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Abstract: Many works are related to the analysis and control of either continuous
or else discrete time-delay systems. However, the discretization of continuous time-
delay systems has not been extensively studied. In this work, sampled-data time-delay
systems with internal and external point delays are described by approximate discrete
time-delay systems in the discrete domain. Those approximate discrete systems allow
the hybrid control of time-delay systems. Several examples complete the paper,
showing the correctness of the discretization process.
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1. INTRODUCTION

In the last years, time-delay systems have been
studied by many authors. Different works have
been devoted to the analysis of either continuous
or else discrete time-delay systems, with point or
distributed delays. Special effort has been made in
the study of the stability of this kind of systems.
As a result, different stability analysis methods
have been developed, based on Lyapunov-like al-
gebraic approaches, LMI techniques or frequency
domain methods, (Jugo, 2001; Niculescu, 2001).

Focused on control design, an important effort has
been dedicated to the consecution of closed-loop
finite-spectrum assignment using output feedback
or state-space feedback, (Jugo, 2000; Wang et
al., 1999). Recent works are oriented to the ro-
bust control design, (Niculescu, 2001; Mahmoud,
2000).

Other works are devoted to the study of discrete
delay systems, (Mahmoud, 2000). However, the
discretization and design of hybrid controllers
for continuous time-delay systems has not been
extensively studied. In De la Sen and Luo (1994),
discretization of continuous systems is considered
using FIR filters. On the other hand, several works
are focused to the design of hybrid controllers for

systems with input time delay, (Shied et al., 1999;
Tsai et al., 1999; Yen and Wu, 1994).

In this work, a discretization procedure is devel-
oped through a recursive solution of the contin-
uous time-delay system. This process is of in-
terest since the approximate discrete model al-
lows the design of hybrid controllers (continuous
plant+discrete controller). The proposed method
gives the possibility of increasing the approxima-
tion accuracy depending on the application and,
thus, the design methodology of robust controllers
is of special interest and adequate in this case,
(Niculescu, 2001; Mahmoud, 2000).

This paper is organized as follows: first, a solu-
tion for the state vector of continuous time-delay
systems is given by a recursive equation. This
solution can be expressed by a symbolic expo-
nential equation which leads to a symbolic state
transition matrix. Then, using this transition ma-
trix, the discretization is performed yielding an
approximate discrete time-delay system. Several
considerations about numerical computation of
the approximate system are discussed, and two
different examples show the application of the
methodology. Finally, same conclusions end the
paper.
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2. SYMBOLIC STATE TRANSITION MATRIX

Consider the next continuous time-delay system:

ẋ(t) = A0x(t) + A1x(t− h) + A2x(t− 2h)

+ . . . + Anx(t − nh)

+B0u(t) + B1u(t− h′)

+ . . . + Bmu(t−mh′)

y(t) = CT x(t) (1)

The solution of the system (1) can be obtained
by direct integration by parts. For clarity of ex-
position and without loss of generality, the next
simpler system is considered:

ẋ(t) = A0x(t) + A1x(t− h) + B0u(t) + B1u(t− h′)

y(t) = CT
0 x(t) (2)

The transition of the state vector from t0 to t1 can
be obtained from the following expression

t1
∫

t0

ẋ(t)dt = x(t1)− x(t0) (3)

=

t1
∫

t0

(A0x(t) + A1x(t− h)

+B0u(t) + B1u(t− h′))dt

The right term of (3) can be integrated by parts.
Considering the first addend of the integral, the
integration process leads to the following equa-
tions

t1
∫

t0

A0x(t)dt = A0x(t)t|t1t0 −

t1
∫

t0

A0tẋ(t)dt

t1
∫

t0

A0tẋ(t)dt =

t1
∫

t0

A0t(A0x(t) + A1x(t − h)

+B0u(t) + B1u(t− h))dt

t1
∫

t0

A2
0tx(t)dt = A2

0t
2x(t)|t1t0 −

t1
∫

t0

A2
0

t2

2
ẋ(t)dt

t1
∫

t0

A0A1tx(t− h)dt = A0A1t
2x(t − h)|t1t0

−

t1
∫

t0

A0A1
t2

2
ẋ(t− h)dt

... (4)

Proceeding in this manner, an infinite series ap-
pears which can be expressed as follows:

x(t)|t1t0 −A0x(t)t|t1t0 + A2
0t

2x(t)|t1t0
+A0A1t

2x(t− h)|t1t0 + . . .

=

t1
∫

t0

B0u(t) + B1u(t− h′))dt

−

t1
∫

t0

A0t(B0u(t) + B1u(t− h′))dt

+

t1
∫

t0

A0A1t(B0u(t− h)

+B1u(t− (h + h′)))dt + . . .

