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Abstract: Positive linear systems, traditionally investigated within the state-space
framework, have been recently analyzed within the behavioral setting, by focusing
the attention on the autonomous case. Also, the positive realization problem has
been fully explored in the special case of autonomous behaviors.
In this contribution, we focus our attention on controllable behaviors. We first
address the general realization problem by means of driving variable state-space
representations and later analyze the possibility of realizing a controllable behavior
by means of a positive driving variable representation. Several necessary and sufficient
conditions for problem solvability are presented.
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1. INTRODUCTION

In recent years, research interests aiming at de-
veloping a general theory of positive linear sys-
tem within the behavioral framework (Polderman
and Willems, 1998) resulted in a few contribu-
tions which laid on firm foundations the con-
cepts of positive behavior and of positive realiz-
able autonomous behavior. The first original ideas
and definitions appeared in a very nice paper
(Nieuwenhuis, 1998) by Nieuwenhuis, where the
notion of positive discrete behavior (whose tra-
jectories are defined on the time axis Z+) and
some preliminary results, mostly concerned with
behaviors which are one dimensional (namely with
trajectories in (R)Z+) and autonomous, or two-
dimensional (with trajectories in (R2)Z+) and
controllable, were presented. More recently, these
definitions and results stimulated a special inter-
est in autonomous behaviors, thus leading first
to a complete characterization of positive au-
tonomous behaviors (Valcher, 2000), and later to
a deep analysis of the positive realization prob-
lem (undoubtedly the most challenging issue in

positive system theory (Anderson et al., 1996; Fa-
rina, 1996; Maeda and Kodama, 1981)) again
for the special case of autonomous behaviors
(Valcher, 2001). In this contribution, we aim to
further extend our analysis of the positive realiza-
tion problem by focusing our interest on control-
lable behaviors.

The realization problem for controllable behaviors
proves to be a much more involved topic with
respect to the analogous one for autonomous be-
haviors. As a first step, indeed, one has to decide
which type of realization it is appropriate to refer
to. In fact, for autonomous behaviors the choice
is unique, meanwhile for controllable behaviors
there are several possibilities. Indeed, a whole
book (Kuijper, 1994) has been devoted to the
analysis of some of the first order representations
available for complete and hence, specifically, for
controllable behaviors. Our choice has been that
of focusing on driving variable state representa-
tions (Valcher, 2001; Willems, 1986). This choice
seems to be the most natural extension of the
autonomous case: indeed, the set of behavior tra-
jectories coincides, as in the autonomous case,
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with the set of output trajectories of the state-
space model, and there is no need to provide an
arbitrary input/output partition of the system
variables which would naturally lead to different
results depending on the specific partition. More-
over, this latter choice would contradict, in our
opinion, the spirit of the behavioral approach.

As a second problem, while autonomous behaviors
are finite-dimensional sets of trajectories, control-
lable behaviors are not. As a consequence, all
nice characterizations obtained for autonomous
behaviors, and expressed in terms of proper poly-
hedral cones lying in R

n, the vector space of initial
conditions x(0), do not find any obvious extension
to the case of controllable behaviors.

The search for a characterization of positive re-
alizable controllable behaviors has preliminarily
required to investigate (Valcher, 2001) the prop-
erties of the driving variable representations of
controllable behaviors and, in particular, of those
among them which are “minimal” (in this setting,
minimality refers both to the state dimension and
to the number of inputs (Willems, 1986)). These
results have led to the analysis of the positive
realization problem, thus resulting in a set of
equivalent characterizations. As a main fact, once
we refer to certain image descriptions of con-
trollable behaviors, endowed with special features
which make them “minimal” (as they correspond
to moving average models of least complexity),
the existence of a positive realization proves to
be equivalent to the possibility of obtaining from
such image representations proper rational ma-
trices of full column rank, with positive Markov
coefficients.

Before proceeding, we introduce some notation.
Given any polynomial r(z) ∈ R[z], we denote by
λR the greatest (if any) nonnegative real zero of
r, namely

λR := max{λ ∈ R+ : r(λ) = 0}.
When λR exists, we say that it is dominant, if for
any other zero λ of r(z) (if any), we have |λ| ≤ λR

and the multiplicity of λ is not greater than the
multiplicity of λR as zeros of r(z).

In the paper, all (discrete) sequences will be
defined on the set Z+ of nonnegative integers. The
left (backward) shift operator on (Rq)Z+ , the set
of sequences defined on Z+ and taking values in
R

q, is defined as

σ : (Rq)Z+ → (Rq)Z+

: (v0,v1,v2, · · ·) �→ (v1,v2,v3, · · ·).

