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Abstract: This paper is concerned with the design of robust controllers for active suspensions
using µ methods, which take the structure of the model uncertainty into consideration. The
complex µ method is conservative in the case of the real parametric uncertainty, while in
the mixed µ method, both the real parametric and the complex uncertainties are handled
together. Two half-car model structures are constructed, a rigid half-car model, and a high-
order flexible one, which is more realistic and closer to the real situation. In the example, the
result of the mixed µ method will be compared with the complex µ method and the traditional
methods.
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1. INTRODUCTION AND MOTIVATION

Active suspensions are used to provide good handling
characteristics and to improve ride comfort while
harmful vibrations caused by road irregularities and
on-board excitation sources act upon the vehicle. The
difficulties in the suspension design are that the per-
formance requirements are usually in conflict, and that
the model to be used in the control design contains un-
certainties. The uncertainty of the model is caused by
the neglected dynamics, high-order modes, uncertain
components, inadequate knowledge of components.
In the traditional methods, the uncertain components
cannot be handled, thus robustness cannot be guaran-
teed in the presence of plant uncertainties. In the ro-
bust H∞ synthesis the robust stability and performance
can be guaranteed in the presence of unstructured
uncertainty, however it often results in conservative
controllers, Moran and Nagai (1992), Yamashita, et
al. (1992), Park and Kim (1999). In the complex µ
method, the structure of uncertainties is represented
by a diagonal structure with full or scalar complex
blocks. In practice, parametric uncertainties usually
occur, thus they should be represented by repeated real
blocks. In the mixed µ synthesis both the complex and

the real uncertainties are taken into account, Balas and
Doyle (1994), Gaspar, et al. (2001).

The aim of this paper is to apply the mixed µ synthe-
sis to active suspension design, in which parametric
uncertainties can be taken into account. Two half-car
model structures are constructed in this paper, a rigid
half-car model, and a high-order flexible one, which
is more realistic and closer to the real situation. The
control design is based on the rigid model, in which
the handle of the complex and the real uncertainties
are also included. The controller designed is tested
using the flexible model. In the example, the result
of the mixed µ method will be compared with the
complex µ method and the traditional methods. The
organization of the paper is as follows. Section 2
presents the concept of the active suspension design by
using half-car models. Section 3 discusses the robust
control design based on the mixed µ synthesis. Section
4 demonstrates the application of the µ synthesis in
both the complex and mixed µ methods, and gives
comparison results.
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2. RIGID AND FLEXIBLE MODEL
STRUCTURES FOR ACTIVE SUSPENSION

The well-known rigid half-car vehicle model, which
is shown in Figure 1, is widely used for active sus-
pension design. The model comprises three parts: the
sprung mass and two unsprung masses. Let the sprung
and unsprung masses be denoted by ms, mu f , mur, re-
spectively. Both suspensions consist of a linear spring,
a damper and an actuator to generate a pushing force
between the body and axle. The front and rear sus-
pension stiffness, the front and rear tire stiffness are
denoted by ks f , ksr and kt f , ktr, respectively. The front
and rear suspension dampings are denoted by bs f , bsr.

The half-car model is a four degrees-of-freedom sys-
tem. The sprung mass is assumed to be a rigid body
and has freedoms of motion in the vertical and pitch
direction. The x1 denotes the vertical displacement at
the center of gravity and θ is the pitch angle of the
sprung mass. The front and rear displacements of the
sprung and the unsprung masses are denoted by x1 f ,
x1r and x2 f , x2r. In the model, the disturbances, w f , wr

are caused by road irregularities. The input signals, f f ,
fr are generated by the actuators.
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Fig. 1. Rigid half-car model

The parameters are assumed to be uncertain with a
nominal value and a range of possible variation in the
following way:

ms = m̄s(1+dms δms ), ki = k̄i(1+dki δki ),

where i∈ {s f , sr, t f , tr} and dms ,dki scalars, in which −1≤
δms , δki ≤ 1. The d scalar indicates the percentage of
variation that is allowed for a given parameter around
its nominal value. The changing of δ parameters in
the interval

