

COCA – MODEL OF DESCRIPTION AND SYSTEMS
RECONFIGURATION USING FUZZY LOGIC

Cyrille PETITJEAN, Jean Marc PERRONNE, Michel HASSENFORDER

Laboratoire MIPS, Equipe MIAM, Projet COCA, Université de Haute Alsace
ESSAIM - 12, rue des Frères Lumière, F-68093 Mulhouse Cedex, France

{c.petitjean, jm.perronne, m.hassenforder}@uha.fr

Abstract: This paper proposes software architecture about conception and
reconfiguration for the control of complex systems. This approach is based on a
component description model. This model empowers the design of a system as a
hierarchic composition of components. Dynamic insertions and removes of components
in the system are also allowed. With this architecture, each component can be described
with uncertainty. Thus, in the case of faulty behavior, a fuzzy evaluation of the system
reconfigurability seems appropriate. To illustrate this analysis and this description, an
example of the reconfiguration of a trajectory tracking is proposed.
Copyright IFAC 2001

Keywords: Fault Tolerant Control, Reconfiguration, Fault Accommodation, Fuzzy
Analysis, Software Architecture, Object Oriented Programming.

1. INTRODUCTION

The increasing needs of flexibility, modularity,
adaptability and safety in the industrial processes are
today the source of numerous works.

A research area concerning these problems has
particularly developed during these last years. It
provides the notion of fault tolerant control and fault
tolerant systems. A survey (Patton, 1997) proposes a
state of the art in the field of fault tolerant control.

In this frame, the COCA (COmponent CAncelling)
project objective is to design software architectures.
They have to support all the reconfiguration
processes induced by a faulty system in order to
maintain the integrity of the system and the control
strategies.

When a fault occurs, the reconfiguration process
proposes automatically an alternative solution in
terms of replacement and/or in terms of internal
reconfiguration of the components of the system. The
aim is to maintain the system availability to achieve
objectives.

The led works try first to develop a description
model. This model depicts the studied system. In a
second step, an analysis method should be defined.

For each sampling time, an evaluation of the
reconfiguration possibilities for the defective system
should be proposed. At third, (if necessary), a
remedial action, allowing a correction of the faulty
system, is achieved.

To determine the reconfiguration strategies, this
paper proposes a modern architecture of dynamic and
adaptive composition. This architecture has to
provide:

− A system description in terms of components.

− According to the system components
composition, an analysis of the possible
reconfiguration strategies should be provided.
The use of fuzzy algorithms should increase the
precision of the decision.

This article is organized as follows: a first part
presents the context of fault tolerant systems and of
components reconfiguration. A second part exposes
our approach by describing the chosen description
model, its limits and its needs. The third part explains
the reconfigurability analysis and the reconfiguration
using a fuzzy logic way. Finally, a reconfiguration
analysis of a trajectory tracking illustrates the
presented concepts.

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain

2. RECONFIGURATION BASICS

2.1 Problem analysis

In the case of industrial production systems and in
embedded systems, the control of complex process is
based on non-robust systems (Hoblos, et al., 2001).

When a fault occurs, according to the context, three
adaptative responses should be distinguished
(Blanke, 2000) :

− Fault accommodation : Finding a corrective
action to accommodate the system controller to
the default. The system is not informed of the
taken action.

− Controller reconfiguration : Revising the
objectives of the current system. New achievable
objectives are given.

− System reconfiguration : Reconfiguring the
system himself . New system and objectives are
set up to replace the faulty system.

These three cases implies the three following needs :

− A systems description model. This description
must be an image of the controlled system and
must introduce the properties of dynamic
composition and dynamic reorganization.

− A method for the reconfigurability analysis. This
analysis should be an image of needs and
reconfiguration abilities of the faulty system.

− A reconfiguration process. This process
performs the results given by the analysis and
the evaluation of the system reconfigurability.
These results are associated with a decision in
the aim to adapt the system to the occurred fault.

2.2 Previous works

The automated systems and the control of industrial
processes are a large area of experiments. Numerous
works propose results; particularly, a model of
systems description focuses on a notion of services
versions (Gehin, et al., 1999a). Based on this
description, analysis methods for the system
reconfigurability evaluation are proposed : a graphic
approach (Staroswiecki, et al., 1999), a bottom up
approach (Gehin, et al., 1999b) and a formal
approach (Gehin, et al., 1999c). The figure 1
illustrates the structure of the chosen model.

