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Abstract: When we want to control a very fast system, like an operational amplifier, we 
have the problem that the controller must be faster than the system. The controller´s work 
conditions are extreme and it is very difficult to find an optimal and implement solution. 
The QFT design methodology alows to look for real solutions to the problem. To 
demostrate this afirmation, a study has been done about the operational amplifier (O.A.) 
LM12CL of National Semiconductor. The result is a robust controller that allows its 
operation in extreme conditions. Copyright © 2002 IFAC 
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1. INTRODUCTION 

 
In the field of electronic design, the operational 
amplifiers play an important role. The O.A. are used 
in a lot of applications, including works of middle 
power. The LM12CL is an O.A. designed for this 
kind of jobs; it is capable of driving loads  ±25v at 
±10A. 
 
Although O.A.s are internaly compesated, some 
operation conditions can drive them to a very 
submuffled or unstable systems. This situation force 
to control the system O.A.. Besides appear these 
extreme work conditions, as O.A. is a physical 
system, is also a not linear system (although in fact 
we can consider a negligible linearity), and it also 
has uncertainty in most of its parameters, due to 
manufacture conditions are not always the same. 
 
If we analyse the problem, we can obtain three 
important causes for which the QFT methology 
design is useful to solve our problem control in this 
kind of systems: 
 
1. To work with low gains makes the operational 

amplifier instable. There are aplicattions in 
which it is interesting that the O.A. works with 
unity gain (voltage follower). 

2. When the O.A. drives capacitive loads, interact 
with the open-loop output resistance (about 1Ω). 
The system acquires a new pol e that reduce the 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Capacitive loads influence in O.A.  
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phase margin of the feed-back loop, ultimately 
causing oscillation. Figure 1 shows the effect 
over gain in open-loop if O.A drives capacitive 
loads. 

3. The variation of operational amplifier 
parameters makes that operation conditions 
change significantly. It is neccesary to reduce 
these variations in apparently equal devices. 

 
The three above points show possible situations of 
instability and uncertainty interrelated, that QFT can 
solve suitably. Moreover QFT alows impose other 
kind of conditions, i.e. tracking performance 
specifications, that will allow to design a controller 
for the system, to force the response into limits 
indicated for designer. 
 
 

2. QFT MODEL 
 
QFT needs a system defined in frequency domain 
and with some kind of uncertainty. This is traduced 
in a certain number of plants, that show the worst 
behaviours. This plants will be forced to work into 
performance specifications that the designer has 
indicated. 
 
For this reason the first step for controller´s design is 
to obtain the model in frequency domain of O.A., 
National Semiconductor offers Bode plot of open 
loop, that is shown in Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. LM12CL open loop response.  
 
 
After some calculations the LM12CL is modeled by 
the following transfer fuction 
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T1=3.062938485· 10-7 T2=40· 10-9 
T3=0.002652582385 T4=1.224268793· 10-6 

T5=1.020979495· 10-7 ADC=50000 
 
This model is quite approximate, in figure 3 the great 
coincidence with the Bode plot of National 
Semiconductor is shown. 
 

Once the O.A. is modeled, the work´s conditions 
indicated above must be included in the transfer 
fuction. To this respect, according to point 1, the 
controler must be designed to allow works with unity 
gain. The point 2 indicates that the controller will 
allow the O.A to work with variable capacity. Finally 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b) 
Fig. 3. Real and modeled Bode plots. 
 
 
according the point 3, it will bear in mind the 
variability in two parameters, dc gain and output 
resistance. 
 

20000 ≤ ADC ≤ 90000 0.2Ω ≤ RO ≤ 1Ω 
 
Knowing this information, the transfer fuction for 
open loop is  
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Calling ADC =10000 A y ROCL = 10-6τ the uncertainty 
in O.A. parameters can be defined as  
 

2 ≤ A ≤ 9 and 0 ≤ τ ≤ 1 
 
The result is the following transfer fuction 
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3. CONTROLLER DESIGN 

 
QFT offers the control solution through two 
freedom-degrees. Figure 4 shows this structure. The 
target is to calculate the G(s) and F(s) controllers. 
 
 
 
 
 
 
 
Fig. 4. Two freedom-degrees control is proposed by 
QFT 
 
Firstly we calculate the parametric uncertainty 
obtaining 65 plants. These plants represent the worst 
O.A. conditions. Variability is converted in A and τ 
combinations shown in figure 5. 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. Parametric uncertainty and combinations for 
design. 
 
Figure 6 shows some plant´s frequency responses in 
Black plot, for different combinations. (4 repre-
sentative plants of 65).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 6. Black plot  for some plants. 
 
 
It is easy to see the great variability in response due 
to variable paramenters O.A. 
 