By exploiting the usual bijective correspondence
between discrete sequences and formal power se-
ries, every sequence v = {v(t)}t∈Z+

∈ (Rq)Z+ will
bijectively correspond to the power series v̂(z) :=

∑
t∈Z+

v(t)z−t in R[[z−1]]q. As a consequence, the
action of the operator σ in (Rq)Z+ corresponds to
the multiplication by the power z in R

q[[z−1]].
Notice, however, that upon multiplying by z we
have to leave off the nonpolynomial part in z−1

(i.e. the positive powers of z).

To every polynomial matrix R(z) =
∑L

i=0Riz
i ∈

R[z]p×q we can associate the polynomial ma-
trix operator R(σ) =

∑L
i=0Riσ

i (from (Rq)Z+

to (Rp)Z+), mapping every sequence {w(t)}t∈Z+

into the sequence {R(σ)w(t)}t∈Z+
, where R(σ)

w(t) = R0w(t) +R1w(t+ 1) + . . .+RLw(t+L),
for every t ∈ Z+. R(σ) describes an injective map
if and only if R is a right prime matrix, and a
surjective map if and only if R is of full row rank.

2. ELEMENTARY FACTS ABOUT
CONTROLLABLE BEHAVIORS

Before proceeding, it is convenient to briefly sum-
marize some basic definitions and results about
behaviors whose trajectories have support in Z+.
Further details can be found in (Nieuwenhuis,
1998; Valcher, 2000; Willems, 1986).

In this paper, by a dynamic system we mean a
triple Σ = (Z+,R

q
,B), where Z+ represents the

time set, R
q is the signal alphabet, namely the

set where the system trajectories take values, and
B ⊆ (Rq)Z+ is the behavior, namely the set of
trajectories which are compatible with the system
laws. A behavior B ⊆ (Rq)Z+ is said to be linear
if it is a vector subspace (over R) of (Rq)Z+ , and
left shift-invariant if σB ⊆ B.

A linear left shift-invariant behavior B ⊆ (Rq)Z+

is complete if for every sequence w̃ ∈ (Rq)Z+ , the
condition w̃|S ∈ B|S for every finite set S ⊂ Z+

implies w̃ ∈ B, where w̃|S denotes the restriction
to S of the trajectory w̃ and B|S the set of all
restrictions to S of behavior trajectories.

Linear left shift-invariant complete behaviors are
kernels of polynomial matrices in the left shift
operator σ, which amounts to saying that the tra-
jectories w = {w(t)}t∈Z+

of B can be identified
with the set of solutions in (Rq)Z+ of a system of
difference equations

R0w(t) +R1w(t+ 1) + · · · +RLw(t+ L) = 0,

t ∈ Z+, with Ri ∈ R
p×q, and hence described by

the equation

R(σ)w = 0, (1)

where R(z) :=
∑L

i=0Riz
i belongs to R[z]p×q. In

the sequel, a behavior B described as in (1) will
be denoted, for short, as B = ker(R(σ)). Also,



we will restrict our attention to linear, left shift-
invariant and complete behaviors B ⊆ (Rq)Z+ ,
and refer to them simply as behaviors.

One of the main properties of a behavior is
controllability (Polderman and Willems, 1998;
Willems, 1991).

Definition 2.1 A behavior B ⊆ (Rq)Z+ is said
to be controllable if there exists some nonnegative
integer L such that for every t ∈ Z+ and every
pair of trajectories w1,w2 ∈ B, there exists w ∈
B such that w|[0,t) = w1|[0,t) and w|[t+L,+∞) =
w2|[t,+∞).

Controllable behaviors are endowed with very
strong properties. In particular, for a controllable
behavior B there exist (Wood and Zerz, 1999) an
m ∈ N, an L ∈ Z+, and matricesMi ∈ R

q×m, for
i = 0, 1, . . . , L, such that B coincides with the set
of all trajectories w ∈ (Rq)Z+ generated by the
difference equation

w(t) =M0u(t) + · · · +MLu(t+ L), (2)

t ∈ Z+, where u ∈ (Rm)Z+ is an arbitrary driving
sequence (Willems, 1986). This amounts to saying
that there is a polynomial matrix M ∈ R[z]q×m,
M(z) :=

∑L
i=0Miz

i, such that w ∈ B if and only
if w = M(σ)u, for some u ∈ (Rm)Z+ . The set of
trajectories, with support in Z+, thus obtained is
denoted by im(M(σ)).

