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Abstract: Robust synthesis is one of the remaining challenges in model predictive control
(MPC). One way to robustify an MPC controller is to formulate a minimax problem, i.e.,
optimize a worst-case performance measure. For systems modeled with an uncertain gain,
there are many results available. Typically, the minimax formulations have given intractable
problems, or unorthodox performance measures have been used to obtain tractable problems.
In this paper, we show how the standard quadratic performance measure can be used in a
computationally tractable minimax MPC controller. The controller is developed in a linear
matrix inequality framework that easily allows extensions and generalizations.
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1. INTRODUCTION

Despite the tremendous amount of results and re-
search on robust control during the last decades,
model predictive control (MPC) still suffers from a
lack of general and tractable results on robust synthe-
sis. Many interesting approaches based on minimax
(worst-case) optimization have been proposed, but
they often come with some drawback such as compu-
tationally intractable (Lee and Cooley, 1997; Casavola
et al., 1999), use of non-standard performance mea-
sures (Campo and Morari, 1987; Allwright and Pa-
pavasiliou, 1991; Olivieraet al., 2000) or restriction
to systems with particular structure (Zheng, 1995).

In this paper, we present a framework for minimax
MPC with a traditional quadratic performance mea-
sure, and the tools we use are robust linear matrix
inequalities and semidefinite programming.

2. PROBLEM FORMULATION

A problem setup that has been used in many ap-
proaches to robust MPC is models with an uncertain
gain. With an uncertain gain, we mean an uncertain

input matrixB or output matrixC. The approach we
will present in this paper can be used for both cases,
but we will focus on an uncertain input gain.

x(k + 1) = Ax(k) + B(k)u(k) (1a)

y(k) = Cx(k) (1b)

The time-varying uncertainty inB(k) can be modeled
in various ways. A common choice has been a poly-
topic modelB(k) ∈ Co(B1, . . . , Bq)

B(k) =
q∑

i=1

λiBi,

q∑
i=1

λi = 1, λj ≥ 0 (2)

In this work, we will turn our attention to a dif-
ferent model, a so called norm-bounded uncertainty
model (Boydet al., 1994).

B(k) = B0 + Bp∆(k)Cp, ∆(k) ∈ ∆ (3a)

∆ = {∆ : ||∆|| ≤ 1} (3b)

Notice that a polytopic uncertainty, if necessary, can
be approximated by a model of this type, see (Boydet
al., 1994).
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In nominal MPC, we typically use a quadratic finite
horizon performance measure (Q andR for simplicity
assumed positive definite)

J =
N−1∑
j=0

||x(k + j + 1|k)||2Q + ||u(k + j|k)||2R (4)

Since this is a well established performance measure,
and many results are available concerning MPC using
this set-up, it is our intention to robustify this perfor-
mance measure with a minimax formulation. Hence,
the optimization problem we wish to solve is

min
u(·|k)

max
∆N

J (5)

In the expression above, we introduced the total un-
certainty along the future trajectory

∆N = [∆(k), . . . , ∆(k + N − 1)]

∈ ∆N = ∆ × . . . × ∆ (6)

The paper is organized as follows. We begin in Sec-
tion 3 with a review of some approaches to minimax
MPC that have been proposed earlier in the literature.
Section 4 introduces some central mathematical con-
cepts. The main results are presented in Section 5 and
we finally conclude the paper with a simple example.

3. REVIEW OF AVAILABLE APPROACHES

The fundamental property that is exploited in minimax
MPC for systems with an uncertain input gain is that
with a convex uncertainty, the maximum of a convex
performance measure will occur at the border of the
uncertainty model (Bertsekas, 1999). With a polytopic
model ofB(k), the maximum is thus found at a vertex
of the uncertainty model.

Work on minimax MPC can be traced back to (Campo
and Morari, 1987). The uncertainty model was an
uncertain FIR model,

y(k + 1) =
n∑

i=0

giu(k − i) (7)

where each impulse coefficient is subjected to a poly-
topic (time-invariant) uncertainty. By straightforward
manipulations, this can be converted to a system with
a polytopic uncertainty in theB(k) matrix. The per-
formance measure was chosen as the largest deviation
(over a finite horizon) of the outputy(k + j|k) from
some referencer(k + j|k). Loosely speaking, this
yields the problem (with∆ meaning the polytopic
uncertainty)

min
u(·|k)

max
∆

max
j

||y(k + j|k) − r(k + j|k)||∞ (8)

It was shown that this can be written as a linear
programming (LP) problem. Unfortunately, the opti-
mization problem had exponential complexity in the
number of uncertain variables.

