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Abstract - For a class of single-input single-output continuous-time nonlinear
systems, a three-layer neural network-based controller that feedback linearizes the
system is presented. Control action is used to achieve tracking performance for a
feedback linearizable but unknown nonlinear system. The control structure consists
of a feedback linearization portion provided by two neural networks plus a
robustifying portion that keeps the control magnitude bounded. This paper, in some
sense, is the contribution of the work done in Yesildirek and Lewis,1995. It is shown
that a new look at the weight update formulas makes it possible to obtain very
simple network structures with only two neurons in their hidden layers, which
results in a reduced number of controller equations without changing the
corresponding stability results. This reduces network complexities and makes output
tracking faster. It is shown that all the signals in the closed-loop system are
uniformly ultimately bounded. No off-line learning phase is needed, Initialization of
the network weights is straightforward. Copyright  ©   2002 IFAC

Keywords - Feedback linearization, high gain neuron, robust-adaptive control ,
Lyapunov  stability.

1. INTRODUCTION

 A typical control structure for feedback
linearization of the state
equation & ( ) ( ).x f x g x u= +  can be given by

u
f x x

g x
d=

− +( ) &

( )
. When dealing with unknown

plant dynamics, we must compute the controller
with $( , )f x θ  and $( , )g x θ . Adaptive schemes such
as NN systems should be employed in a manner so
that $g  will remain bounded away from zero for all
times. Because of this problem, solutions are

usually given locally and/or some additional prior
knowledge about the system may be needed. For a
certain class of nonlinear systems, Yesildirek and
Lewis, 1995 introduce a controller structure that
avoids the zero division problem regardless of NN
weight estimates. They propose a control signal
with a switching law and made use of a dead-zone
to keep the controller output bounded.
This paper is organized as follows: In section (2),
we define the plant dynamics and tracking
problem. In section (3), we review briefly
controller design equations and NN weight update
formulas used in Yesildirek and Lewis,1995. In

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain



section (4), we will show that with a little
modification in the neuron activation functions
the tracking and feedback linearization goals can
be achieved with only two neurons in the NN
hidden layer. In section (5) simulation results are
demonstrated. Finally, section (6) contains the
concluding remarks where we discuss the
effectiveness of our results and give suggestions
for future works.

2. PROBLEM STATEMENT

This section defines the control task and details
the underlying structural assumptions which are
required in order to construct the controller.

 2.1. The class of nonlinear systems to be
examined, are single-input single-output state-
feedback linearizable systems which are in the
following controllability canonical  form:
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x x

x x
1 2

2 3

=
=

 M                                  (1)

                                  

& ( ) ( )x f x g x u d

y x
n = + +
= 1

where x x x xn
T=[ , ,..., ]1 2  and d t( )  is an unknown

disturbance with a known upper bound bd , and
f g R Rn, : →  are unknown smooth functions

with f ( )0 0=  and
                                                                   

                       g x g( ) ≥ >0 ∀x                       (2)

with g
−

, a known lower bound on g x( ) .

Assumption 1. The sign of g x( )  is known.

 2.2. Tracking problem.

The task of the controller is to force the plant
output y t( )  and it’s derivatives up to order n−1
to track a given desired output y td ( ) and it’s
corresponding derivatives with an acceptable
accuracy. (i.e., bounded error tracking), while all

the states and controls remain bounded. Define a
vector

x t y y yd d d
n T( ) [ , &,..., ]( )= −1  

Assumption 2. The desired trajectory vector xd  is
continuous, measurable and has a known upper
bound ∃ ≤  xdQ t Q: ( )

   Define a filtered error vector as

                               r eT= Λ  

where e x x d= −  and [ ]Λ = −λ λ λ1 2 1, ,..., n

T is
chosen such that the polynomial
S S Sn

n
n−

−
−+ + + +1

1
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2 1λ λ λ....  is  Hurwitz. The time
derivative of the filtered error can be written as
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3. NEURAL NETWORK STRUCTURE

In this section we review briefly some of the main

results stated in Yesildirek and Lewis,1995.

A three layer neural network structure is used for

functional approximations in the controller. Such

a net has two weight matrices V R n lh∈ + ×1 and

W R lh∈ +1  in hidden and output layers

respectively. Also the standard sigmoid functions

( )σ x
e x

=
+ −

1
1

 are used in hidden layer and the output

layer has a linear activation function. Let h x( ) be

a continuous function, then there exist Wh
  and Vh

such that

h x W V x xh
T

h
T

lh
( ) ( ) ( )= +σ ε

with ε lh
x( )  the minimal NN reconstruction error

in u, (The NN thresholds are included in

augmented x  and σ .)

Assumption 3. Given σ ( ), ( )x x t U Ud d∈ ⊂ , where
U Rn⊂  is a compact set and a sufficiently large

(3)

(4)

(5)

(6)

(7)



number of hidden units lh , let the NN
reconstruction error be bounded according to
ε σ εl

x U

T
hh

x h W x U( ) sup= − ≤ ∀ ∈
∈

with ε h
 a known bound and Ud

 a compact subset.