Once the plants are defined, the second step is to 
mark the desirabled performance specifications. 
They can be divided in two parts: stability 
performance and tracking performance. The stability 
performance specifications are indicated with a gain 

margin of 5dB and a phase margin of 50º. In QFT 
design, this involves the following specification 
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On the one hand, the tracking performance 
specifications are determined to get the loop close 
system response, enclosed into two limits. These 
limits are defined in frequency domain by two 
transfer fuctions 
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and the step response is shown in figure 7. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7. Step response for limits Mu(s) y Ml(s). 
 
 
The marked specifications are translated in the QFT 
bounds. These bounds indicate the frequency 
response restriction to get the proposed objectives. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8. Loop-Shaping for controller design. 
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The stability and tracking bounds obtained are 
intersected to get the most restrictive specifications. 
Once this operation is carried out, we go to the 
design. 
 
It is important to look for an easy controller to get a 
implemently system. Figure 8 shows the obtained 
solution, that involves the following controller  
 

682

1072

10·135.2s10·923.4s

10·555.2s10·767.6s03.89
G

++
++=  

 
The controller is of a low order and the specifications 
ar almost perfctly fitted, it would just test to calculate 
the pre-filter. The design itself is similar to the 
controller, G(s), and it’s obtained as a result 
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The 65 plants simulation behaviour facing the 
unitary step is practically found as a whole in the 
fixed especifications. The answers of the further 
fixed specification plants are shown en figure 9, and 
as it can be seen, the discordance among then is 
perfectly acceptable. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9. Worst temporal responses for the controlled 
system. 
 
 

4. SEARCH OF SOLUTIONS 
 
Once the controller is designed, our next goal is the 
system implementation. However two problems 
appear: 
 
1. The controller has a pole in 87 MHZ. 
2. The controller has a gain of low frequency 

superior to 10000. 
 
Which physical system is able to offer a pole in 87 
MHZ and gain of 10000, with the rest poles further 
away so as not to produce a frequencial charge 
effect? 

 
This solution is not possible. Given the O.A. 
bandwidth, a controlller with a huge bandwidth is 
necessary, what produces the necessity of no-using 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10. Passive controller Loop-shaping.. 
 
 
active devices (since the bandwidth of then is not so 
big). This means the only real solution can be 
obtained by means of passive elements, what at the 
time will force, without any doubt to relax the fixed 
specifications. In order to look for a controller which 
could be implemented with passive components, and 
wich reaches the specifications in its maxims as well 
(always bearing the stability conditions), we have 
obtained 
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The frequencial response located upon Nichols’s 
chart and the bounds founds are shown in figure 10. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11. Worst response for the system with 
passive controller. 
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It is observed that the tracking specifications give up 
working in many frequencies, but those of stability 
do still work. In this situation we can avoid the pre-
filter calculation. Figure 11 shows the step response 
for most extreme plants. 
 
Obviosly the system works much more slowly, but 
watching the step responses is checked that they 
don’t differ that much from the imposed limit 
responses. 
 
 

5. ELECTRONIC IMPLEMENTATION 
 
The block diagram to implement is the one shown in 
figure 4, with the particularity that in the end, the 
pre-filter is not necessary. The main problem is to 
know how to carry out the difference junction. 
Electronically, a difference junction is built by means 
of a differential amplifier, but for that it is necessary 
to use an O.A.; which will produce a frequencial 
charge due to the poles its gain owns. This situation 
does to look for other solution. 
 
 
 
 
 
 
 
Fig. 12. Difference juction ideal and real model. 
 
 
The problem answer could result in using the O.A. in 
itself as a difference juction. The O.A. is a 
differential amplifier and, in order to use it as a 
difference juction, it would be enough just to 
transform the block diagram of figure 4 into the one 
of figure 13. 
 
 
 
 
 
 
 
 
 
Fig. 13. New structure of QFT block diagram 
control. 
 
 
When the pre-filter is designed, the improvement 
behavior is poor. For this reason the pre-filter can be 
eliminated. 
 
With this last consideration we introduce the 
controler. The electronic circuit that would 
implement the transfer fuction is shown in figure 14. 
The total system without pre-filter is showed in 
figure 15. 
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Fig. 14. Controlador. C1=2.3979nF, R1=1085.11Ω, 
R2=27.0248Ω, C2=10nF  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 15. Total system with controller. 
 
 
In reference to write it above, it is possible change 
the product F(s)· G(s) for a simple voltage divisor 
implemented with the R1 and R2 resistors (C1 y  C2 
can be eliminated from this block diagram part). 
 
 

6. CONCLUSIONS 
 
The paper has shown the posibility of controlling 
very fast systems, which have uncertainty by  the way 
of QFT. 
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The active devices that implemented a controller, 
which it is used to control a fast system, must have 
got a frequencial response faster than the system. In 
other situation frequencial effect charge is produced. 
It is obvious, but if faster active devices do not exist, 
the unique solution is to use passive elements to 
implement the controller. It means that we must relax 
design specifications and work’s conditions. 
 
Finally, we have to indicate that QFT has allowed to 
go from the ideal, optimal and unattainable solution, 
to a real and implementely solution, offering the 
brigde between the pure theorical design and a real 
engineering design. 
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