The complexity was improved in (Allwright and Pa-
pavasiliou, 1991) where an equivalent LP problem
with polynomial complexity was derived. It was also
noted that the formulation with|| · ||∞ could be ex-
tended to|| · ||1. Furthermore, the approach was ex-
tended to time-varying uncertainties.

Similar work on minimization of the worst-case de-
viation along a predicted trajectory, given a polytopic
model the gain, can be found in, e.g., (Zheng, 1995)
and (Olivieraet al., 2000).

A quadratic minimax performance measure, such as
(5) which will be addressed in this work, has not been
studied to the same extent, at least not in the sense of
efficient formulations.

Since the quadratic performance measure is convex,
a polytopic uncertainty in theB(k) matrix can be
taken care of by just enumerating all the vertices of
the uncertainty model along the future trajectory and
solve a quadratic program for every possible com-
bination. However, this has to be considered an in-
tractable result since this will lead to problems with
exponential complexity. If there areq uncertain pa-
rameters inB(k), there will be2Nq vertices of the
uncertainty realization along the trajectory. Schemes
based on straightforward enumeration can be found
in, e.g., (Lee and Cooley, 1997) and (Casavolaet
al., 1999).

4. MATHEMATICAL PRELIMINARIES

The results in this paper are based on linear matrix
inequalities, LMIs.

Definition 1.(LMI, (Boyd et al., 1994)). An LMI is
an inequality, in the free scalar variablesxi, that for
some fixed symmetric matricesFi can be written

F (x) = F0 + x1F1 + x2F2 + . . . + xnFn � 0

LMIs are used in semidefinite programming.

Definition 2.(SDP, (Boydet al., 1994)). An SDP is
an optimization problem that can be written

min
x

cT x

subject toF (x) � 0

An SDP is a convex optimization problem that can
be solved with high efficiency using solvers based on,
e.g., interior-point methods.

The following lemma will be used repeatedly



Lemma 1.(Schur complement, (Zhang, 1999)). IfW �
0, then for anyX � 0

X − ZW−1ZT � 0 ⇔
[

X Z

ZT W

]
� 0

The importance of this lemma is that it allows us to
rewrite certain nonlinear matrix inequalities into linear
matrix inequalities (LMIs). The lemma is a slight
variation of the standard Schur complement which
involves strict inequalities.

5. MAIN RESULT

In this section, we show how to transform our origi-
nal minimax problem to a semidefinite programming
problem. The calculations will be done in a vector
formulation, so we begin by defining the stacked state
predictions and the future control sequence that we are
trying to find

X =




x(k + 1|k)
x(k + 2|k)

...
x(k + N |k)


 , U =




u(k|k)
u(k + 1|k)

...
u(k + N − 1|k)


(9)

The linear system and the uncertainty modelB(k) =
B0 +Bp∆(k)Cp allows us to write (for short notation
∆j = ∆(k + j))

X = Hx(k) + SU +
N−1∑
j=0

Vj∆jWjU (10)

where

V0 =




Bp

ABp

...
AN−1Bp


 , V1 =




0
Bp

...
AN−2Bp


 , . . .

W0 =
[
Cp 0 0 . . . 0

]
, W1 =

[
0 Cp 0 . . . 0

]
, . . .

The matricesH andS are defined in the standard way
to account for the nominal part

H =




A
A2

...
AN


 , S =




B0 0 . . . 0
AB0 B0 . . . 0

...
...

. . .
...

AN−1B0 AN−2B0 . . . B0




For notational convenience, we redefine the weight
matrices

Q := diag(Q, . . . , Q) andR := diag(R, . . . , R)

This makes it possible to write the minimax problem
as

min
t,U

t

subject to max
∆N

XT QX + UT RU ≤ t
(11)

For the sake of a more compact notation, we define

ϑi =
N−1∑
j=i

Vj∆jWjU (12)

X̄ = Hx(k) + SU (13)

In other words, we split the state predictions to one
nominal partX̄, and one uncertain contributionϑ0.
The constraint in the optimization problem (11) can
be rewritten with a Schur complement, and we obtain


 t X̄T + ϑT

0 UT

X̄ + ϑ0 Q−1 0
U 0 R−1


 � 0 (14)

At this point, we would like to eliminate the uncer-
tainties, and our tool to do this is the following theo-
rem (Ghaoui and Lebret, 1997)