[

−1 1
]

determines the actual parameter
deviation. All uncertainty parameters can be written in
lower Linear Fractional Transformation (LFT) form.
The ms parameter occurs in the denominator of the
motion differential equation, and the other uncertainty
parameters such as ki occur in the numerator. Their
LFT representation can be represented in the follow-
ing way:

1
ms

= Fl









1
m̄s

−
dms

m̄s
1 −dms



 ,δms





ki = Fl

([

k̄i 1
dki k̄i 0

]

,δki

)

;

The δ uncertainty blocks from the motion differential
equations must be pulled out. Let the input and output

of δms be yms and ums , and δki be yki and uki , respec-
tively. Applying these formulae, the motion equation
can be drawn up in the following way:

Mz̈+Bż+Kz = Fuδ +Krw+Ga f (1)

where

z =
[

x1 θ x2 f x2r
]T

,w =
[

w f wr
]T

, f =
[

f f fr
]T

,

uδ =
[

ums uks f uksr ukt f uktr

]T
,

and the matrices are as follows:

M =

[

Ms 0
0 Mu

]

,B =

[

GBsG
T −GBs

−BsG
T Bs

]

,Ga =

[

−G
I

]

,

K =

[

GKsG
T −GKs

−KsG
T Ks +Kt

]

,Kr =

[

0
Kt

]

,F =

[

F1

F2

]

.

Here the sprung mass (Ms), the unsprung mass (Mu),
the suspension stiffness (Ks), the tire stiffness (Kt),
suspension damping (Bs), geometry (G) and (F1, F2)
matrices are as follows:

Ms =

[

m̄s 0
0 Iθ

]

,Mu =

[

mu f 0
0 mur

]

,Bs =

[

bs f 0
0 bsr

]

,

Ks =

[

k̄s f 0
0 k̄sr

]

Kt =

[

k̄t f 0
0 k̄tr

]

,G =

[

1 1
l f −lr

]

,

F1 =

[[

−dms

0

]

G 0

]

,F2 =
[

0 I I
]

Using the differential equation (1) the state equation
can be formulated in the following way:

ẋ = Âx+ B̂1wδ + B̂2 f (2)

where
x =

[

zT żT ]T
, wδ =

[

uT
δ wT ]T

Â =

[

0 I
−M−1K −M−1B

]

,

B̂1 =

[

0 0
M−1F M−1Kr

]

, B̂2 =

[

0
M−1Ga

]

The front and rear accelerations of the sprung masses
are measured from their static equilibrium positions,
(y0). Moreover, (yδ) is expressed as the inputs of δ
blocks: yδ =

[

yms yT
ks

yT
kt

]T
, where

yo = GT [

ẍ1 θ̈
]T

yms = G̃Bs(ẋu − ẋs)+ G̃Ks(xu − xs)− G̃ f + F̃1uδ,

yks = Dks Ks(xu − xs),

ykt = Dkt Kt(xu −w)

Using the above expressions the output equation can
be formulated in the following way:

y = Ĉ2x+ D̂21wδ + D̂22 f (3)

Similarly to the rigid half-car model, a high order
flexible model is also constructed. This model is closer
to the real system than the half-car model with an
assumed rigid body. Then a ten-degree-of-freedom
model is applied, see Fig. 2. In the model the lumped
masses are located at each nodal point. It is assumed
that the total body mass (Ms) is distributed in several
nodal points. The mass distribution of the main body
satisfies the decoupling condition, so the front and rear
wheels are decoupled. The connection of the wheels
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Fig. 2. Flexible half-car model