From user point of view, a component (the version)
supplies a service. This component can be combined
with others to supply a higher-level service. These
services are the result of a sequential or parallel
combination of lower levels services.

The system reconfigurability analysis is primarily
based on this description model. Three approaches
are already proposed in this scope to analyze the
system reconfigurability and the reconfiguration

possibilities: a graphic approach, a bottom-up
approach and finally a formal approach.

<model> := <state/transition graph(EM,τ)>
 := <set of exploitation modes>
<τ> := <set of transitions>
<transition>:= < condition,

 input mode,
 output mode>

<exploitation mode> := <list of missions>
<mission> := < ordered list of services >
<service> := < ordered list of versions >
<version> := < consumed variable(s),
 produced variable(s),

procedure,
activation conditions,
hardware resource(s)>

Fig. 1. Description of an automated system.

2.3 Limitations and evolutions

Within the framework, two limitations appear:

− The composition of components does not lead to
a unified approach of the system.

− A drastic determinism: the availability of the
components is described only in a binary way;
the states associated to the hardware resources
can be only available or faulty. This appears
within the framework of the reconfiguration
processes by the fact that a system element is
considered only as active or inactive.

The purpose of the CoCa project is to develop
software architectures, which allow:

− A description of components with a certain
uncertainty and an introduction of expertise
concerning the availability of the system. The
use of the fuzzy logic seems appropriate.

− An evaluation of the reconfiguration
possibilities, based on fuzzy evaluation and
fuzzy algorithms.

− A reconfiguration process where a system can be
modified as needed. It chooses the best strategy
in order to adapt the system.

3. DESCRIPTION MODEL ARCHITECTURE

3.1 Software architecture and design patterns

The conception of modular software architecture,
allowing a description of the manipulated systems, is
based on the use of design patterns. (Gamma, et al.,
1995) describes in detail the utility of object-oriented
techniques in the field of the software design.
(Booch, 1992) proposes a complete description of the
concepts, methods and applications bound to the
object-oriented programming (OOP).

A system can be described by a Directed Acyclic
Graph (DAG) of components, which can be himself
simplified as a hierarchical composition of

components. The Composite design pattern allows
such a construction (Gamma, et al., 1995).

With the model based on components, the recursive
evaluation of every component gives respectively the
production (behavior) of the service, the production
(how far from the end) of the mission, and the
production of the complete system. Still there, the
Interpreter design pattern allows this construction
(Gamma, et al., 1995).

The figure 2 describes the architecture of this two
design patterns using the Unified Modeling
Language (UML) (Muller, 1997).

component 1
Produce()

...
Produce()

pattern
interpret

pattern
composite system component

Produce ()

composit component
Produce()

0..* 0..*
+parent

+childrens

Fig. 2. Composite & Interpret design patterns

The description model of a trajectory tracking
illustrates the application presented in the section 5.
The figure 3 describes an example of a composition
of objects representing trajectory elements. A
trajectory can be indeed described as a composite
structure of these elements.

sr1 :
SerialConnection

cm1 :
ConstantModulator

b1 :
VariableModulator

sr2 :
SerialConnection

cm2 :
ConstantModulator

Path1 : Composit e

Availabilty = 50 %
Attenuation = 75%

Availabilty = 100 %
Attenuation = 25%

Availabilty = 25 %
Attenuation = 45%

Availabilty = x %

Availabilty = 100 %

Availabilty = 100 %

Fig. 3. Example of a path.

3.2 Basic Elements of the model of description

An element is described by means of a tupple
<consumed variable(s), produced variable(s), law(s)
of production>. The abstract class Element defines an
interface for the elements, which compose the model.

This interface declares the abstract behavior of the
various elements of the composite structure; it
defines the transformation law between the input
variables and the output variables. Every sub-class
has the responsibility to implement a concrete
production relation (Produce method).

The availability attribute traduces the physical
availability of each element. This attribute results
from the analysis of appropriate diagnosis process for

all elements. It is used during the stage of the
reconfigurability evaluation.

Through the Composite and the Elements, the
composition of the different elements describes
complex systems models.

The concrete class Source defines the source(s)
feeding the system.

