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Abstract: A new approach to minimax MPC for systems with bounded external system
disturbances and measurement errors is introduced. It is shown that joint deterministic state
estimation and minimax MPC can be written as an optimization problem with linear and
quadratic matrix inequalities. By linearizing the quadratic matrix inequality, a semidefinite
program is obtained. A simulation study indicates that solving the joint problem can improve
performance.
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1. INTRODUCTION

In this paper, we introduce an approach to design
MPC controllers in the case of estimated states and
unknown but bounded disturbances acting on the sys-
tem and the output measurements. The main contri-
bution is an extension of the framework introduced
in (Löfberg, 2001a). It is shown that joint state estima-
tion and minimax MPC can be cast as an optimization
problem involving a (unfortunately) quadratic matrix
inequality. It is shown how this can be conservatively
approximated as a linear matrix inequality (LMI) and
thus enable us to approximately solve the joint prob-
lem using semidefinite programming.

Minimax MPC for systems with bounded disturbances
has been studied before. The case with full state in-
formation is dealt with in, e.g., (Bemporad, 1998)
and (Scokaert and Mayne, 1998). An approach for
minimax MPC with both estimation error and distur-
bances is studied in (Bemporad and Garulli, 1997; Be-
mporad and Garulli, 2000). The problem with joint
state estimation and control does however not seem
to have been studied before.

2. UNCERTAINTY MODEL

The class of systems we address are linear time-
invariant discrete-time systems with external system
and measurement disturbances

x(k + 1) = Ax(k) + Bu(k) + Fw(k) (1a)

y(k) = Cx(k) + Eη(k) (1b)

The disturbances are assumed to be unknown but
bounded

η(k) ∈ {η : ηT η ≤ 1} (2a)

w(k) ∈ {w : wT w ≤ 1} (2b)

Since we only measure a disturbed output, we have to
use a state estimator. Regardless of how this is done,
we can write

x(k) = x̂(k) + e(k) (3)

The estimator used in this paper gives a state estimate
with a guaranteed ellipsoidal error bound

eT (k)P (k)e(k) ≤ 1 (4)

The confidence matrixP (k) is an output from the state
estimation procedure.
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3. MINIMAX MPC

In the standard case, we typically use a quadratic finite
horizon performance measure (Q andR for simplicity
assumed positive definite)

J =
N−1∑
j=0

||x(k + j + 1|k)||2Q + ||u(k + j|k)||2R (5)

There are typically constraints on inputs and outputs,
but to keep the notation simple, we will not write this
explicitly. We will however return to the constraints
later on.

Sincex(k) is uncertain, this should be addressed in
some way. The standard approach to robustify nom-
inal MPC is to employ a minimax strategy, i.e. opti-
mize worst-case behavior (Kothareet al., 1994; Bem-
porad and Garulli, 1997; Scokaert and Mayne, 1998).
In (Löfberg, 2001a), it was shown that,givenan ellip-
soidal estimation error bound

eT (k)P (k)e(k) ≤ 1 (6)

and the previously introduced external system distur-
bances, a minimax strategy

min
u(·|k)

max
e(k),w(·|k)

J (7)

can be turned into a problem that can be addressed
with semidefinite programming. However, the estima-
tion part was performed without any consideration on
how the estimate would influence the control perfor-
mance. The work here extends those results and the
goal is to connect the estimation part with the minimax
controller.

4. DETERMINISTIC STATE ESTIMATION

What is an optimal state estimate in a minimax frame-
work? Clearly, the optimal choice is to find the small-
est setX (k) such that

x(k) ∈ X (k)

can be guaranteed, given all measurement obtained
since startup and perhaps some prior knowledge on
the initial statex(0) ∈ X (0). Hence the problem is

min Vol(X (k)) giveny(1), y(2), . . . y(k),X (0)

The crux is that this is not practically implementable,
not even for our simple model. The problem is that
the complexity of the setX (k) grows when more
measurements are obtained. The standard way to
overcome this problem is to restrictX (k) to have
some special geometry, such as ellipsoidal (Schweppe,
1968; Schweppe, 1973; Ghaoui and Calafiore, 1999)

or parallelotopic (Bemporad and Garulli, 1997). Fur-
thermore, a recursive scheme is employed. Unfortu-
nately, assuming thatX (k − 1) has some particular
geometry does not imply thatX (k) also will have this.
Hence, if we forceX (k) to be an ellipsoid, we have to
settle with an approximation. When we resort to an
approximation, there will be some degree of freedom,
and this is the fact we will exploit in order to improve
the performance of the minimax MPC controller.