and the body are similar to the rigid body model, so
the general structure of the differential equation will
be similar to the equation (1). The most difficult part
in the modeling of the flexible half-car model is the
calculation of the stiffness of the elastic beam. The
mathematical description of flexibility is computed
using finite element methods. In the calculation the
following assumptions are made: the structure of the
sprung mass is established by the beam elements,
the masses are lumped masses and located on the
boundaries, the inertia of these masses is zero, the
damping of the beam is assumed to be zero, and the
relative axial displacement between the boundaries of
the finite elements are small compared to the lateral
displacement of the beam. The classical Bernouilli-
Euler beam model is used for the flexible half-car
model. The local variables of the beam element are
the lateral displacement and rotations at the two ends.
Thus, each joint has a lateral displacement (x) and a
rotation (θ), which results in four coordinates for a
beam element, Melosh (1990).

The stiffness matrix of the Bernouilli-Euler beam
model can be determined by the area moment method:









FA

TA

FB

TB









=
EI
l3









12 6l −12 6l
6l 4l2 −6l 2l2

−12 −6l 12 −6l
6l 2l2 −6l 4l2

















xA

θA

xB

θB









(4)

where xA and xB indicate the displacements of the
ends and θA and θB the rotations, respectively. More-
over, E represents the modulus of elasticity, I is the
momentum of inertia, l is the length of a beam, Fi is
the force at ends of the beam, and Ti is the momentum.
The stiffness matrix is symmetric. Using (4) the rear-
ranged stiffness matrix Kts for the whole vehicle can
be represented in the following generalized form:

[

F
T

]

=
EI
l3

[

K11 K12

K21 K22

][

x
θ

]

Using those assumptions that the inertia of nodal
masses are zero and the internal damping of the main
body beam is zero, the rotational (θ) can be expressed
by the vertical displacement (x) and the appropriate
partitions of the stiffness matrix.

θ =
l3

EI
K−1

22

(

T −
EI
l3 K21x

)

= −K−1
22 K21x

Using this equation the force of beam elements can
be represented in the following way:

F =
EI
l3

(

K11 −K12K−1
22 K21

)

x,

where the reduced stiffness matrix (Kb) is called the
Schur complement of K11 in Kts:

Kb =
EI

l3

(

K11 −K12K−1
22 K21

)

.

The results will be applied to the flexible half-car
model. The form of the state equation is similar to (1)
with the following differences:

z =
[

x1 · · · x8 x2 f x2r
]T

where the xi (i = 1, . . . , 8) is the vertical displacement
of the beam elements. The sprung mass (Ms) and
geometry (G) matrices and the total stiffness matrix
(K) are as follows:

Ms =









m1 0
. . .

0 m8









; G =

[

0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0

]T

K =

[

GKsG
T +Kb −GKs

−KsG
T Ks +Kt

]

3. ROBUST CONTROL BASED ON µ
SYNTHESIS

Consider the closed-loop system in Figure 3, which in-
cludes the feedback structure of the model G and con-
troller K, and elements associated with the uncertainty
models and performance objectives. In the diagram, u
is the control input, which is generated by actuators, yo

is the measured output, which contains the perturbed
front and rear acceleration, w is the disturbance signal,
which is caused by road irregularities, and n is the
measurement noise. The z̃ represents the performance
outputs, namely the vertical (za) and pitch (zθ) acceler-
ation, the suspension deflection (zsd) and wheel travel
(zt) and the control input (zu).

The parametric uncertainty of the sprung mass, sus-
pension and tire stiffness are represented by the ∆r

block, whose input and output are uδ, and yδ. The
transfer function ∆r contains the |δms | < 1, |δki | < 1
(i∈ {s f , sr, t f , tr}) components in diagonal form. The
unmodelled dynamics is represented by Wr and ∆m. It
is assumed that the transfer function Wr is known, and
it reflects the uncertainty in the model. The transfer
function ∆m is assumed to be stable and unknown with
the norm condition, ‖∆m‖∞ < 1. In the diagram, e
is the input of the perturbation, d is its output. The
weighting function Wn and Ww represent the impact
of the different frequency domains in terms of sensor
noise n and disturbance w, respectively. The weight-
ing function Wp represents the performance outputs.
The Wp contains the Wpi (i = 1, . . . ,8) components in
diagonal form, which are related to the components of
z̃.

