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Abstract: The paper considers the problem of robust active noise control in an acoustic
duct. In particular, the paper considers how the number of actuator speakers affects the
performance of the system. The robust controller design methodology being considered is
based on some recent results on minimax LQG control. The paper also uses a structured
approach to uncertainty modelling as part of the controller design scheme.
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1. INTRODUCTION

The problem of robust feedback control in an acous-
tic duct has attracted considerable research interest.
Acoustic ducts have a number of characteristics which
make it difficult to design high performance feed-
back controllers and it has been found that only lim-
ited amounts of noise disturbance attenuation can
be achieved via the use of single-input single-output
robust feedback controllers; e.g., see (Petersen and
Pota, 2000). The aim of this paper is to determine if
the use of multiple actuator speakers can significantly
improve the performance of robust feedback control
systems in this application. We propose an uncertainty
model such that the addition of extra actuators does
not reduce the achieved performance. This is an im-
portant issue in any robust control problem since the
addition of an extra actuator will require the addition
of extra uncertainty in the uncertain system model.
Thus, if the uncertain system modelling technique is
overly conservative, the addition of this extra uncer-
tainty may outweigh the benefit if the extra control in-
put and poorer control system performance may result.

? This work was supported by the Australian Research Council.

Our results are based on an experimental acoustic duct
available at the Australian Defence Force Academy
(ADFA). The experimental duct available has highly
complicated dynamics which are not easily modelled
via a theoretical analysis. Thus, the basis of our nomi-
nal modelling process will be the use of system identi-
fication techniques. In our case, the experimental data
consists of frequency response data measured using a
swept sine spectrum analyzer.

Our feedback control system design relies on a re-
cent robust controller synthesis technique referred
to as minimax LQG control; e.g., see (Petersen et
al., 2000; Ugrinovskii and Petersen, 1998) for com-
plete details of this technique. This technique begins
with an uncertain system model of the process to be
controlled and then constructs an output feedback con-
troller which minimizes the worst case of a quadratic
cost function when the system is assumed to be subject
to a white noise disturbance. In order to obtain an
uncertain system model to which the minimax LQG
controller synthesis technique can be applied, we char-
acterize the size of the uncertainty as a function of
frequency. Frequency weighting filters are designed to
match the magnitude of the error frequency responses.
Our approach to constructing these weighting filters
applies a Yule-Walker filter design method to the error
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Fig. 1. Acoustic Duct.

frequency response data; e.g., see (Friedlander and
Porat, 1984). This method is applied to each actuator
channel and then the overall uncertain system model is
obtained by combining these uncertain system models
together with appropriate scaling parameters.

We also include some analysis to derive limits on the
achievable disturbance attenuation.

2. EXPERIMENTAL SETUP AND MODELING

2.1 Experimental Setup

The experimental acoustic duct to be considered in
this paper is illustrated in Figure 1. This is a duct with
a square cross section which is closed at both ends.
A microphone is located at position r0 and control
speakers 1–5 are positioned at r1 – r5 respectively.
Also, a disturbance speaker is located at one end of
the duct. This speaker is labelled speaker 6. The length
of the duct is L. For the experimental duct located
at ADFA, the dimensions are as follows: L = 4.01m,
w = 0.38m, r0 = 0.19m, r1 = 0.80m, r2 = 1.41m,
r3 = 2.19m, r4 = 2.80m, and r5 = 3.41m.

2.2 System Identification and Nominal Modeling

The nominal model used in our robust control system
design is obtained by a process of system identifica-
tion applied to experimental frequency response data
measured using a spectrum analyser. In our system
identification procedure, the method of (McKelvey et
al., 1996) was applied to estimate a 20th order, six-
input, single-output state space model whose inputs
correspond to the disturbance speaker and each of the
control speakers. However, a given controller may not
use all of the control input speakers.