(5)

This expression seems to be a matrix exponential
series which includes the delay operator. Using the
operator x(t−h) = µ(h)x(t) (note that x(t− (h+
h′)) = µ(h+h′)x(t) = µ(h)µ(h′)x(t)), the solution
of the system (2) can be denoted:

x(t1) = eA0(t1−t0)+A1µ(h)(t1−t0)x(t0) (6)

+

t1
∫

t0

eA0(t1−t)+A1µ(h)(t1−t) (B0u(t) + B1µ(h′)u(t)) dt

Here, the function eA0(t1−t0)+A1µ(h)(t1−t0) can be
considered as a symbolic transition matrix which
is only valid for representation purposes and not
for direct calculations. Observe that this represen-
tation is only used to simplify the notation. How-
ever, the use of the exponential notation makes
easier the manipulation and calculation of the ex-
pression (5), by considerations similar to those of
the Paynter technique. Note that this expression
can be obtained using the fundamental solution
of a Time delay system, obtaining the previous
equations starting in this point.

In conclusion, the infinite series described by the
exponential can be approximated by a finite series

x(t1) = M(t1 − t0)x(t0) (7)

+

t1
∫

t0

M(t1 − t) (B0u(t) + B1µ(h′)u(t)) dt

being M(t) =
∑n1

i=0
(A0(t)+A1(t)µ(h))i

i! . In fact, the
equation (8) is a recursive representation of the
state vector.

The previous result can be generalized considering
systems given by equations (1). In this case, the
symbolic transition matrix would be:

eA0(t1−t0)+A1µ(h)(t1−t0)+...+Anµ(nh)(t1−t0)

and the approximation is performed by a finite
series



M(t) =

n1
∑

i=0

(

(A0t + A1tµ(h) + A2tµ(2h)

i!
(8)

+ . . . + Antµ(nh))i

i!

)

In the next section, this expression is used to
obtain the discrete equivalent for sampled-data
time-delay systems.

3. DISCRETIZATION OF SYSTEMS WITH
INTERNAL AND EXTERNAL POINT

DELAYS

First, for the sake of simplicity, systems with an
unique external delay and an unique internal delay
are considered. Then, assuming a zero order hold
and a sampling period T , the instants t1 = (k +
1)T and t0 = kT can be considered in (8). So,
denoting x(t1), x(t0) by xk+1 and xk , respectively,
the above expression results in:

xk+1 = xk +

n1
∑

i=1

(A0T + A1Tµ(h))i

i!
xk (9)

+

T
∫

0

(

n1
∑

i=0

(A0t + A1tµ(h))i

i!

)

B0dt uk

+

T
∫

0

(

n1
∑

i=0

(A0t + A1tµ(h))i

i!

)

B1µ(h′)dt uk

where µ(h)xk = x(Kt− h). Choosing T = h and,
additionally, taking into account that iT ≤ h′ ≤
(i + 1)T and u(t − h′) = uk−i for some integer i,
(De la Sen and Luo, 1994), the previous equation
can be expressed as

xk+1 = F0xk + F1xk−1 + . . . + Fn1
xk−n1

(10)

+G0uk + G1uk−i + . . . + Gi+n1
uk−(i+n1)

However, depending on the value of the delay h,
the election of this value as sampling period can
be inadequate in the sense of the Shannon (Dis-
cretization) Theorem. Then, the sampling period
can be chosen T = h

j
for some integer j, where T

is a valid value.

In general, considering systems given by equations
(1) and T = h

j
, the approximate discrete system

is given by the next state-space description:

xk+1 = xk + M(T )xk (11)

+





T
∫

0

M(t)B0dt



 uk

+





T
∫

0

M(t)B1µ(h′)dt



 uk

+





T
∫

0

M(t)B2µ(2h′)dt



 uk

...

+





T
∫

0

M(t)Bmµ(mh′)dt



 uk

Finally,

xk+1 = F0xk + F1xk−j + . . . + Fn∗n1
xk−j∗n∗n1

+G0uk + G1uk−j (12)

+ . . . + Gim+m∗n1
uk−(im+j∗m∗n1)

Note that im can be not equal to i ∗ m. For
example if h′ = 0.4, T = 1 and m = 3 then
i = 1, but im = 2 6= 3. Under this procedure,
the approximate discrete model is near to an
exact representation of the original system in the
sampling time instants, depending on the number
of terms n1 chosen on the approximation.

In addition, after the discretization process, the
resulting discrete model has a greater number of
delays than the original continuous system. In any
case, considering constant and known delays, the
discrete-time delay system can be expressed by a
standard discrete linear system of higher order.

On the other hand, selecting a lower sampling
period, the number of terms that must be con-
sidered is lower, thus obtaining a simpler discrete
time-delay system. Nevertheless, the order of the
approximation is not lower, since a lower period
leads to a higher discrete delay (more z−1 opera-
tors are needed).

4. NUMERICAL COMPUTATION

The numerical computation of the described ap-
proximate discrete system can be performed eas-
ily by using Matlab like software. The number
of terms considered in the series can be chosen
depending on the application but a good criterion
can be derived from the Paynter technique.