Define a weight matrix Θ h
h

h

V

W
=










  0
0    

.

Assumption 4. The ideal NN weights W h
 and

V h are bounded by some known constants, or

Θ Θh h m≤

Since h(x) is a continuous in a compact set U ,
there exist C3  and C4  such that

h x W V x x C C r x Uh
T

h
T

lh
( ) ( ) ( )= + ≤ + ∀ ∈σ ε 3 4

It was shown by Lewis et al. (1993) that for any
continuous function h(.), the approximation error
~( ) ( ) $( )h x h x h x= − with the estimate
$( ) $ ( $ )h x W V xh

T
h
T= σ  can be written by using a

Taylor series expansion of σ ( )V xh
T  as

~( ) ~ ( $ $ $ ) $ $ ~h x W V x W V x wh
T

h h h
T

h
T

h h
T

h= − ′ + ′ +σ σ σ

where  $ ( $ )σ σh h
TV x=  and $ [ ( ) /

$
σ ∂σ ∂h h z z

z z′ ≡
=

is

the Jacobian matrix. A bound on wh  is given by
w t C C C rh h h( ) ~ ~≤ + +0 1 2Θ Θ

where  the Ci  are computable constants.

4. ADAPTIVE NEURO CONTROLLER
DESIGN

 4.1. Proposed controller.

In the case of known functions with no
disturbances the control law

  

 
 [  ] u  x  g  x

f  x  K r  Yv d( )
( )

( ) =  −  −  − 1

would bring r(t) to zero exponentially for any
positive Kv , but we must use the approximations
of  f and g functions constructed by NN’s as:

            

 f x K r  Y

g x
f v d

g

 $ ( $ , )
 $ ( $ , )

 =
 −  −  − Θ

 Θ
The control law (13) is not well defined when
$( $ , )g xgΘ =0, therefore some attention must be

taken to guarantee the boundedness of the
controller a well.
To ensure the stability of the closed-loop system
with a well defined control input, the following
action has been proposed in Yesildirek and
Lewis,1995:

where s>0  is a design parameter, γ < (ln )2
s

and

uc  is as defined in (13), with the time-varying
gain given by:

with KN > 0 and Kz > max{ C C
s e gm

2
4, γ Θ

}

constant design parameters. The known bounds
Θim

for i=f,g are defined as in (9). The
robustifying control term is

u
g

g
u rr c= − ≥

−

µ µ
$

sgn ( ), ,2

and the indicator I is defined as
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4.2. Stability analysis.

Theorem 1. Assume that the feedback-linearizable
system is in the controllability canonical form and
control input given by (1), Let (2) and
assumptions 1-4  hold. Let the neural net weights
update laws be provided by (18) and (19). Then
the filtered tracking error r(t), neural net weight
errors ~ ( ),Θ f g t and control input are Uniformly
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Ultimately Bounded with specific bounds given in
(9). Moreover, the filtered tracking error r(t) can
be made arbitrarily small by increasing the gain
KN .(note: M Nf g f g, ,,  are positive-definite

matrices.)
The proof in Yesildirek and Lewis,1995 has been
omitted due to the lack of space.

( ) ( )

( )

$ $ $

$& $ $ $ $

$& $ $ $

f x w v x

w M v x r K r M w

v N rxw K r N v

f
T

f
T

f f f f f
T

f f

f f f
T

f f f

=

= − ′ −

= ′ −















σ

σ σ

σ

[ ]
[ ]

$( ) $ ( $ )

$& ( $ $ $ ) $

$& $ $ $

g x w v x

w IM v x u r r u w

v IN u rxw r u v

f
T

f
T

g g g g g
T

c c g

g g c g
T

g c g

=

= − ′ −

= ′ −










σ

σ σ κ

σ κ

5. NEW STRUCTURE

   Now, we are in a place to make our
modifications in the system. As mentioned earlier,
stability of the closed-loop system is shown
without making any assumption on the initial NN
weights. They are not required to be in the
neighborhood of some ideal weights,
which are unknown even for known dynamical
models.
If we choose suitable initial values of NN weights
$wi

 and $vi
 and positive-definite

matrices Mi
and N i f gi  ( , )= in (18) and (19), we

can convert matrix (vector) differential equations
of $ ( $ )v wi i  into the vector (scalar) ones.
To explain this, consider, for example, the first
equation in (18) for updating $wf

 vector. For a

short time, ignore the bias of hidden neuron. Let
us choose initial conditions of $wf  and $vf  to be a

vector of  equal elements and a matrix of equal
 rows, respectively, i.e., let
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T
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Choosing such a $vf , we can see that all elements

of the vector ( $ $ . $ . )'σ σf f
Tv x−  have equal initial

values. (We have already chosen the standard
sigmoid functions in all the hidden neurons.)
Next, the matrix Mf , can take a form such that

each term in the right hand side of $wf equation

becomes a vector with equal elements. The only
restriction on the matrix Mf

 is it's P-D condition.