4.1 Ellipsoidal state estimates

In this work, we use an ellipsoidal approximations of
the setX (k). Given a guaranteed ellipsoidal bound of
the prior estimation error

eT (k − 1)P (k − 1)e(k − 1) ≤ 1 (8)

and a new measurementy(k), use the model (1) and
the disturbance bounds (2) to find a new state estimate
guaranteed to satisfy

eT (k)P (k)e(k) ≤ 1 (9)

It can be shown that an LMI in the following form is
obtained as a sufficient condition

[
Γ ST

S P−1(k)

]
� 0 (10)

The definition ofΓ andS are given in the appendix,
but for a more detailed discussion on the estima-
tion procedure, the reader is referred to (Ghaoui and
Calafiore, 1999) or (L¨ofberg, 2001a). The important
thing to know is that the matrixΓ is a linear function
of four scalar optimization variables, and the matrixS
depends linearly on the state estimatex̂(k).

Having this sufficient condition is a first step in a
state estimation procedure. The next step is to select
a particular solution̂x(k) and P−1(k). To do this,
some performance measure onP−1(k) is minimized
under the constraint (10). A typical choice (Ghaoui
and Calafiore, 1999) is the trace, tr(P−1(k)). We call
this problemP1

P1 : min
Γ,P−1(k),x̂(k)

tr(P−1)

subject to (10)

However, when this problem is solved, there is no
connection to the control problem in which the state
estimate will be used. The main result in this paper is
to show that the estimation, i.e. calculation ofx̂(k) and
P (k), can be donesimultaneouslywith the calculation
of the control, thus leading to some sort of joint
estimation and control.



5. THE JOINT PROBLEM

We first derive the LMI for the minimax MPC prob-
lem. The calculations are done in a vectorized form
so we introduce the predicted future states, unknown
disturbances and the control sequence

X =




x(k + 1|k)
x(k + 2|k)

...
x(k + N |k)


 , U =




u(k|k)
u(k + 1|k)

...
u(k + N − 1|k)




W =




w(k|k)
w(k + 1|k)

...
w(k + N − 1|k)




By introducing the matricesH , S andG

H =




A
A2

...
AN


 , S =




B 0 . . . 0
AB B . . . 0

...
...

. . .
...

AN−1B . . . AB B




G =




F 0 . . . 0
AF F . . . 0

...
...

. . .
...

AN−1F . . . AF F


 =

[
G0 G1 . . . GN−1

]

we can write

X = Hx(k) + SU + GW (11)

The minimax problem can, after redefiningQ :=
diag(Q, . . . , Q) andR := diag(R, . . . , R), be written
as

min
t,U

t

subject tomax
e(k),W

XT QX + UT RU ≤ t

The state estimate uncertainty

(x(k) − x̂(k))T P (k)(x(k) − x̂(k)) ≤ 1 (12)

can be written in a form more suitable for us

x(k) = x̂(k) + P− 1
2 (k)z, ||z|| ≤ 1 (13)

This allows us to write

X = Hx̂(k) + SU + HP− 1
2 z + GW (14)

From now on we skip the time-index onP in order to
save space. For reasons that will be clear later, we also
define

ϑ0 = GW (15)

The nominal part of the state predictions are gathered
in X̄

X̄ = Hx̂(k) + SU (16)

We use definition (16) and (15), and rewrite the con-
straint in the minimax optimization problem using a
Schur complement


 t (X̄ + HP− 1

2 z + ϑ0)T UT

X̄ + HP− 1
2 z + ϑ0 Q−1 0

U 0 R−1


 � 0

Extract the estimation error
 t X̄T + ϑT

0 UT

X̄ + ϑ0 Q−1 0
U 0 R−1




+


 0
HP− 1

2

0


 z

[
I 0 0

]
+


I
0
0


 zT

[
0 P− 1

2 HT 0
]
� 0

(17)

The above matrix inequality should hold for all admis-
sible normalized estimation errorsz. To proceed, we
use the following theorem (Ghaoui and Lebret, 1997)

Theorem 1.(Robust LMI). Robust satisfaction of the
uncertain matrix inequality

F + L∆R + RT ∆T LT � 0 ∀||∆|| ≤ 1

is equivalent to the matrix inequality

[
F L

LT 0

]
�

[
R 0
0 I

]T [
τI 0
0 −τI

] [
R 0
0 I

]

τ ≥ 0

After introducing the multiplierτx ≥ 0 and applying
Theorem 1 to the uncertain LMI (17) we obtain




t X̄T + ϑT
0 UT 0

X̄ + ϑ0 Q−1 0 HP− 1
2

U 0 R−1 0
0 P− 1

2 HT 0 0


 �



I 0
0 0
0 0
0 I




[
τxI 0
0 −τxI

] [
I 0 0 0
0 0 0 I

]
(18)

