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Fig. 5. Model of the manipulator arm

The basic interlock layer is designed for each device
independently. Local interlock specifications for the
gripper are shown in Fig. 6. The first specification
defines that events ag11 and ag01 may not follow each
other meaning the signals ag1 and ag0 are not allowed
to be ’on’ at the same time. Second specification
defines that the vaccum valve on the gripper must be
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Fig. 6. Local interlock specifications for the gripper
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Fig. 7. Local interlock specification for the arm

closed (ag01) before it may be opened again (ag11). A
similar interlock specification for the arm is shown in
Fig. 7. The specification defines that left (al) and right
(ar) movement may not be started at the same time.

All specifications are controllable and generators
shown in Figs. 6 and 7 are implemented as the local
supervisors for corresponding devices. The control ef-
fect of such a generator is interpreted as follows: an
event σi is disabled in state S j when δ(S j,σi) is not de-
fined. The model of the locally supervised gripper has
7 states and 11 transitions and corresponding model of
the arm has 9 states and 16 transitions.

Interlock specifications controlling the interaction be-
tween the arm and the gripper are shown in Fig. 8.
First specification defines that the grip may be initiated
only before the arm starts moving to the right and
after it comes to the left position. Second specification
defines that releasing the grip is not allowed during
arm movement except when the workpiece falls. Last
specification prevents start of the movement when
vacuum is being switched on or off. All specifications
are controllable and related generators are directly
implemented in the control logic. The ’closed-loop’
model of the supervised process has 43 states and 112
transitions (parallel composition of locally supervised
devices - the ’open-loop’ model - has 63 states and
211 transitions).

Finally, the sequential specification is shown in Fig. 9.
Arrows pointing out of the states S0 and S3 indicate
that these are marker states. S0 corresponds to the
left position of the manipulator and S3 to the right
position. Choice of the marker states guarantees that
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Fig. 8. Interlock specifications
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Fig. 9. Sequential specification

the manipulator will actually move between the two
working stations.

The specification is not controllable, therefore the
supremal controllable sublanguage is calculated. Cor-
responding model of admissible behaviour has 37
states and 73 transitions. The sequencing controller is
extracted that consists of 28 states and 44 transitions.
It is not shown here for space limitations.

4. IMPLEMENTATION

The obtained generator models can be implemented
by any of the standardized languages for programm-
able logic controllers (IEC, 1993). Ladder diagram
was used to implement the control logic for the pre-
sented example. The basic idea of coding the state
machine into a ladder diagram is shown in Fig. 10.

A state transition is triggered by an event flag Ev_ j
that signals the occurrence of event. Afterwards, the
enable flag is reset to assure that only a single state
transition is made in one PLC program scan. The
problem of simultaneously appearing events is solved
by maintaining an event queue. The rising and falling
edges of the related I/O signals are detected and mem-
orized. Then the event flags are set one at a time.

The readability of the program can be improved by
the use of separate function blocks for the local su-
pervisors related to a particular device. Another set of
function blocks can be used for co-ordinating super-
visors and a separate function block may be used to
implement a sequencing controller. A general form of
the later was proposed in (Mušič and Matko, 2001),
a similar form is used for the supervisors. The main
difference is the interpretation of the block outputs.
The outputs of the supervisors are used as the enabling
signals for the events while outputs of the sequencing
controller are used as event triggers.
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Fig. 10. Translation of a state transition into a rung of
the ladder diagram

To reduce the number of connections among function
blocks every supervisor block receives only signals
related to events that participate in the transitions
between states of the related state machine, i.e. events
that only appear in selfloops on the states are not
considered. Similarly, only those events are taken into
account on the block outputs that are disabled at least
at one of the states of the supervisor or triggered by at
least one of the states of the sequencing controller.

5. CONCLUSIONS

The presented approach enables a relatively high au-
tomation of the control synthesis for the manufactur-
ing systems. Once the model of the plant and the spec-
ification models are developed an appropriate com-
puter tool may perform all the necessary calculations
and even generate the control code. A set of functions
was developed in Matlab to perform the supervisory
control synthesis. Editor of the Matlab discrete-event
simulation tool Stateflow was used to draw all the
required models. An automatic generator of the code
for the PLC is planned for the future work.
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