A suitable candidate for this purpose  is the
identity matrix multiplied by a gain. Note that
none of these settings affects the correctness of
Theorem (1).
The above discussion leads to the following
results: By selecting initial values of $wf , $vf  and

matrix Mf as stated before, initial values of $&wf

elements will be all equal. The same results hold
true for the second equation in (18), i.e., for $&vf

, if

the N f  matrix is choosen as in the M f  case. As

the time proceeds, next values of $wf  and $vf

have the same structure as previous ones, i.e., $wf

remains a vector of equal elements and $vf  a

matrix of equal vectors. As the following relations
show, there is no need to further work on these
repeatative structures:

  

 where V v v vT
n1 1 2 1= +[ , ,... , ]  and Kf

 is the number

of hidden layer neurons.
The structure looks like a 3-layer NN with one
hidden neuron for approximation of $ ( )f x1

multiplied by an adjustable gain. Stated otherwise,
in this new scheme, “the output neuron gain”,
plays the same role as the hidden neurons in
previous one.
Now, we are able to present our next results from
the mentioned re-arrangement of the NN
structure. Making use of functions $ ( ) . $ ( )f x K f xf= 1

and $( ) . $ ( )g x K g xg= 1
 in (13), we obtain:
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Yesildirek ensures us to keep $( )g x away from
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zero so $ ( )g x1 0>  in any simulation.
Suppose in a given problem, we have gained a
minimum value $ming f 0  for function $g  during the
simulation time by suitable settings  of design
parameters, considering Yesildirek and Lewis
method. The same problem can be solved easier
as follows,Select Kg

 so that :

                              K
g

gg ≥
−

$min

                           (24)

So we have:                                  
$( ) . $ ( )

$ ( )
$

.
min

g x K g x
g x

g
g gg= ≥ ≥
− −

1
1

  
∀ ∈x R            (25)

 Similarly, we can choose parameter Kg
 large

enough such that the quantity uc  never goes
 beyond s , i.e.,
                u sc ≤       ∀ ∈x R                         (26)
Now, according to condition (17), parameter
I will be always equal to 1. So there in no need to
check this condition later, and the equations 18,19
follows:

       
u u u u u sc r c c= + − −

1
2

( ) exp( ( )γ
          

(27)

$& [( $ $ $ ) $ ]'w M V x u r r u wg g g g g
T

c c g= − −σ σ κ  

$& [ $ $ $ ]V N u rxw r u Vg g c g g
T

c g= −σ κ             (28)

Thus, we have eliminated the dead-zone in
updating equation of $wg  

and $vg , and this results

in a faster convergence and tracking goal with
simpler design equations. The cost we pay is to
get larger bounds for final weight errors.  We can
also improve the approximation capability of  the
NN by adding a bias for hidden neuron.

6. SIMULATION RESULTS
In order to do the comparison easily, we pose the
same example as in Yesildirek and Lewis,1995 for
the purpose of simulation.

( )
&

& ( )
x x
x x x x x x u

1 2

2 1
2

2 1 1
2

2
21 1

=
= − − + + +




figure (1) shows the results obtained in Yesildirek
and Lewis,1995 all of design parameters have been
chosen in the same way as in Yesildirek and
Lewis,1995,i.e.,
s K

M N
N

i i

= = = =
= = = =
10 0 05 20 5

20 0 1 4
1, . , ,

, . .
γ λ

κ µ  and  
with the rest set equal to 1. Initial Conditions are

~ ( )Θ f 0 0
 and ~ ( ) .Θ g 0 0 4=  and x x1 20 0 1( ) ( ) .= =

The desired trajectory is defined as y t td ( ) sin( )=
Figure (2) shows the  results by new method. Two
neural networks  with only one neuron (plus a
bias) in their hidden layers are used to
approximate f and g functions. The output neuron
gains K f  

and Kg
 are selected to be 10 and 1000

respectively, all the other parameters are the same
as above. Figure (2) shows faster convergence of
states to their desired references. Also the control
signal has smaller initial value. These are due to
the use of high output neuron gain in the new
method which results in simplified equations (27)
and (28) and could not be performed by the first
method.

7. CONCLUDING REMARKS

This paper, in some sense, is the contribution of
the work done in Yesildirek and Lewis,1995. It is
shown that a new look at the weight update
formulas makes it possible to obtain very simple
neural network structures with only two neurons
in their hidden layers, which results in a reduced
number of controller equations without changing
the corresponding stability results. This reduces
network complexities and makes output tracking
faster. It is shown that all the signals in the
closed-loop system are uniformly ultimately
bounded. It is also suggested that the neural
approximation be used to approximate $

$( )
g

g x− =1
1

directly to avoid zero division problems.
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 Fig.  2. Actual (x) and desired (xd) states and control signal obtained by new method.
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Fig. 1. Actual (x) and desired (xd) states and control signal obtained by Yesildirek and Lewis method.
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