Simplification yields




t − τx X̄T + ϑT
0 UT 0

X̄ + ϑ0 Q−1 0 HP− 1
2

U 0 R−1 0
0 P− 1

2 HT 0 τxI


 � 0 (19)

The condition still contains uncertain parts, more pre-
cisely the vectorϑ0. To take care of these, we first
define

ϑi =
N−1∑
j=i

Gjw(k + j|k) (20)



and note that

ϑ0 = G0w(k|k) + ϑ1 (21)

The uncertaintyw(k|k) is now removed using Theo-
rem 1, and the procedure is repeated. This will even-
tually give us the following LMI




t − τx − tr(Ω) X̄T UT 0 0

X̄ Q−1 0 HP− 1
2 G

U 0 R−1 0 0

0 P− 1
2 HT 0 τxI 0

0 GT 0 0 Ω


 � 0 (22)

The matrix Ω is a diagonal matrix containing the
variables introduced when applying Theorem 1 on the
future unknown disturbances.

Givena state estimatêx(k) andP (k), this is the LMI
derived in (Löfberg, 2001a) for minimax MPC1 . We
denote this problemP2.

P2 : min
τx,Ω,U,t

t

subject to (22)

We are now ready to proceed to the main idea in this
paper. Recall the state estimation LMI and introduce
Z = P− 1

2 (k). The constraints for estimation and
minimax MPC can be summarized as




t − τx − tr(Ω) X̄T UT 0 0
X̄ Q−1 0 HZ G
U 0 R−1 0 0
0 ZT HT 0 τxI 0
0 GT 0 0 Ω


 � 0 (23)

[
Γ ST

S ZT Z

]
� 0 (24)

SinceS is linear in x̂(k), the equations are linear in
Γ, Ω, τx, t, U andx̂(k). Unfortunately it is quadratic
in Z. However, for future reference we define the
problem asP3

P3 : min
τx,Ω,U,t,Γ,Z,x̂(k)

t

subject to (23, 24)

5.1 A tractable approximation

To obtain a tractable problem, we simply linearize the
quadratic matrix inequality. From the trivial inequality

(Z − Z0)T (Z − Z0) � 0 (25)

we have

1 Not entirely true. To obtain the LMI in (L¨ofberg, 2001a) some
additional Schur complements are needed

ZT Z � ZT Z0 + ZT
0 Z − ZT

0 ZT
0 (26)

We use this and obtain an LMI thatconservatively
approximates the original quadratic matrix inequality

[
Γ ST

S ZT Z0 + ZT
0 Z − ZT

0 ZT
0

]
� 0 (27)

Clearly, the main problem now is to select the lin-
earization pointZ0. The perhaps easiest solution is
to solve the problemP1, and then use the solution to
defineZ0. Of course, this can be repeated in order to
find a local minimum ofP3. We define the linearized
and conservative approximation ofP3

P4 : min
τ,Z,x̂(k),U,t

t

subject to (23, 27)

5.2 State constraints

Typically there are state constraints in the MPC prob-
lem. Let us study the simple scalar caseMX ≤ 1. In
other words,M is a row vector. Inserting the definition
of X and the state estimate error yields the constraint

MHx̂(k) + MSU + MGW + MHP− 1
2 z ≤ 1

It is easy to show (L¨ofberg, 2001a) that the constraint
is satisfied for all possible estimation errors and future
disturbances if

MHx̂(k) + MSU +
√

MHP−1HT MT

+
N−1∑
j=0

√
MGjGT

j MT ≤ 1 (28)

To save space, we define

γ = 1 − MHx̂(k) − MSU −
N−1∑
j=0

√
MGjGT

j MT

and the constraint can be written as

√
MHP−1HT MT ≤ γ (29)

We square the constraint and recall thatP−1 = ZT Z.
This allows us to perform a Schur complement and
obtain an LMI

[
γ MHZ

ZT HT MT γI

]
� 0 (30)

6. SIMULATION EXAMPLE

This example is adapted from (Bemporad and Garulli,
2000). Since the main result in this paper is the in-
troduction of a joint estimation and control scheme,



we want to study the impact of the estimation error.
For that reason, the only uncertainty in the system
is a measurement error, leading to an uncertain state
estimate.

x(k + 1) =
[
1.64 −0.79
1 0

]
x(k) +

[
1
0

]
u(k)

y(k) =
[
0.14 0

]
x(k) + 0.2η(k)

There is a non-minimum phase output

z(k) =
[−1.93 2.21

]
x(k)

with a hard constraint

−1 ≤ z(k) ≤ 3

In addition to the output constraint, the controller also
has to satisfy|u(k)| ≤ 2.