Theorem 2.2 (Polderman and Willems, 1998;
Willems, 1991) Let B ⊆ (Rq)Z+ be a behavior.
The following facts are equivalent:

i) B is controllable;
ii) there exists a left prime matrix R ∈ R[z]p×q

such that B = ker(R(σ));
iii) there exists a right prime matrix M ∈

R[z]q×r such that B = im(M(σ)).

It is worthwhile noticing that for a controllable
behavior B defined on Z+, the left prime kernel
description B = ker(R(σ)) and the right prime
image description B = im(M(σ)) are always
related, as for behaviors defined on Z, by the
following property: R is a minimal left annihilator
(MLA) (Rocha, 1990) of M and M is a minimal
right annihilator (MRA) of R.

3. STATE-SPACE REALIZATIONS FOR
CONTROLLABLE BEHAVIORS

Let us now investigate the realization problem
for controllable behaviors defined on Z+. The
state-space realization we are interested in, in this
paper, is the so-called driving variable state-space
representation of a behavior (Willems, 1986).

Definition 3.1 The state-space model

x(t+ 1) = Fx(t) +Gv(t) (3)

w(t) =Hx(t) + Jv(t), t ≥ 0, (4)

with x(t) the state vector, v(t) the driving input
and w(t) the output vector, n = dim x,m =
dim v and q = dim w, is said to be a driving
variable state-space representation (for short, a
(DV) representation) of the behavior B if the
following relationship holds:

B≡ {w ∈ (Rq)Z+ : ∃ x ∈ (Rn)Z+ ,v ∈ (Rm)Z+ ,

such that (w,x,v) satisfies (3) ÷ (4)}.

The state-space model (3)÷(4) will be denoted,
for the sake of brevity, by ΣDV = (F,G,H, J).

The following theorem provides us with a com-
plete characterization of the (DV) representations
of a controllable behavior. As it is well-known
(Willems, 1986) that controllable behaviors admit
reachable state-space descriptions, we will con-
fine our attention to this class of (DV) realiza-
tions. Somehow surprisingly, by introducing this
assumption on the state-space models, it turns
out that the (DV) realizations of a given con-
trollable behavior can be completely identified by
means of the “numerator matrix” appearing in
any right matrix fraction description of the state-
space model transfer matrix.

Theorem 3.2 (Valcher, 2001) Let B ⊆ (Rq)Z+

be a controllable behavior and let R(z) ∈ R[z]p×q

be a left prime matrix, providing a kernel descrip-
tion of B. Let ΣDV = (F,G,H, J) be a reachable
state-space model of dimension n, with q outputs
and m inputs, and assume thatW (z) is the trans-
fer matrix of ΣDV = (F,G,H, J), i.e.,

W (z) = H(zIn − F )−1G+ J,

and N(z)D−1(z) is any of its right matrix fraction
descriptions. Then, ΣDV is a (DV) realization of
B if and only if R(z) is an MLA of N(z).

Let us now address the problem of obtaining,
among all possible (DV) realizations of a given
controllable behavior, a minimal one. As clarified
in (Willems, 1986), the notion of minimal (DV)
realization of a behavior involves two different
types of minimality, namely the minimality with
respect to the number of inputs and the minimal-
ity with respect to the dimension of the state-
space. In fact, a minimal (DV) realization of B

is just a (DV) realization of B which is minimal
with respect to both quantities.

Notice, first, that by resorting to the previous
theorem we can obtain one specific (DV) represen-
tation. In fact, letM∗(z) ∈ R[z]q×(q−p) be a right
prime and column reduced polynomial matrix
such that B = im(M∗(σ)) and let ν1, ν2, . . . , νq−p

be its column degrees. Set



W ∗(z) :=M∗(z) diag{zν1 , zν2 , . . . , zνq−p}−1 (5)

and let Σ∗
DV be a reachable and observable state-

space realization of the (proper rational) matrix
W ∗(z). Notice that

• by the previous theorem, Σ∗
DV is a (DV)

representation of B.
• Σ∗

DV has m∗ := number of columns ofW ∗ =
number of columns of M∗ = q − p inputs;

• the representation of W ∗ given in (5) is
a right coprime matrix fraction description
(since M∗ is right prime) and hence the di-
mension of Σ∗

DV coincides with the McMillan
degree ofW ∗(z) (Kailath, 1980), namely with

n∗ := deg det diag{zν1 , zν2 , . . . , zνq−p}=
q−p∑
i=1

νi.