The identified model was based on the correspond-
ing frequency response data over the frequency range
10 − 250 Hz. Also, the parameter q in the algorithm
described (McKelvey et al., 1996) was set at q = 50.
Figure 2 shows the nominal model obtained and the
measured magnitude frequency responses for each of
the five control speakers. Using this approach nominal
modelling, we end up with an nominal transfer func-
tion matrix of the form P(s) =

[

P1(s) P2(s)
]

where
P1(s) represents the transfer function from the dis-
turbance speaker input to the microphone output and
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Fig. 2. Model (dashed) and measured (solid) duct
frequency responses.

P2(s) represents the transfer function matrix from the
control speaker inputs to the microphone output. Let
k denote the number of actuator speakers being used.
Then, P2(s) will be a 1× k transfer function.

2.3 Uncertainty Modeling

The minimax LQG approach which will be used in
our controller design begins with an uncertain system
model. In order to obtain an uncertain system which is
compatible with the minimax LQG control theory, the
uncertainty will be represented by frequency weighted
uncertainty as shown in Figure 3.
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In this uncertain system, w̃ represents the disturbance
input, ∆(s) is a 1×k stable uncertain transfer function
matrix subject to the bound

‖∆( jω)‖ ≤ 1 ∀ ω . (1)

Also, W (s) =











W1(s) 0 . . .0
0 W2(s)
...

. . .
...

0 . . . Wk(s)











, is a di-

agonal matrix of frequency weighting transfer func-



tions which describes the size of the uncertainty in
the corresponding speaker channel as a function of
frequency. The diagonal matrix

Λ =











λ1 0 . . .0
0 λ2
...

. . .
...

0 . . . λk











is a matrix of scaling parameters in the uncertain
system model which will be chosen as part of the
minimax LQG controller synthesis. The signal u is
the control input, and y is the measured output. This
uncertain system will be constructed in order to repre-
sent the uncertainty in the transfer functions from the
control input speakers to the microphone output. The
true transfer function matrix from the control input
speakers to the microphone output is assumed to be

P̃2(s) = P2(s)+P1(s)∆(s)W (s)Λ. (2)

To construct W (s), we choose each Wi(s) so that
∣

∣

∣

∣

P̃2i( jω)−P2i( jω)

P1( jω)Wi( jω)

∣

∣

∣

∣

≤ 1 ∀ω (3)

where P2i(s) is the ith component of the nominal
transfer function matrix P2(s). Also, it follows from
(2) that ∆i(s), the ith component of the uncertain
transfer function matrix ∆(s) satisfies

∆i(s) =
P̃2i( jω)−P2i( jω)

P1( jω)Wi( jω)λi
.

Thus, it follows from (3) that the condition (1) will be
satisfied if Λ is such that

k

∑
i=1

1
λ 2

i

≤ 1. (4)

In practice, we choose Λ so that equality holds in this
constraint and thus

λk =

[

1−
k−1

∑
i=1

1
λ 2

i

]− 1
2

. (5)

Thus, we choose the weighting transfer function W (s)
so that (3) holds when P̃2( jω) is the measured fre-
quency matrix response from the control input speak-
ers to the microphone output and P1( jω) and P2( jω)
are the model frequency responses. Also, we choose
the scaling constants λ1 . . .λk−1 so that

k−1

∑
i=1

1
λ 2

i

≤ 1. (6)

Then λk is defined by (5). The parameters λ1 . . .λk−1
will then be chosen as part of the minimax LQG
procedure described below.

In order to construct a suitable weighting transfer
functions Wi(s) to (approximately) satisfy (3), we will
use a version of the Yule-Walker filter design algo-
rithm; see (Friedlander and Porat, 1984). In particular,

we require that the magnitude frequency response of
Wi(s) approximates the function

Φi( jω)
∆
=

∣

∣

∣

∣

P̃2i( jω)−P2i( jω)

P1( jω)

∣

∣

∣

∣

(7)

over the frequency range [ω0, ωc] for which the nomi-
nal model attempts to match the measured data. Above
the cutoff frequency ωc (chosen to be 270 Hz in our
case), the nominal model makes no attempt to match
the measured frequency response data so we simply
require the magnitude of Wi( jω) approximates a con-
stant value equal to Φ( jωc).