The goal is to have the (undisturbed) outputy(k)
follow a constant unit reference. In order to get good
tracking, the following performance measure was cho-
sen (N = 10)

N−1∑
j=0

||Cx(k + j + 1|k) − 1||2 + 0.1||u(k + j|k) − 1||2

Since we have shifted the origin in the tracking formu-
lation, some straightforward modifications of the algo-
rithm are needed. For brevity, the details are omitted.

Three different controllers were implemented. In the
first approach, the state estimation is performed by
solvingP1 and the estimate is then used in the min-
imax controller defined byP2. This is basically the
controller proposed in (L¨ofberg, 2001a). We denote
this controllerC1. In a second controllerC2, an initial
state estimate is found by solvingP1, and the matrix
is then used to linearize the joint problemP3, yielding
P4, which then is solved. In a third approachC3, the
linearization procedure is repeated two times.

The three controllers were simulated 100 times with
different initial conditions and disturbance realiza-
tions. The initial state estimate waŝx(0) = 0 and
P (0) = I, while the true initial state was uniformly
distributed in the ellipsoid||x(0)|| ≤ 1. The measure-
ment disturbances were uniformly distributed. Imple-
mentation and solution of the optimization problems
were done using (L¨ofberg, 2001b) and (Vandenberghe
and Boyd, 1998).

The mean of the accumulated quadratic performance
measure,

∞∑
j=0

||Cx(j) − 1||2 + 0.1||u(j)− 1||2

was calculated and wasJC1 = 17.4, JC2 = 10.4 and
JC3 = 8.8. The average improvement when looking

at single realizations and comparing the controllers
C1 and C2 was 21%, while C3 gave an additional
8% average improvement. Furthermore, the controller
C1 became infeasible in 12 cases, while this never
happened forC2 or C3. In Figure 1, we see a situation
were the proposed approach has improved tracking
performance substantially.
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Fig. 1. Closed loop response.

The reason why the proposed approach gave such a
substantial improvement in this example is the state
constraint. The constrained output has a severe non-
minimum phase behavior. If the uncertainty in the
state estimate is too large, the uncertainty in the con-
strained output will force the controller to be very
careful. Since the limiting factor is the constraint, it is
important that the measurements are used in order to
obtain an estimate that is certain along the constrained
output directions. This will be done automatically in
the joint approach, hence leading to improved perfor-
mance.

7. CONCLUSION

We have shown that incorporation of the state esti-
mation problem into minimax MPC yields a prob-
lem with a quadratic matrix inequality. By linearizing
this inequality, a linear matrix inequality is obtained,
and the joint estimation and control problem could
be solved using semidefinite programming. A simple
simulation study was carried out and showed that the
approach indeed can improve performance in some
cases.

Of course, the improved performance comes at a price,
computational complexity. Various improvements can
be done to reduce this. Currently, the initial guess on
P (k) is found by solving problemP1. A cheaper way
to find an initial guess could be to use approximative
solutions based on ellipsoidal calculus (Schweppe,
1968; Schweppe, 1973; Kurzhanski and V´alyi, 1997).
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Appendix A. DEFINITION OFΓ AND S

The matricesΓ and S, involved in the state estima-
tion LMI (10), are derived as follows (Ghaoui and
Calafiore, 1999; L¨ofberg, 2001a); Define

S =
[
A F 0 Bu(k − 1) − x̂(k)

]
Te =

[
I 0 0 −x̂(k − 1)

]
Ty =

[−CA −CF −E y(k) − CBu(k − 1)
]

Tw =
[
0 I 0 0

]
Tη =

[
0 0 I 0

]
T1 =

[
0 0 0 1

]
Λ = T T

1 T1

and

ξ =
[
x(k − 1), w(k − 1), η(k − 1), 1

]
The constraint (9) on the new estimate can be written
as

ξT ST P (k)Sξ ≤ ξT Λξ

when

ξT T T
e P (k − 1)Teξ ≤ ξT Λξ

ξT T T
w Twξ ≤ ξT Λξ

ξT T T
η Tηξ ≤ ξT Λξ

ξT T T
y Tyξ = 0

The implication is conservatively approximated using
the S-procedure (Boydet al., 1994), yielding the LMI
(10). Without going into details, three non-negative
scalarsτe, τw andτη, and one indefinite scalarτy are
introduced, andΓ will be defined as

Γ = Λ − τeSe − τySy − τwSw − τηSη

where

Se = Λ − T T
e P (k − 1)Te

Sw = Λ − T T
w Tw

Sη = Λ − T T
η Tη

Sy = T T
y Ty