Necessary and sufficient conditions for robust stability
and robust performance can be formulated in terms
of the structured singular value denoted as µ, Doyle
(1985), Packard and Doyle (1993). Now, the design
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Fig. 3. Closed-loop interconnection structure

setup in Figure 3 is formalized as a standard design
problem, i.e. the so-called P−K structure where,

d̃ =
[

uδ d
]T

, w̃ =
[

w n
]T

, ẽ =
[

yδ e
]T

,

z̃ =
[

za zθ zsd ztd zu
]T

The mixed real and complex µ involves three types of
blocks: repeated real scalar, repeated complex scalar
and full blocks. The admissible set of uncertainties ∆̃
is defined as

∆̃ =





∆r 0 0
0 ∆m 0
0 0 ∆p



 ,

where ∆r ∈ R
5×5, ∆m ∈ C

2×2, ∆p ∈ C
4×8. The first

block, ∆r is a repeated real scalar block which repre-
sents the parametric uncertainties. The second block
of this structured set corresponds to the scalar-block
uncertainty ∆m, which is used to describe the un-
modelled dynamics. The ∆p is a fictitious uncertainty
block, which is used to incorporate the H∞ nominal
performance objective into the µ framework. Given a
matrix M = Fl(P,K), the mixed µ∆̃ function is then
defined by:

µ∆̃(M) :=
1

min{σ̄(∆) : ∆ ∈ ∆̃, det(I −M∆) = 0}

unless no ∆ ∈ ∆̃ makes I−M∆ singular, in which case
µ∆(M) = 0. Thus 1/µ∆̃(M) is the ”size” of the smallest
perturbation ∆, measured by its maximum singular
value, which makes det(I −M∆) = 0. Unfortunately
this equation is not suitable for computing µ since the
implied optimization problem may have multiple local
maxima. However tight upper and lower bounds for
µ may be effectively computed for both complex and
mixed perturbation sets. Algorithms for computing
these bounds have been documented in several papers,
see e.g. Balas et al. (1991). Define

Q =
{

∆ ∈ ∆̃ : φi ∈ [−1,1], |δi| = 1, ∆i∆∗
i = Imi

}

D =















diag
[

D̃1, D̃2, D̃3, D̃4, D̃5, d1I1, I2
]

:
D̃1 ∈ C

1×1, D̃2 ∈ C
1×1, D̃3 ∈ C

1×1,

D̃4 ∈ C
1×1, D̃5 ∈ C

1×1

d1 ∈ R, I1 = I 2×2, I2 = I 4×8















G =







diag [G1, G2, G3, G4, G5, 0, 0] :
G1 ∈ C

1×1, G2 ∈ C
1×1, G3 ∈ C

1×1,

G4 ∈ C
1×1, G5 ∈ C

1×1







The lower bound for mixed µ is as follows:

max
Q∈Q

ρR(QM) ≤ µ∆̃(M).

where ρR(QM) is the real spectral radius of QM.

The lower bound is actually an equality but unfor-
tunately the function ρR(QM) is non-convex so we
cannot guarantee to find the global maximum and

hence we only obtain the lower bound for µ. The upper
bound can be formulated as a convex optimization
problem, so the global minimum can be found. For
a constant matrix M and both complex and mixed
uncertainty structure ∆̃, an upper bound for µ∆̃(M)
that take the phase information of the real parameters
into account can be formulated into an optimization
problem:

inf
D∈D,G∈G

min
β

{

β | M∗DM + j(GM−M∗G)−β2D ≤ 0
}

Using this upper bound, the optimization is reformu-
lated as

min
K

sup
ω

inf
D∈D,G∈G

min
β

{β | σ̄(Γ(ω)) ≤ 1)}

where

Γ(ω) =

(

DωFl(P,K)( jω)D−1
ω

β
− jGω

)

(I +G2
ω)−

1
2

and Dω, Gω are selected from the set of scaling D , G
independently of every ω.