The class Storage defines element having a capacity
to store the manipulated entities.

The abstract class Modulator defines element, which
modulates the stream between elements by a
modulation factor. The real behavior is given through
concrete implementations; the first two propose
constant and variable modulation factor.

The abstract class Connector defines the connections
between elements. Two possibilities are proposed for
serial and parallel connections.

The figure 4 illustrates the complete software
architecture developed within the framework. This
approach allows all latitudes for the designer to
enhance or to specialize the behavior of these basic
elements.

Source Modulator

Serial Parallel

ConnectionStorage

System Model

Composite

Value Element

1

*

1

*availability

outputinput

ConstantModulator VariableModulator

Fig. 4. Composite structure of the description
model - class diagram

3.3 Illustration

The construction of the proposed example (figure 3)
is following:
ConstantModulator cm1 =

new ConstantModulator(75, 50);

VariableModulator b1 =
new VariableModulator(25, 100);

SerialConnection sr1 =

new SerialConnection(cm1, b1);

ConstantModulator cm2 =

new ConstantModulator(25, 45);

SerialConnection sr2 =

new SerialConnection(b1, cm2);

Composite way= new Composite();
way.add(cm1);
…

way.produce();

This composite describes and models a path from a
point to the other one (points are not described here).

4. RECONFIGURABILITY ANALYSIS AND
FUZZY LOGIC

At first, this section describes an approach to provide
reconfigurability analysis to the systems. The fuzzy
logic analysis method, organized to implement the
reconfiguration algorithm, is presented in a second
time.

4.1 Systems Reconfiguration and Fuzzy Logic

For the modification of each element of the system
(The addition, the retreat or the modification of an
element), an analysis of the system reconfigurability
is achieved. Furthermore, during this process, a
factor of availability concerning the use of the
elements could be interesting. To increase the
robustness of the analysis and the progressiveness in
the evaluation, the reconfiguration process works as
depicted in figure 5.

System Model Catalog

Modifer Reconfigurator

defuzzyfication

Analyser

fuzzyfication

RECONFIGURATION
STAGE ANALYSIS

STAGE

Fig. 5. Fuzzy analysis and fuzzy reconfiguration

The chosen structure to implement these imperatives
is the following:

− A modification of an element implies an
evaluation of the nature and of the state for all
components in the system. The fuzzyfication
stage is involved in the perception task of the
Analyzer. According to the result, a
reconfiguration will be done or not. This
component just analyzes the needs of
reconfigurability when a fault occurs.

− The reconfiguration component
(Reconfigurator) takes automatically care of the
outputs of the Analyzer. This component
activates, if needed, a concrete modification at
the system level. It chooses the actions to
implement.

− The Modifier component gives some concrete
behaviors for the actions, which should be
implemented for the system reconfiguration.
These actions were deducted from the analysis of
the Reconfigurator component.

The Analyzer output provides to the Reconfigurator
component the information about the nature of the
action to take. According to this information,
Reconfigurator will implement concrete
reconfiguration behaviors. Then this component
gives to the Modifier these behaviors and then the

Modifier update the model of the system to avoid the
consequences of the fault. This paper focuses only on
an analysis of the faulty system. Thus, the
description of these two last components is not
describes here.

4.2 Fuzzy inferences system

The figure 6 illustrates the architecture proposed by
(Perronne, 2000). The designer can create simply in
the semantics of the fuzzy logic experts, a complete
fuzzy inferences system.

With this architecture, the fuzzy operators and the
fuzzy rules involved in the reconfiguration stage can
be expressed. The designer has to specialize some
classes as particular operators or membership
functions to adapt the possibilities offered by this
architecture to the particular case of the problem to
resolve.

+ Evaluate()

Expression

+ Evaluate()
+ SetValue()

Value

+ Evaluate()
EvaluateWithOperand()

BinaryExpression
1

Left, right

+ Evaluate()
EvaluateWithOperand()

UnaryExpression

operand

EvaluateWithOperand()

IsTriangle
EvaluateWithOperand()

IsGaussian
EvaluateWithOperand()

OpOrMax
EvaluateWithOperand()

OpThenMin

2

Fig. 6. Composite structure of a fuzzy expression

4.3 The Analyzer: Fuzzy evaluation of elements

A multivalent logic is required to take into account
the uncertainty of the state and the availability of an
element. Each element of the framework has these
skills. Each element is referenced in a component
called Catalog; it gives a way to find them.