Theorem 1.(Robust LMI). Robust satisfaction of the
uncertain LMI

F + L∆R + RT ∆T LT � 0 ∀∆ ∈ ∆

is equivalent to the LMI

[
F L

LT 0

]
�

[
R 0
0 I

]T [
τI 0
0 −τI

] [
R 0
0 I

]
τ ≥ 0

We write our constraint in a form suitable for the
above theorem by pulling out one uncertaintyϑ0 =
ϑ1 + V0∆0W0U

 t X̄T + ϑT
1 UT

X̄ + ϑ1 Q−1 0
U 0 R−1


+


UT WT

0

0
0


 ∆T

0

[
0 V T

0 0
]
+


 0
V0

0


 ∆0

[
W0U 0 0

] � 0

Clearly, this uncertain LMI has the structure addressed
in the theorem, so we obtain


t X̄T + ϑT

1 UT UT WT
0

X̄ + ϑ1 Q−1 0 0
U 0 R−1 0

W0U 0 0 0


 �




0 0
V0 0
0 0
0 I




[
τ0I 0
0 −τ0I

] [
0 V T

0 0 0
0 0 0 I

]
(15)

Simplification yields






t X̄T + ϑT
1 UT UT WT

0

X̄ + ϑ1 Q−1 − τ0V0V
T
0 0 0

U 0 R−1 0
W0U 0 0 τ0I


 � 0

The LMI above is still uncertain, due to the remaining
term ϑ1. However, the structure is the same as the
original LMI, so we can apply Theorem 1 recursively
until all uncertainties have been eliminated. The result
will be a large LMI




t X̄T UT UT W T
0 UT W T

1 . . .

X̄ Q−1 −
N−1∑
j=0

τjVjV T
j 0 0 0 0

U 0 R−1 0 0 0
W0U 0 0 τ0I 0 0
W1U 0 0 0 τ1I 0

... 0 0 0 0
. . .




� 0

Working with such a large LMI might be inconvenient,
but Schur complements can be used to write it as a sys-
tem of smaller LMIs, and we obtain our optimization
problem, which also is our main result

min
t,τ,U

tx + tu +
N−1∑
j=0

tj

subject to




tx X̄T

X̄ Q−1 −
N−1∑
j=0

τjVjV
T
j


 � 0

[
tu UT

U R−1

]
� 0

[
tj UT WT

j

WjU τjI

]
� 0

5.1 Connection to nominal MPC

The resulting LMI can be analyzed to some extent.
A Schur complement on the large LMI yields the
equivalent constraint

X̄T (Q−1 −
N−1∑
j=0

τjVjV
T
j )−1X̄

+ UT (R +
N−1∑
j=0

1
τj

WT
j Wj)U ≤ t (16)

Recall that when we solve a nominal MPC problem,
we have the constraint

X̄T QX̄ + UT RU ≤ t (17)

Hence, the difference is, to begin with, the additional∑N−1
j=0

1
τj

WT
j Wj on the control weight. By recalling

the definition of the matricesWj , we see that the
matricesWT

j Wj are block diagonal with zeros in the
diagonal blocks except at thejth block. Hence, the

extra weight onu(k+j|k) will be proportional toτ−1
j .

The modified state weight is a bit harder to interpret.
However, intuitively, if we rewrite the state cost using
the matrix inversion lemma and then neglect higher
order terms we obtain

(Q−1 −
N−1∑
j=0

τjVjV
T
j )−1 ≈ Q +

N−1∑
j=0

τjQVjV
T
j Q

We see that the state weight also will be increased, i.e.
the robustification is not done by only increasing the
control weight, and the adjustment of the state weight
depends on both the original state weight and the
uncertainty model (of course, this can be seen directly
in (16), but the expression above makes it easier to see
in what directions we are changing the state weight).

6. EXTENSIONS

For the proposed framework to be interesting, it is im-
portant that standard extensions to nominal MPC can
be applied also in our minimax framework. Indeed,
this is the case as we will show here.

6.1 Control constraints

To begin with, we note that any linear constraint
on U , such as amplitude or rate constraints, can be
incorporated unaffected as standard linear constraints,
since these constraints are unrelated to the uncertainty.