The scaling G allows the exploitation of the phase
information about the real parameters so that a better
upper bound can be obtained. The optimization prob-
lem can be solved in an iterative way using for D, G
and K. For fixed K(s) the problem of finding D(ω),
G(ω) and β is just the mixed upper bound problem.
Having found these scalings β∗ = maxβ might be
fixed and transfer function matrices D(s) and G(s)
to D(ω) and jG(ω) might be fitted. It can be shown
that using spectral factorization, a stable interconnec-
tion PDG(s) can be formed, which approximates Γ(ω)
across frequency ω. For given β∗, D(s) and G(s) the
problem of finding the controller K(s) will be reduced
to a standard H∞ problem. The procedure is called
D,G−K iteration.

4. DEMONSTRATION EXAMPLE

In the demonstration example, the suspension design
is based on the rigid half-car model, and the compen-
sator designed is tested in the flexible half-car model.
Thus, the rigid model is the basis of the design and
the flexible model represents the actual plant. The
nominal parameters are the following:
ms = 580kg, Iθ = 1100kgm2,mu f = 40kg,mur = 40kg,

ks f = 23500N/m,ksr = 25500N/m,kt f = 190000N/m,

ktr = 190000N/m,bs f = 1000N/m/s,bsr = 1100N/m/s. In the
example, the dynamics of the hydraulic actuator is
modelled as Ga (s) = 1

1/75s+1 . The open loop fre-
quency responses of the rigid model and the flexi-
ble model are illustrated in Figure 4. The parameters
are assumed to be uncertain, with a nominal value
and a range of possible variation: dms = 0.2,dks f =
0.15,dksr = 0.15,dkt f = 0.25,dktr = 0.25. Note that
this represents 20% uncertainty in ms, 15% uncer-
tainty in ks f and ksr, moreover 25% uncertainty in kt f

and ktr.

In preparation for the control design, the uncertainty
weighting function WR and the performance weighting



function WP must be selected. In the complex µ syn-
thesis uncertainty is modelled as a complex full block
with multiplicative uncertainty at the plant input. Let
the frequency weighting function of the unmodelled
dynamics be as follows: W 1

R = 1.875 s+2
s+25 , which is

illustrated by the dotted line in the right hand side of
Figure 5. In the mixed µ synthesis, in which mixed
uncertainty is applied, information about the model
uncertainties between the model and the plant must be
used in the control design, and the magnitude of the
unmodelled dynamics must be decreased. Thus, the
weighting function W 2

R can be selected significantly
smaller than in the previous case: W 2

R = 0.2 s+50
s+200 ,

which is illustrated by the solid line in Figure 5.

The purpose of weighting functions Wp1 , Wp2 and Wp3

is to keep the vertical and pitch acceleration more-
over to keep the suspension deflection small over the
desired frequency range. We choose Wp1 = Wp2 =

0.2s+200
s+50 , and Wp3 = diag

[

0.029s+350
s+10 ,0.029s+350

s+10

]

for front and rear suspension, respectively. These
weighting functions are illustrated in the left hand side
of Figure 5. Let the frequency weighting function for
the wheel travel be Wp4 = diag [1,1]. The magnitude of
the control force is limited by the weighting function
Wp5 = diag

[

4 ·10−3,4 ·10−3
]

. The weight Ww is used
to scale the magnitude of the road disturbance, which
is chosen Ww = 0.03. The fact that the magnitude of
the road excitation is 0.03 m entails that the effect
of the disturbance signal on the control input will not
exceed 48 dB. We set Wn = 0.001, thus essentially it is
assumed that the sensor noise is 0.001 m/s2 at the front
and rear body acceleration in the whole frequency
domain.

