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Abstract: This paper presents reconfigurable control system for ship course-
changing/keeping. Adaptive neuro-fuzzy inference system (ANFIS) is used to identify a 
steering gear subsystem (actuator) in order to build an accurate reference model for the 
fault detection in this non-linear component. The proposed control system uses a 
compensator for reducing the loss of the control performance produced by faults in the 
steering gear subsystem. It is shown that the proposed control system is robust to faults in 
steering gear subsystem. Copyright © 2002 IFAC 
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1. INTRODUCTION 

 
Faults in steering gear subsystems produce serious 
problems for ship control. The consequence can be 
the degradation in control performance and 
increasing of the risk of safety. Fault-tolerant control 
(FTC) is an emerging area in automatic ship control, 
where several disciplines and techniques are 
combined to obtain a unique functionality. FTC 
provides a mechanism to monitor behaviour of 
components and function blocks and to take 
appropriate remedial action in order to keep 
manoeuvre capability of ship and prevent the loss of 
the control performance (Blanke, et al., 2001). 
 
The main goal is the design of a reconfigurable 
control system (RCS), which has built in an element 
of automatic reconfiguration, once a fault in the 
actuator has been detected and isolated. A basic RCS 
for ship course-changing/keeping, tolerant to faults 
in the steering gear subsystem, is proposed in this 
paper. Reconfiguration is based on a heuristic 
approach for the design of fault tolerant control. 
(Noriega and Wang, 1998) have previously used a 
similar approach for the design of a fault tolerant 
control of an unknown non-linear system using 
neural networks (NW system). A key part of the 
proposed RCS is an accurate mathematical model of 
the actuator. An analytical model based FDI 
approach for the rudder servo system was explored 
in (Vukic, et al., 1999). In this paper an adaptive 

neuro-fuzzy inference system (ANFIS) is applied to 
non-linear identification of steering gear subsystem 
(actuator). ANFIS identification is used to estimate 
residual, defined as difference between actual and 
estimated output of the steering gear subsystem. The 
compensator uses residuals to generate signals for 
compensation for the change in actuator dynamics, 
produced by faults. 
 

2. STEERING GEAR SUBSYSTEM 
 
The steering gear subsystem considered is the “two-
loop” electro-hydraulic steering subsystem, common 
on many ships. The non-linear steering gear model is 
shown in Fig. 1 and parameters are given in Table 1. 
 
 
 
 
 
 
 
 
 
 
Fig. 1. “Two-loop” steering gear subsystem for ship. 
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Table 1 Parameter values for steering gear 

subsystem. 
Parameter Value 
DB 1° 
H 0.8° 
K 4°/s 
PB 7° 
N 5°/s 

 
3. ANFIS IDENTIFICATOR 

 
This section applies ANFIS to the non-linear 
identification of steering gear subsystem (actuator). 
The input to the actuator is the command rudder 
angle cu δ=  and the output is the actual rudder angle 

δ=y . System identification using ANFIS generally 
involves two top-down steps: 

1. Structure identification: selection of the 
number and type of inputs and membership 
functions, partitioning of input space, 
selection of FIS order etc. 

2. Parameter identification: ANFIS structure 
is known and fixed; optimisation techniques 
(for example, hybrid method) need to be 
applied to determine the optimal vector of 
premise and consequent parameters. 

 
ANFIS performs static non-linear mapping from 
input to output space but without modification it 
cannot be used to represent dynamic systems. In 
order to identify dynamic systems, a combination of 
ANFIS with some time delay units and feedback is 
required. Hence, non-linear dynamic system can be 
modelled by ANFIS combined with some time delay 
units. Therefore, the main question in input selection 
is: How many time delay units are needed to obtain 
the best model? An excessive number of inputs not 
only impair the transparency of the underlying 
model, but also increase the complexity of 
computation necessary for building the model. 
Therefore, it is necessary to do input selection that 
finds the priority of each candidate inputs and uses 
them accordingly. 
 
In order to predict the output ( )ty  of the actuator, 
there are four candidate inputs in a group 

( ) ( ) ( ) ( ){ }4,3,2,1 −−−−= tytytytyGy
 and four candidate 

inputs in a group ( ) ( ) ( ) ( ){ }4,3,2,1 −−−−= tutututuGu
. 