As a result, Σ∗
DV is a (DV) representation of B

withm∗ = q−p inputs and n∗ =
∑

i νi dimension.
We aim to prove that such a (DV) representation
is a minimal one. We aim to underline that the
minimal values of n and m have already been ob-
tained in (Willems, 1986), by means of completely
different tools.

Proposition 3.3 (Valcher, 2001; Willems, 1986)
Let M∗(z) ∈ R[z]q×(q−p) be a right prime and
column reduced polynomial matrix with column
degrees ν1, ν2, . . . , νq−p, and set B := im(M∗(σ)).
Let ΣDV = (F,G,H, J) be a (DV) representation
of B with m inputs and dimension n. Then m ≥
m∗ := q − p and n ≥ n∗ :=

∑q−p
i=1 νi.

The previous result immediately leads to the
following corollary.

Corollary 3.4 Let M∗(z) ∈ R[z]q×(q−p) be
a right prime and column reduced polynomial
matrix with column degrees ν1, ν2, . . . , νq−p, and
set B := im(M∗(σ)). Let ΣDV = (F,G,H, J) be
a (DV) representation of B and denote by W (z)
its transfer matrix. ΣDV is minimal if and only if
it satisfies the following conditions:

i) it is reachable and observable;
ii) W has McMillan degree

∑
i νi and it can be

expressed as

W (z) =M∗(z)D−1(z)

for some nonsingular square polynomial ma-
trix D(z).

To conclude, we aim at focusing on another tech-
nical result which is of some interest as it provides
further insights into the relationship existing be-
tween behavior trajectories and the output tra-
jectories of a (DV) realization of the behavior.
Specifically, there is a bijective correspondence
between a special class of behavior trajectories
and the class of trajectories generated by a (DV)
realization starting from zero initial conditions.

Let M∗(z) ∈ R[z]q×(q−p) be a right prime and
column reduced polynomial matrix such that B =
im(M∗(σ)). Consider the proper rational matrix
W ∗(z) defined in (5). We have just seen that
if Σ∗

DV = (F,G,H, J) denotes a reachable and
observable (and hence minimal) state-space re-
alization of W ∗(z), then Σ∗

DV is also a minimal
(DV) representation of B. Also, in the general
case, we know (Valcher, 2001) that w = M(σ)u
does not mean ŵ(z−1) = M(z)û(z−1), for some
û(z−1) ∈ R[[z−1]](q−p)×1, but only that

ŵ(z−1) ≡M(z)û(z−1) mod z. (6)

On the other hand, once we try to represent
any behavior trajectory w ∈ B in terms of the
(DV) representation Σ∗

DV , we get a free/forced
decomposition:

w(t) = HF tx0 +
t−1∑
i=0

HF t−1−iGv(i) + Jv(t), (7)

for a suitable initial condition x0 and a suitable
driving input v. Notice thatW ∗ is an F.I.R. (finite
impulse response) filter and it is well-known that
the system matrix in a minimal realization of an
F.I.R. filter is necessarily nilpotent. So, in partic-
ular, the “free component”HF tx0 is nonzero only
for sufficiently small values of t. We aim to show,
now, that there is a strict relationship between
the free component appearing in (7) and the fact
that (6) expresses, in general, only a congruence
relation and not an identity.

Proposition 3.5 Let B = im(M∗(σ)) be a
controllable behavior, and suppose that M∗(z) ∈
R[z]q×(q−p) is a right prime column reduced poly-
nomial matrix, with column degrees ν1 ≥ ν2 ≥
. . . ≥ νq−p. Let W ∗(z) be the proper rational
matrix defined in (5), and let Σ∗

DV = (F,G,H, J)
be a minimal realization of W ∗(z), and hence a
minimal (DV) representation of B.

If w is a trajectory in B and ŵ(z−1) represents
the corresponding power series, then ŵ(z−1) =
M∗(z)û(z−1), for some û(z−1) ∈ R[[z−1]](q−p)×1,
if and only if w is generated by Σ∗

DV in forced
evolution (i.e., by assuming x(0) = 0).

4. POSITIVE REALIZABLE
CONTROLLABLE BEHAVIORS

We are, now, in a position to focus on the main
issue of the paper, namely the positive realization
problem for controllable behaviors. To this end,
we first state the definition of positive realizable
(controllable) behavior.