In the case of complex µ synthesis, the control design
is performed by using the D − K iteration. The im-
portant values of the steps of the iteration are shown
in Table 1. As a result of Step 4, the compensator
order is selected 52, and all the nominal performance,
robust stability, and robust performance are achieved.
In the case of mixed µ synthesis, the control design
is performed by using the D,G−K iteration method.
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The values of the steps of the iteration are shown in
Table 2. Because of Step 3, the compensator order
is selected 68. The price of the mixed µ synthesis
is usually a controller with larger order, which can
be usually reduced. The controller reduction is based
on the balanced realization and optimal Hankel norm
approximation. This approach works well, since the
poles have negative real part. The order of the con-
troller is selected 20, in which all the nominal perfor-
mance, the robust stability, and the robust performance
are achieved.

Table 1. Summary of the D-K iteration

Iteration #1 #2 #3 #4

Controller order 16 20 44 52
D-scale order 0 4 28 36
Gamma achieved 26.563 5.649 2.115 0.976
Peak µ value 7.821 2.346 1.000 0.962

Table 2. Summary of the D,G-K iteration

Iteration #1 #2 #3

Controller order 16 32 68
D-scale order 0 16 30
G-scale order 0 0 22
Gamma achieved 5460.07 19.166 1.327
Peak µ value 44.253 1.413 0.991

The frequency responses of the controlled system, i.e.
the vertical accelerations, the pitch accelerations, and
the suspension deflection are illustrated in Figure 6.
The solid line corresponds to the mixed µ synthesis,
the dashed line to the complex µ synthesis, the dotted
line to the LQG design, and the dashed-dotted line to
the passive system. The first amplitude peak, which
corresponds to the eigen-frequency of the body mass,
is the largest in the passive system, and it practically
disappears in the mixed µ design. The reduction in
vertical and pitch acceleration in the low frequency
range corresponds to the increase in the suspension
deflection in this range. Since the tire-hop frequency
is an invariant point (about ω1 = 68.9 rad/sec in this
example), the acceleration responses are close to the
passive response at this frequency and it cannot be
decreased by feedback.

The designed compensators are verified in a real sit-
uation, which is represented by its application for the
flexible structure. The time responses are illustrated in
Figure 7. In the example, the input signal is simulated
as a bump with 0.03 m maximal value. The effects of
the disturbance on the sprung mass acceleration are
seen as large oscillations with long duration in the
case of complex µ control. The mixed µ control shows
better properties in terms of both the value and the du-
ration of the oscillation. The effects of the disturbance
on the suspension deflection are great in the complex µ
control. In the mixed µ case, the suspension deflection
achieves its steady state value within a short time. The
overshoot of the LQG control is the largest, however
the duration is shorter than in the complex µ case. The
input forces are similar in all cases.



10
0

10
1

10
2

10
3

10
−1

10
0

10
1

10
2

10
3

Front dist. −> Vertical acc.

Frequency (rad/sec)
10

0
10

1
10

2
10

3
10

−1

10
0

10
1

10
2

10
3

Rear dist. −> Vertical acc.

Frequency (rad/sec)

10
0

10
1

10
2

10
3

10
−1

10
0

10
1

10
2

10
3

Front dist. −> Pitch acc.

Frequency (rad/sec)
10

0
10

1
10

2
10

3
10

−1

10
0

10
1

10
2

10
3

Rear dist. −> Pitch acc.

Frequency (rad/sec)

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

10
1

Front susp. defl.

Frequency (rad/sec)
10

0
10

1
10

2
10

3
10

−3

10
−2

10
−1

10
0

10
1

Rear susp. defl.

Frequency (rad/sec)

Fig. 6. Frequency responses of the designed system
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Fig. 7. Time responses of the actual system

5. CONCLUSIONS

In this paper, robust µ methods have been applied in
the active suspension design. The result of the com-
plex µ method is more conservative than that of the
mixed µ method since, in the latter case, the real
parametric uncertainties can be taken into considera-
tion. The price of the mixed µ synthesis is usually a
controller with larger order, which can be effectively
reduced.
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