For each value of i, we used the above Yule-Walker
method to construct a corresponding weighting trans-
fer function Wi(s) of order 16. Plots of the functions
|Φi( jω)| and |Wi( jω)| are shown in Figure 4.
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Fig. 4. Frequency response of |Wi( jω)| (dashed)
and |Φi( jω)| (solid).

3. MINIMAX LQG CONTROL

In this section, present a brief description of the mini-
max LQG robust controller synthesis method. A more
complete and rigorous description of this method
can be found in the references (Ugrinovskii and Pe-
tersen, 1998; Petersen et al., 2000). The minimax
LQG method is applied to a stochastic uncertain sys-
tem of the form shown in Figure 5.
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Fig. 5. Stochastic uncertain system.

In this figure, the nominal system is described by the
following stochastic state equations:



ẋ = (Ax+B1u+B2φ)dt +B2w̃,

z =C1x+D1u,

y = (C2x+D2φ)dt +D2w̃. (8)

In the above equations, x(t) ∈ Rn is the state, u(t) ∈
Rm is the control input, w̃(t) is a unity covariance
white noise input, z(t) ∈ Rq is the uncertainty output,
φ(t) ∈ Rp is the uncertainty input and y(t) ∈ Rl is the
measured output.

The uncertainty block can be any dynamical system
such that the following stochastic uncertainty con-
straint is satisfied:

lim
T→∞

1
T

E
[

∫ T

0
‖φ‖2dt−

∫ T

0
‖z‖2dt

]

≤ 0. (9)

In particular, this stochastic uncertainty constraint will
be satisfied if the uncertainty block is a stable linear
time invariant system with transfer function matrix
∆(s) satisfying ‖∆( jω)‖ ≤ 1 ∀ ω . Thus the duct
uncertain system described as in Figure 3 and equation
(1) will fit into this framework.

It is assumed that the cost function under considera-
tion is of the form

J = lim
T→∞

1
2T

E
∫ T

0
(x(t)′Rx(t)+u(t)′Gu(t))dt, (10)

where R ≥ 0 and G > 0. The minimax LQG con-
trol problem involves finding a controller which min-
imizes the maximum of this cost function where the
maximum is taken over all uncertainties satisfying the
stochastic uncertainty constraint (9).

If we define a variable

ζ =

[

R
1
2 x

G
1
2 u

]

, (11)

the cost function (10) can be rewritten as J =
limT→∞

1
T E

∫ T
0 ‖ζ‖2dt. The minimax LQG control

problem can now be solved by solving the scaled
H∞ control problem represented in Figure 6. In this

H(s)

u(t) y(t)

ζ

z(t)
τ
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τ
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ξ
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Fig. 6. The scaled H∞ control problem.

H∞ control problem, the nominal system is described
by equations (8) and (11) and the controller is to be
constructed such that the closed loop system is stable
and the transfer function from w̃(t) to ξ (t) satisfies
the H∞ norm bound ‖Tw̃ξ ( jω)‖ ≤ 1 ∀ω . It is well

known that the solution to this H∞ control problem can
be obtained in terms of the following pair algebraic
Riccati equations (e.g., see (Zhou et al., 1996)):

(A−B2D′
2(D2D′

2)
−1C2)Y∞

+Y∞(A−B2D′
2(D2D′

2)
−1C2)

′

−Y∞(C′
2(D2D′

2)
−1C2−

1
τ

Rτ)Y∞

+B2(I−D′
2(D2D′

2)
−1D2)B

′
2 = 0 (12)

and

X∞(A−B1G−1
τ ϒ′τ )+(A−B1G−1

τ ϒ′τ )′X∞

+(Rτ −ϒτ G−1
τ ϒ′τ)