Definition 4.1 A controllable behavior B ⊆
(Rq)Z+ is said to be positive realizable if there ex-
ists a (DV) realization of B, ΣDV = (F+, G+, H+,



J+), with F+, G+, H+ and J+ nonnegative matri-
ces of suitable sizes.

Before addressing the realization problem in the
specific context of controllable behaviors, we aim
at recalling a few facts about the positive real-
ization problem in its more traditional setting,
namely that of input/output models or, equiva-
lently, rational transfer matrices (Anderson et al.,
1996; Farina, 1996; Maeda and Kodama, 1981).

The first result is a rather elementary one, and
hence we omit here the proof.

Proposition 4.2 Let W (z) ∈ R(z)q×m be a
proper rational transfer matrix, and let wi�(z) be
its (i, �)th entry. W (z) is positive realizable, by
this meaning that there exists a positive state-
space model (F+, G+, H+, J+) having W (z) as its
transfer matrix if and only if, for each i and �,
wi�(z) is positive realizable.

Theorem 4.3 (Anderson et al., 1996) Let w(z)
be a proper rational function with nonnegative
Markov coefficients. If w(z) has one single pole of
maximum modulus, which is positive real, (i.e.,
there exists ρ ∈ R+ such that ρ > |λ| for every
other pole λ of w(z), and ρ is simple) then w(z)
is positive realizable.

Before introducing a set of characterizations of the
positive realizability property, we state and prove
the following useful technical result.

Lemma 4.4 LetW (z) ∈ R(z)q×m be a proper ra-
tional transfer matrix, with nonnegative Markov
coefficients. Then, for every positive real num-
ber ρ, the strictly proper rational transfer matrix
W1(z) := W (z)/(z − ρ) has nonnegative Markov
coefficients, too.

Proof Suppose that W (z) =
∑

t≥0Wt z
−t,

with Wt ≥ 0 for every index t. Since 1
z−ρ =∑

t≥1 ρ
t−1z−t, we have that W1(z) = 1

z−ρ ·
W (z) =

(∑
t≥1 ρ

t−1z−t
)

·
(∑

t≥0Wt z
−t

)
=

∑
t≥1

(∑t−1
i=0Wi ρ

t−1−i
)
z−t, and hence W1(z)

has nonnegative Markov coefficients

W1,t :=
t−1∑
i=0

Wi ρ
t−1−i.

We are, now, in a position to provide a complete
characterization of positive realizability for a con-
trollable behavior.

Theorem 4.5 Let B ⊆ (Rq)Z+ be a control-
lable behavior, and let M ∈ R[z−1]q×(q−p) be a
right prime polynomial matrix which provides an
image description of B. The following facts are
equivalent:

i) B is positive realizable;

ii) there exists a full row rank rational transfer
matrix Q(z) such that W (z) := M(z)Q(z)
is a proper rational and positive realizable
transfer matrix;

iii) there exists a nonsingular square rational
transfer matrix Q̄(z) such that W̄ (z) :=
M(z)Q̄(z) is a proper rational and positive
realizable transfer matrix;

iv) there exists a nonsingular square rational
transfer matrix Q̄(z) such that W̄ (z) :=
M(z)Q̄(z) is a rational transfer matrix with
nonnegative Markov coefficients.

Proof i) ⇔ ii) If B is positive realizable and
(F+, G+, H+, J+) is a positive (DV) realization
of B, then, by Theorem 3.2 and following Re-
mark, the transfer matrix of the state-space model
(F+, G+, H+, J+), say W (z), can be expressed as
W (z) =M(z)Q(z) for some full row-rank rational
matrix. Of course,W (z), being the transfer matrix
of a positive state-space model is both proper
rational and positive realizable.

Conversely, if there exists a full row rank ratio-
nal matrix Q(z) such that W (z) = M(z)Q(z) is
proper rational and positive realizable, then any
positive realization ofW (z), say (F+, G+, H+, J+),
provides, due to Theorem 3.2, a positive (DV)
realization of B.

ii) ⇒ iii) Since Q is of full row rank, let
S be a selection matrix such that Q̄(z) :=
Q(z)S is nonsingular square. Of course, W̄ (z) :=
M(z)Q̄(z) = W (z)S is proper rational. More-
over, if (F+, G+, H+, J+) is a positive realization
of W (z), then (F+, G+S,H+, J+S) is a positive
realization of W̄ (z), which is, therefore, positive
realizable, too.