The application of the fuzzy rules of the Analyzer
determines the nature of the modifications that
should be done. After the aggregation, the four
output possibilities are:

− Nothing.

− A fault accommodation.

− A revision and an adaptation of the objectives.

− A complete reconfiguration of the system.

5. TRAJECTORY RECONFIGURATION

EXAMPLE

5.1 Presentation

The works of reconfiguration led within the project
CoCa are materialized through two mobile robots.
The manipulated concepts are shown through this
window.

The figure 7 presents the graphic user interface of the
developed application.

The description of a trajectory tracking is the
following one: The user has to specify start-points,
end-points, intermediate-points and finally the speed
of the mobile. Each point is an element; it can be
modified, added, removed, or replaced at any time.

S2

S1 b1

b2
Coutput

availability : 100%
storageValue : 75

VariableModulator

ConstantModulator

Storage

Source

Cinput1

Cinput2

cm 1
cm 2 cm 3

cm 4

cm 5

b3

cm 6

Fig. 7. User interface of the application of
reconfiguration of a trajectory tracking

5.2 Model construction

According to the presented architecture, a description
of the proposed system for a trajectory tracking is:

− Two Sources elements (S1 and S2) describe the
initial speed of mobile V0, considered here as
constant. It allows thus the movement of the
mobile platform {Si.deliver(aValue)}.

− Two Storage elements (Cinput1 and Cinput2)
associated respectively to sources S1 and S2,
describing the possible start-points {Ci.store}.

− A Storage element (Coutput) describes the end-
point of the movement {Ci.store}.

− A set of VariableModulator describes the
intermediate points (bi, i ∈ N*)
{bi.letPass(aValue)}.

− A set of ConstantModulator, image of the
movement-resistance between every
intermediate points. {cm.letPass(aValue)}.

− A set of Connectors allows the parallel and\or
serial interconnections between elements.

All connectors are considered as always available.
During the elaboration of the model, the availability
of every created element is initially fixed to 100 %.

Let us consider the composition of the following
services (the figure 7 give an illustration of the
problem through a decomposition under a
hierarchical structure):

− StartPoint1 constituted with Source S1 and
Storage Cinput1.

− StartPoint2 constituted with Source S2 and
Storage Cinput2.

− Path1, constituted with ConstantModulator cm1,
being connected in series with Variable
Modulator b1 and with ConstantModulator cm2.

− Path2, constituted with ConstantModulator cm3
being connected in series with Variable
Modulator b2 and with ConstantModulator cm4.

− Path3, constituted with ConstantModulator cm5
being connected in series with
VariableModulator b3 and with
ConstantModulator cm6.

− StopPoint constituted with Storage Couput1.

The associated missions to the system behavior are
then the result of the composition of these
elementary services. These services are based on the
availability of the hardware or physical resources
described by elements cm1, b1, cm2, cm3, b2, cm4,
cm5, b3 and cm6. In this application, the services of
higher level are:

− Go from StartPoint1 to StopPoint (path1: Cinput1,
b1, Coutput)

− Go from StartPoint1 to StopPoint (path2: Cinput1,
b2, Coutput)

− Go from StartPoint2 to StopPoint (path3: Cinput2,
b3, Coutput)

The higher-level service of the robot is thus to go to
StopPoint.

5.3 Fuzzy reconfigurability analysis

The system ability to adapt or to cancel his current
functioning is evaluated truth the availability
attribute.

A binary evaluation is too drastic and does not take
account the fact that a component is not just available
or unavailable. To modeling this reality, and to
provide more effectiveness to this evaluation, a fuzzy
estimation of the system availability could be
achieved.

The space of evaluation described by using a
triangular membership function with the following
availability degrees:

− Low {(0, 0)(20,1)(40, 0)}.

− Medium {(30, 0)(50,1)(70, 0)}.

− High {(60, 0)(80,1)(100, 0)}.

These three groups allow to distribute in a fair way
the variation range of availability, this for every
Element of the system. The universe of discourse is
defined from 0 to 100 % of availability. The output
named Action is defined by these four fuzzy sets:

− To do nothing (Action is Nothing).