−X∞(B1G−1
τ B′1−

1
τ

B2B′2)X∞ = 0, (13)

where the solutions are required to satisfy the con-
ditions Y∞ > 0, X∞ > 0, I − 1

τ Y∞X∞ > 0 and Rτ −

ϒ′τ G−1
τ ϒτ ≥ 0. Here Rτ

∆
= R+τC′

1C1, Gτ
∆
= G+τD′

1D1

and ϒτ
∆
= τC′

1D1. In order to solve the minimax LQG
control problem, the parameter τ > 0 is chosen to
minimize the cost bound Wτ defined by

Wτ
∆
= tr





(τYCT
2 +B2DT

2 )(D2DT
2 )−1

×(τC2Y +D2BT
2 )X(I−YX)−1

+τY Rτ



 .

(14)

Then, the minimax LQG controller is defined by the
state equations

˙̂x = (A−B1G−1
τ ϒ′τ )x̂

−(B1G−1
τ B′1−

1
τ

B2B′2)X∞)x̂

+(I−
1
τ

Y∞X∞)−1(Y∞C′
2 +B2D′

2)

×(D2D′
2)
−1

(

y− (C2 +
1
τ

D2B′2X∞)x̂

)

uτ =−G−1
τ (B′1X∞ +ϒ′τ)x̂. (15)

4. CONTROLLER DESIGN

In order to apply the minimax LQG technique de-
scribed in Section 3, we must first specify the stochas-
tic uncertain system (8), (9) and the cost function
(10). The uncertain system to be considered is derived
from the block diagram shown in Figure 3 where
the transfer function matrices P1(s), P2(s) and W (s)
are defined as above. This defines a corresponding
stochastic uncertain system of the form (8), (9). In
this stochastic uncertain system, the state equations
(8) are obtained from a state space realization of the
transfer function P(s) augmented with the transfer
function matrix W (s)Λ as in Figure 3. Also, the con-
dition (1) guarantees the satisfaction of the stochastic
uncertainty constraint (9).



We choose the matrix R in the cost function (10) as
R = C′

2C2. That is, the term x(t)′Rx(t) in the cost
function (10) corresponds to the norm squared value
of the nominal system output. The term u′Gu in the
cost function (10) is treated as a design parameter
affecting controller gain. However, in all cases it was
found that setting G to the small value of G = 10−8

did not lead to excessive controller gains.

The minimax LQG controller is synthesized by first
choosing the constant τ > 0 and the parameters λi
to minimize the quantity Wτ defined in (14). This
optimization was carried out using the matlab uncon-
strained optimization command fminsearch. With the
optimal value of the parameter τ and the matrix Λ, the
controller is constructed according to the formula (15).
The order of this controller will be 20 + 16k where k
is the number of control speakers being used. Such a
high order controller may lead to implementationprob-
lems. Hence, the balanced controller reduction method
described in Section 19.1.1 of (Zhou et al., 1996) was
applied in order to obtain a 15th order approxima-
tion to the original controller. The controller design
methodology described above was applied to the cases
of k = 1,2, . . . ,5 control speakers.

5. EXPERIMENTAL RESULTS
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Each of the controllers designed in Section 4 were im-
plemented on a dSPACE DEC alpha system as shown
in Figure 7. This involved first discretizing the reduced
dimension controller using the FOH method with a
sample period of 0.5× 10−3 seconds. The resulting
discrete time controller was then implemented on the
dSPACE system with this sample period. Figures 8-9
show the resulting experimental frequency responses
for each of the corresponding closed loop systems.
These figures also show the measured frequency re-
sponse for the uncontrolled duct.