In the first approximation, if non-linearity is omitted, 
the steering gear subsystem in Fig. 1. behaves as if it 
were a second-order system and for this reason two 
inputs are expected from both groups. An efficient 
method of input selection is presented in (Jang, et al., 
1997). A similar approach is used in this paper and 
gives an ANFIS identificator with four inputs 

( ) ( ) ( ) ( )[ ]2,1,2,1 −−−− tututyty  and one output ( )ty  as 
the best candidate for further parameter-level fine-
tuning (see Fig. 2.). 

 
 
 
 
 
 
 
 
 
 
Fig. 2. ANFIS identificator of steering gear 
subsystem. 
 
The selection of input signals for training data 
generation is very important. Data distribution in 
input 4-D space should be homogenous, but cannot 
be reached, because it is dictated by system 
dynamics. Hence, some regions in input space are not 
reachable by input data, but reachable regions should 
be homogenously covered by input data. For these 
reasons and after some experimentation, it was 
decided to use only the training data set, without 
checking data. Signals ( )tu  and ( )ty  that form 
training data set are shown in Fig. 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Signals that form training data set. 
 

Table 2 Characteristics of ANFIS identificator. 
FIS type First order 
# Inputs 4 
# Outputs 1 
AND operator prod 
OR operator max 
# Epochs 500 
# Linear parameters 80 
# Non-linear parameters 24 
# Training data pairs 5919 
# MF per input 2 
# Fuzzy rules 16 

 
ANFIS characteristics are given in Table 2. Vectors 

( )tu  and ( )ty  have a dimension of 15921× . The 
training data set M is a matrix with dimensions of 

55919×  and a format of the training data point (row 
of M ) is ( ) ( ) ( ) ( ) ( )[ ]tytututyty ;2,1,2,1 −−−− . Fig. 4 (a) 
and (b) show the initial and final membership 
functions, respectively. 
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Fig. 4. (a) Initial membership functions (grid 
partition); (b) Final membership functions. 
 
Fig. 5. shows the result of training the ANFIS 
identificator for 500 epochs. In particular, Fig. 5 (a) 
shows the change in step size through epochs; Fig. 5 
(b) displays the training error curve; Fig. 5 (c) 
displays the desired curve from the training set and 
the output of the ANFIS identificator. Fig. 5 (d) 
shows an identification error between desired and 
ANFIS output. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. (a) Change in step size; (b) Training error 
curve; (c) Performance of the ANFIS identificator; 
(d) Identification error. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. Performance testing of ANFIS identificator. 
 
Time responses of the actuator, ANFIS identificator 
and identification error are shown in Fig. 6. Sum of 
sinusoid signals was used as common input signal. 
Size of the identification error is acceptable. Peaks 
are due to “dead zone” type of non-linearity in the 
actuator. 
 

3. FAULTS IN ACTUATOR 
 
It is assumed that fault diagnosis system produces 
information about the type and time it  of the 
occurrence of a particular fault. For this reason, faults 
in actuator are simulated by a switch. Fig. 7. shows 
the switch realisation in the case of a fault in an 
actuator. The steering gear subsystem has two 
feedback loops and two gains ( 41 =K  and 7/52 =K ) 
in a direct path. Faults in the actuator are simulated 
by abrupt reductions of these gains. This is achieved 
by multiplication of the gain 

iK  with a factor 1<if  
after time instant 

it , so that a nominal value of the 
gain is reduced for ( ) %1001 ⋅− if . For example, if 

6.0=if , then for 
itt >  gain 

iK  has a value iK6.0 , that 
is reduced for ( ) %40%1006.01 =⋅−  of its nominal 
value. 
 
 
 
 
 
 
 
Fig. 7. Simulation of faults in an actuator. 
 
Fig. 8. shows the time response of a steering gear 
subsystem in the case of consecutive simultaneous 
changes in parameters 1K  and 2K  for %40  and %70  
at 100=t  and 200=t , respectively. 

(a) 

(b) 

(a) (b) 

(c) (d) 



     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8. Simulation of faults in an actuator. 
 
It can be seen that system dynamics change 
dramatically, but it is still possible to steer the ship 
with appropriate reconfiguration, in order to reduce 
the loss of the control performance. In this case 
reconfiguration is performed by the introduction of 
an additional signal to compensate for changes in 
system dynamics. 
 