Considering as a main objective the conservation
of the gain at low frequencies under the discretiza-
tion process, the maximum element p to be con-
sidered on the series can be chosen by imposing
the following condition:

1

p!
(nq)penq ≤ 0.001



where n is the system order and q = max|FijT |,
being Fij the maximum absolute value of the
elements of the matrix F =

∑n
i=0 Ai, (i.e., the

system matrix with the delay h = 0) and T the
sampling period.

Using this technique, some matrices (related to
some delayed discrete states) could be negligible
and, therefore, a post-analysis might be required.
Anyway, the discrete system can be automatically
computed in a relatively easy way.

5. EXAMPLES OF APPLICATION

In this section two different examples of appli-
cation of the proposed approach are presented.
Those examples show the validity of the method-
ology.

As a first example, the next system is considered:

ẋ(t) =

(

0 1
−2 −3

)

x(t) +

(

0 0
−1 2

)

x(t− 0.2)

+

(

0 0
2 −1

)

x(t − 0.4) +

(

0
1

)

u(t)

y(t) =
(

1 1
)

x(t) (13)

Choosing the period T = 0.2, the expression (10)
can be used for obtaining the approximate discrete
system:

xk+1 =

(

0.9671415 0.1484107
−0.2968214 0.5219093

)

xk

+

(

−0.0202793 0.25727
−0.1998647 0.1993912

)

xk−5

+

(

0.0323453 −0.0081820
0.2874585 −0.0400655

)

xk−10

+

(

0.0048 0.25727
−0.1998647 0.1993912

)

xk−15

+

(

−0.0015911 0.0004104
−0.0193944 0.0031502

)

xk−20

+

(

0.0164293
0.1484107

)

uk +

(

0.0019249
0.0257272

)

uk−5

+

(

−0.0007056
−0.0081829

)

uk−10

+

(

−0.0001529
−0.0026176

)

uk−15 (14)

The open-loop step responses of the continuous
system and approximate discrete system are de-
picted in figure 1. On the other hand, closed-
loop simulation has been performed following the
scheme presented in the figure 2. Results are pre-
sented in figure 3.

In conclusion, the discrete equivalent (14) is a
valid representation of the system (13)in the dis-
crete domain.

sampled system = discrete equivalent
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Fig. 1. Example 1: Open-loop step responses for
the continuous system and the approximate
discrete system.
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Fig. 2. Closed-loop scheme for the continuous
system and the approximate discrete system.

sampled system = discrete equivalent
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Fig. 3. Example 1: Closed-loop step response of
continuous system and approximate discrete
system.

In the next example, one external and one internal
point delays are considered:

ẋ(t) =

(

1 −1.5
−1 −2.5

)

x(t) +

(

0.25 −0.5
0.5 0.5

)

x(t− 0.3)

+

(

0
1

)

u(t) +

(

0.5
0.5

)

u(t− 0.5)

y(t) =
(

1 1
)

x(t) (15)



sampled system = discrete equivalent

0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 1 2 3 5 6

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

4

Fig. 4. Example 2: Open-loop step responses for
the continuous system and the approximate
discrete system.
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Fig. 5. Example 2: Closed-loop step response of
continuous system and approximate discrete
system.

In this case, the system has different internal and
external delays (noncommensurate delays) and,
then, combinations of those delays appear in the
input of the discrete approximation. Considering
T = 0.1 and applying the expression (10), the
following discrete time-delay system is obtained:

xk+1 =

(

1.09373 0.14613
−0.14613 0.8502

)

xk (16)

+

(

−0.027252 −0.05411
−0.04331 −0.0426

)

xk−3

+

(

0.00161 0.001966
0.001637 0.002234

)

xk−6

+

(

0.007372
0.092505

)

uk +

(

−0.00264
−0.022525

)

uk−3

+

(

0.056082
0.04257

)

uk−5 +

(

−0.0019832
−0.002264

)

uk−8

The open-loop step responses for the continuous
system and the approximate discrete system are
shown in figure 4. Using again the scheme pre-
sented in figure 2, the closed-loop step responses
have been depicted in figure 5.

In this case, the model is insufficient for an ac-
curate representation of the closed-loop response
and a more complex approximate discrete system
should be considered in order to improve the
result. Precision requirements will determine the
number of terms to be considered in the exponen-
tial series, depending on the application.

Anyway, simple discrete systems can be an useful
tool, combined with robust control techniques.

6. CONCLUSIONS

This work presents a direct way of calculation
of an approximate discrete system for continuous
time-delay systems involving internal and external
point delays. The method is based on a recursive
solution of the state vector which can be symbol-
ically represented by an exponential expression.
The resulting infinite series can be approximated
by a Paynter like technique. The discrete time-
delay model is useful for the analysis, simulation
and design of hybrid controllers valid for contin-
uous time-delay systems. Several examples show
the validity of the proposed discretization process,
by comparing the responses of both systems.
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