The measured disturbance attenuation over the range
of 10 to 250 Hz together with the optimal value of the
cost bound Wτ for each of the cases being considered
is shown in Table 1. From Figures 8-9 and Table 1,
we can see that some improvement is obtained in the
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(b) Control using Speakers 1-2
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Fig. 8. Experimental controlled and uncontrolled
frequency responses.

control system performance as the number of control
speakers is increased from 1 to 3. However, increasing
the number of speakers beyond 3 does not result in a
significant increase in performance.
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Fig. 9. Experimental controlled and uncontrolled
frequency responses.

Number of Control Speakers Measured attenuation Wτ
1 3.8 dB 3.78
2 4.4 dB 3.64
3 5.1 dB 3.56
4 5.2 dB 3.58
5 5.3 dB 3.64

Table 1. Measured disturbance attenuation
and LQG cost bounds.

6. PERFORMANCE LIMITATIONS

The experimental closed loop frequency responses ob-
tained in the previous section lead us to the question
of what are the limits on the achievable noise attenua-
tion. We now present a rule of thumb which gives the
performance limitations due to unmodelled dynamics
in terms of modal density. In this rule of thumb, we
ignore the effect of non-minimum phase zeros. The
presence of non-minimum phase zeros would impose
even more severe limitations.

First note that the closed loop transfer for the duct
control system will be given by the formula Pcl(s) =

P̃1(s)
1+L(s) . where L(s) is the scalar loop gain L(s) =

−P̃2(s)H(s) and H(s) is the controller transfer func-
tion matrix. Suppose that P̃1(s) has a resonant peak
at ω1 which we wish to attenuate. Also, suppose
P̃2(s) has an unmodelled resonance at ω2 > ω1
and hence the phase of the loop gain L(s) is un-
known at ω2. Hence, to guarantee closed loop sta-
bility, we must ensure 20log10 |L( jω2)| ≤ 0 dB.
To achieve disturbance attenuation of α at ω1, we
must have 1

|1+L( jω1)|
= α . This can be approximated

by 20log10 |L( jω1)| ≈ 20log10

(

1
α −1

)

. For α <
0.5, this means that L(s) must have gain crossover
frequency between ω1 and ω2. Thus, at the gain
crossover frequency, the average roll-off slope of
the gain bode plot of L(s) is bounded below by
20log10(

1
α −1)

20log10
ω2
ω1

dB/decade. Using the approximate ver-

sion of Bode’s Gain Phase relation and assuming L(s)
is minimum phase, this slope must be bounded as fol-

lows to achieve closed loop stability:
20log10(

1
α −1)

20log10
ω2
ω1

≤

40 dB/decade. This is equivalent to

−20log10 α ≤ 20log10

(

1+
ω2

2

ω2
1

)

dB. (16)

This is our rule of thumb indicating a bound on the
achievable disturbance attenuation in terms of the
final modal density ω2

2/ω2
1 . For the duct resonance at

220Hz, this formula gives a bound of 7.7 dB compared
with the 3.3 dB reduction of this peak we obtained in
the case of the all five control speakers.

7. REFERENCES

Friedlander, B. and B. Porat (1984). The modified
Yule-Walker method of ARMA spectral estima-
tion. IEEE Transactions on Aerospace Electronic
Systems 20(2), 158–173.

McKelvey, T., H. Akçay and L. Ljung (1996).
Subspace-based multivariable system identifica-
tion from frequency response data. IEEE Trans-
actions on Automatic Control 41(7), 960–979.

Petersen, I. R. and H. R. Pota (2000). Minimax LQG
control of an experimental acoustic duct. In: IEE
Control 2000 Conference. Cambridge UK.

Petersen, I. R., V. Ugrinovski and A. V. Savkin
(2000). Robust Control Design using H∞ Meth-
ods. Springer-Verlag London.

Ugrinovskii, V. A. and I. R. Petersen (1998). Time-
averaged robust control of stochastic partially
observed uncertain systems. In: Proceedings of
the IEEE Conference on Decision and Control.
Tampa, FL.

Zhou, K., J. Doyle and K. Glover (1996). Robust
and Optimal Control. Prentice-Hall. Upper Sad-
dle River, NJ.