6.2 Linear state constraints

A typical situation in MPC is constraints on states
and outputs. Also these can be dealt with in a robust
manner. Let us assume for simplicity that we can
write the constraints as the element-wise constraint
MX ≤ 1. Inserting the definition ofX yields

M(X̄ +
N−1∑
j=0

Vj∆WjU) ≤ 1 (18)

Define unit vectorsei to extract each row

eT
i M(X̄ +

N−1∑
j=0

Vj∆jWjU) ≤ 1 (19)

Worst-case disturbances are found with the following
lemma

Lemma 2.

max
||∆||≤1

xT ∆y = ||x||||y|| (20)



Proof: Follows from Schwarz inequality|xT y| ≤
||x||||y||. Equality whenx andy are parallel, i.e. when
∆ is chosen so thatx and∆y are parallel.

If we apply this to our uncertain predictions, a worst-
case constraint is obtained

eT
i MX̄ +

N−1∑
j=0

||eT
i MVj ||||WjU || ≤ 1 (21)

IntroduceN boundsγj (so called second order cone
constraints)

||WjU || ≤ γj (22)

or equivalently

[
γj UT WT

j

WjU γjI

]
� 0 (23)

With these bounds, we obtain the linear constraints

eT
i MX̄ +

N−1∑
j=0

||eT
i MVj ||γj ≤ 1 (24)

Hence, the original linear constraints are taken care of
by introducingN second order cone constraints and
N new variables. Notice that no matter how many
constraints there are, the number of second order cone
constraints and new variables will always beN .

6.3 State estimation and disturbances

The results in this work can be incorporated into the
framework for minimax MPC for systems with state
estimation errors and bounded external disturbances
developed in (L¨ofberg, 2001a).

7. EXAMPLE

We study a sampled double integrator. In order to de-
sign a robust MPC controller, we create an uncertainty
model which basically models an uncertain gain.

A =
[
1 0
1 1

]

B ∈ Co
([

1.50
0.55

]
,

[
0.50
0.55

]
,

[
1.50
0.45

]
,

[
0.50
0.45

])
C =

[
0 1

]
Our goal is to control the outputy(k) = x2(k), under
the control constraint|u(k)| ≤ 1. A natural tuning is
thus to only put weight onx2(k) in the performance
measure. The chosen tuning variables were

Q =
[
0.01 0
0 1

]
, R = 0.01, N = 5 (25)

The polytopic model onB(k) has to be converted to a
norm-bounded model. This is done using the approach
described in (Boydet al., 1994) and results in

B0 =
[

1
0.50

]
, Bp =

[
0.52 0
0 0.16

]
, Cp =

[
0.707
0.707

]

As a first experiment, we test a “bad” uncertainty
realization (found by trial). The following uncertainty
realization was used

B(k) =




[
0.5
0.45

]
u(k) > 0

[
1.5
0.55

]
u(k) ≤ 0

(26)

Implementation and solution of the optimization prob-
lems were done using (Vandenbergheand Boyd, 1998)
and (Löfberg, 2001b).

The closed loop performance from the initial condi-

tion x(0) =
[
0 5

]T
with this tuning and uncertainty

realization can be seen in Figure 1. The nominal MPC
controller has very poor performance, while the robust
minimax MPC controller gives pretty good perfor-
mance. Of course, the aggressive tuning is doomed
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Fig. 1. Aggressive tuningR = 0.01 and bad uncer-
tainty.

to give a nominal controller with poor robustness.
A natural solution is to detune the controller, so we
choseR = 1 instead and perform the same experi-
ment. Surprisingly, this did actually not improve per-
formance of the nominal controller that much. The
minimax controller gives pretty much the same re-
sponse as before, see Figure 2.

By tuning the nominal controller carefully, it is pos-
sible to obtain better performance. However, the idea
with robust control is that this should not be necessary.
The tuning variables should reflect the actual perfor-
mance criteria, and the robustness should be built-
in. Given a new uncertainty model, it should not be
necessary to re-tune the controller.
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Fig. 2. Detuned controllersR = 1 and bad uncertainty.

So what is the price we have to pay? Conservative-
ness is the main problem with robust controllers, i.e.,
the performance in the “non-worst-case” situation can
detoriate. However, for this example, this is actually
not a major problem. In Figure 3 we simulate the sys-
tem with a random uncertainty using both the nominal
and the minimax controller. We see that the minimax
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Fig. 3. Aggressive tuningR = 0.01 and random
uncertainty.

controller gives a slightly sluggish behavior compared
to the nominal controller. However, the minimax con-
troller does not seem to be overly conservative.

8. CONCLUSIONS

Minimax MPC is not applicable to all systems. The
example which we studied is of course chosen to
point out the possible benefits of a minimax controller.
However, the purpose of this paper has not been to
advocate the use of minimax controllers, but to show
that the problem at least can be solved efficiently and
incorporated into the existing MPC framework.
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