iii) ⇒ iv) Obvious: positive realizable transfer
matrices have nonnegative Markov coefficients.

iv) ⇒ ii) Let Q̄(z) be a nonsingular square ratio-
nal transfer matrix such that W̄ (z) :=M(z)Q̄(z)
is a rational transfer matrix with nonnegative
Markov coefficients. Of course, for every suffi-
ciently large K, we have that W̄ (z) 1

zK is also
proper, so it entails no loss of generality as-
suming that W̄ is already proper. Let ρ be a
positive real number such that ρ > max{|λ| :
λ a pole of W̄ (z)}. Set Q(z) := Q̄(z)(z − ρ)−1,
so that

W (z) :=M(z)Q(z) =
1

z − ρ · W̄ (z).

Of course, W is proper rational, as W̄ was. By
Lemma 4.4, it has nonnegative Markov coeffi-
cients, since W̄ has and ρ is positive real. Finally,
since W has nonnegative Markov coefficients and
a single pole of maximum modulus, which is posi-
tive real, each of its entries wi�(z) is endowed with
these two properties. So, by Theorem 4.3, wi�(z)



is positive realizable for each (i, �). Therefore, by
Proposition 4.2, W is positive realizable.

As a main result of the previous theorem, we have
reduced the problem of deciding whether or not
a controllable behavior B = im(M(σ)), with M
right prime, is positive realizable, to the problem
of determining whether there exists a nonsingu-
lar square rational matrix Q such that MQ is
proper with nonnegative Markov coefficients. This
problem solution, however, is far from being triv-
ial. It is well-known to people familiar with the
positive realization problem for proper rational
transfer matrices that this aspect of the problem
is almost unexplored. Indeed, even in fundamental
articles about the positive realization problem as
(Anderson et al., 1996; Farina, 1996) the results
are stated in these terms:

“if w(z) is a strictly proper rational function
with nonnegative Markov coefficients, then w(z)
is positive realizable if and only if...”.

In other words, only upon assuming that w(z)
has nonnegative Markov coefficients, the authors
provide additional conditions which are equivalent
to positive realizability of w(z).

By applying Proposition 3.5, we can alternatively
characterize the positive realizability of a control-
lable behavior.

Proposition 4.6 Let B = im(M∗(σ)) be a con-
trollable behavior, and suppose that M∗(z) ∈
R[z]q×(q−p) is a right prime column reduced poly-
nomial matrix, with column degrees ν1 ≥ ν2 ≥
. . . ≥ νq−p. Let Σ∗

DV = (F,G,H, J) be the usual
minimal (DV) representation of B, with transfer
matrix W ∗(z) (see (5)). The following facts are
equivalent:

i) B is positive realizable;
ii) there exists some nonsingular square proper

rational matrix V (z) such that W ∗(z)V (z)
is proper rational with nonnegative Markov
coefficients;

iii) there exist q− p nonnegative trajectories wi,
i = 1, 2, . . . , q − p, generated by Σ∗

DV in
forced evolution, such that the correspond-
ing power series ŵi(z−1) are rational and
rank[ ŵ1(z−1) ! . . . ŵq−p(z−1) ] = q − p.

Proof i) ⇒ ii) By Theorem 4.5 (stated in terms
ofM∗), if B is positive realizable then there exists
a nonsingular square rational matrix Q̄(z) such
that W̄ (z) := M∗(z)Q̄(z) is a rational transfer
matrix with nonnegative Markov coefficients. Ob-
viously, as W̄ (z) has nonnegative Markov coeffi-
cients, then also

W̄1(z) :=
1
zK

W̄ (z)

has nonnegative Markov coefficients, for every
K ≥ 0. Moreover, W̄1 can be expressed as

W̄1(z) = M∗(z)
(
Q̄(z) 1

zν1

)
= W ∗(z) · (diag {zν1 ,

zν2 , . . . , zνq−p} Q̄(z) diag{z−K , z−K , . . . , z−K}) =:
W ∗(z) V (z), where V is proper rational provided
that K is sufficiently large. But then, as both W ∗

and V are proper rational matrices, also W̄1 is,
and hence condition ii) holds true.

ii) ⇒ i) As

W ∗(z) =M∗(z) diag{z−ν1 , z−ν2 , . . . , z−νq−p},
the result is an immediate consequence of Theo-
rem 4.5.

ii) ⇔ iii) Upon setting ŵi(z−1) :=W ∗(z)Q̄(z)ei,
the result is obvious from Proposition 3.5.
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