− To accommodate the faulty system (Action is
FaultAccomodation): If one beacon (b1 or b2) is
faulty, then the condition allowing an

Accommodation of this fault is that the second
beacon remains available.

− To revise the objectives of the system (Action is
ObjectiveRevison): If beacons involved in a
mission are unavailable, it is necessary to modify
the system objectives. If b1 and b2 are unusable,
the mission "go from D1 to A" is unachievable. It
is then necessary to try to achieve the second
mission: "go from D2 to A".

− To reconfigure the system (Action is
SystemReconfiguration): If all beacons come to
be useless, a reconfiguration is required because
no achievable mission remains.

According to this logic, the fuzzy inference system
rules are:

− If b1 is low then Action is FaultAccomodation

− If b2 is low then Action is FaultAccomodation

− If b1 is low and b2 is low then Action is
ObjectiveRevision

− If b1 is low and b2 is low and b3 is low then
Action is SystemReconfiguration

The figure 8 presents a part of the fuzzy inference
engine.

This illustration is voluntarily based on the only
consideration of the availability of the intermediate
points defining the trajectory. The availability of all
elements should be taken into account to define a
complete analysis of the system reconfigurability.

action

regular revision

45

result

low low

0 2.5 5 7.5 10

nothing
reconfiguration

revision
0

0.5

1

65

high

aggregation

result

b1 availability

50 75 100 0

0.5

1

low
 high

 medium

0
 25

accomodation

b2 availability
50 75 100 0

0.5

1

low high medium

0 25

 b1 is Low and b2 is Low then action is Revision

 b1 is Low and b2 is High then action is A ccomodation

accomodation

Fig. 8. Part of the fuzzy inference engine

6. CONCLUSIONS

This article presents an approach for the design of
fault tolerant systems, using a generic description. It
is based on the notion of service and it allows a
dynamic reconfiguration of the faulty system.

To support it, software architecture based on
software design patterns is proposed. This software

architecture allows the dynamic composition of
components. The analysis of the system
reconfigurability is achieved by the use of fuzzy
logic algorithms. A trajectory tracking illustrates the
presented ideas.

7. REFERENCES

Åström et al., "Control of Complex Systems",
Springer-Verlag, 2000, ISBN 1-85233-324-3.

Blanke M. et al., "What Is Fault Tolerant Control",
IFAC SafeProcess'2000, Budapest, p. 312-323,
June 14-16, 2000

Booch G., "Conception Orientée Objets et
Applications", Addison-Wesley, 1992, ISBN 2-
87908-004-5.

Gamma, E.Gamma et al, "Design patterns, elements
of reusable O.O. software", Addison-Wesley,
1995, ISBN 2-84180-054-7.

Gehin A.L., Staroswiecki M., "Modèle de description
d’un système automatisé tolerant aux fautes",
MSR’99, Paris, Mars1999.

Gehin A.L., Staroswiecki M., Assas M.L., "A
Bottom-Up Approach to Analyse Reconfiguration
Possibilities", 10th Int. WorkShop on Principles
of Diagnosis DX'99, Loch Awe, UK, 1999

Gehin A.L., Staroswiecki M., "A Formal Approach
to Reconfigurability Analysis, Application to the
Three Tanks Benchmark", European Control
Conference ECC'99, Karlsruhe, August 31-
September 3, 1999.

Hoblos G., Staroswiecki M., Aïtouche A.,
"Tolérance aux Fautes de Capteurs et
d'Actionneurs", Journal Européen des Systèmes
Automatisés, n°3/2001, p. 331-352.

Muller P.A., "Modélisation Objet avec UML",
Eyrolles, 1997, IBSN 2-212-08966-X

Patton R.J., "Fault Tolerant Control, the 1997
situation", IFAC SafeProcess'97, Hull, UK, vol.
2, p. 1033-1055, August 26-28, 1997.

Perronne J.M., Amann P., Thiry L., Hassenforder M.,
"A Framework for the building of Fuzzy Logic
inference systems", technical report COCA.

Scholten H., ″Logique floue et régulation PID″,
PubliTronic,1994, ISBN 2-86661-0490.

Staroswiecki M., Attouche S., Assas M. L., "A
Graphic Approach to Reconfigurability
Analysis", 10th Int. WorkShop on Principles of
Diagnosis DX'99, Loch Awe, UK, 1999