4. RECONFIGURABLE CONTROL SYSTEM 
 
Reconfiguration is based on a heuristic approach for 
the design of fault tolerant control. The basic 
architecture of the system proposed in this paper is 
similar to the NW system: at first, non-linear 
identification of the system is performed. After that, 
the residual signal ( )td , defined as a difference 
between system output ( )ty  and model output ( )tŷ , is 
used to generate a compensation signal ( )tc  (Fig. 9.) 
A mathematical form of compensator block is 
obtained using a combination of the heuristic 
approach and experimentation. 
 
Two forms of compensator have been proposed: 
 

( ) ( ) ( )tdktctc ⋅+−= 1                                    (C1)      (1) 
( ) ( ) ( )( ) ( ) ( )[ ]21sgn1 −−⋅⋅+−= tdtdtdktctc     (C2)      (2) 

 
where the value of constant k  can be found 
experimentally. As yet, there is no analytical proof of 
stability for the proposed control system. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9. Noriega-Wang’s RCS (NW system). 

Fig. 10. shows RCS for ship course-changing in the 
case of faults in the actuator. RCS consists of two 
loops: upper (real ship) and lower (reference model). 
A fuzzy controller FC1 (FC2) produces a command 
signal for rudder angle in the upper (lower) loop. 
Both controllers have an identical structure, 
described in (Omerdic, et al., 2002). Residual d  is 
the difference between the real rudder angle and its 
estimate (output of ANFIS identificator). The block 
“Compensator” (realized as C1 or C2) produces a 
signal c , which is added to command signal u . Its 
purpose is to compensate for a change in actuator 
dynamics, produced by faults. In the absence of 
faults, the residual is near zero due to unmodelled 
noise and identification error. When a fault occurs in 
the actuator, the residual notably deviates from zero. 
In order to compare the performance of the basic 
RCS in the case with and without using compensator, 
another switch is added to the basic configuration, so 
it is possible to turn on/off the compensator with a 
switch “Compensator on/off” and to select the 
compensator with a switch “Compensator Selector” 
(see Fig. 11.). 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10. Basic RCS for course-changing/keeping 
(tolerant to faults in the actuator). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 11. Switches for compensator selection and 
turning on/off. 
 

5. SIMULATION RESULTS 
 
In this section performance of the basic RCS is tested 
for different fault conditions in the actuator. The non-
linear model of Mariner Class Vessel, described in 
(Fossen, 1994), is used for simulation. Fig. 12. 
displays time response of heading and rudder signals 
in the case of healthy system without disturbances. It 
shows the high performance of the proposed fuzzy 
logic controller in the lack of faults. Heading time 
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response is without overshoot. Command rudder 
signal is similar to signal performed by an 
experienced helmsman. Fig. 13., 14. and 15. show 
simulation results in the case of faults in actuator 
(consecutive simultaneous changes in parameters 1K  
and 2K  for %70  at 20=t  and 80=t , respectively). 
In particular, Fig. 13 shows the performance without 
using compensator. Command rudder signal has 
oscillatory character, because of change in dynamics 
of the steering gear subsystem. Fig. 14. and 15. 
display performance when compensator C1 and C2 
were used. Oscillatory character of command signal 
is attenuated in both cases. Comparison of 
compensation signal *c  shows that C1 is more 
sensitive than C2 to change in parameter values. 
 

6. CONCLUSION 
 
This paper described basic reconfigurable control 
system for ship’s course-changing/keeping problem. 
A heuristic approach was used in the design of fault 
tolerant control system. An adaptive neuro-fuzzy 
inference system was applied to non-linear 
identification of steering gear subsystem (actuator). 
Simulation results show that the proposed basic RCS 
is robust to faults in actuator. Command signals, 
produced by fuzzy autopilot and experienced 
helmsman, are very similar in all cases. Proposed 
RCS is used as basic control scheme for building 
advanced RCS, robust to faults in actuator, 
gyrocompass and GPS in presence of disturbances 
(Omerdic, et al., 2002). 
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Fig. 12. Simulation A1-1 (Course changing problem, °=Ψ 30d , without compensator). 



     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 13. Simulation B6-1 (Course changing problem, °=Ψ 30d , without compensator). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 14. Simulation B6-2 (Course changing problem, °=Ψ 30d , Compensator 1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 15. Simulation B6-3 (Course changing problem, °=Ψ 30d , Compensator 2). 
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